ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-01
    Description: The quasi-biennial oscillation (QBO) is stratified by stratospheric zonal wind direction and height into four phase pairs [easterly midstratospheric winds (QBOEM), easterly lower-stratospheric winds, westerly midstratospheric winds (QBOWM), and westerly lower-stratospheric winds] using an empirical orthogonal function analysis of daily stratospheric (100–10 hPa) zonal wind data during 1980–2017. Madden–Julian oscillation (MJO) events in which the MJO convective envelope moved eastward across the Maritime Continent (MC) during 1980–2017 are identified using the Real-time Multivariate MJO (RMM) index and the outgoing longwave radiation (OLR) MJO index (OMI). Comparison of RMM amplitudes by the QBO phase pair over the MC (RMM phases 4 and 5) reveals that boreal winter MJO events have the strongest amplitudes during QBOEM and the weakest amplitudes during QBOWM, which is consistent with QBO-driven differences in upper-tropospheric lower-stratospheric (UTLS) static stability. Additionally, boreal winter RMM events over the MC strengthen during QBOEM and weaken during QBOWM. In the OMI, those amplitude changes generally shift eastward to the eastern MC and western Pacific Ocean, which may result from differences in RMM and OMI index methodologies. During boreal summer, as the northeastward-propagating boreal summer intraseasonal oscillation (BSISO) becomes the dominant mode of intraseasonal variability, these relationships are reversed. Zonal differences in UTLS stability anomalies are consistent with amplitude changes of eastward-propagating MJO events across the MC during boreal winter, and meridional stability differences are consistent with amplitude changes of northeastward-propagating BSISO events during boreal summer. Results remain consistent when stratifying by neutral ENSO phase.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-12
    Description: Airborne eXpendable BathyThermographs (AXBTs) are air-launched, single use temperature-depth probes that telemeter temperature observations as VHF-modulated frequencies. This study describes the AXBT Realtime Editing System (ARES), which is comprised of two components: the ARES Data Acquisition System, which receives telemetered temperature-depth profiles with no external hardware other than a VHF radio receiver, and the ARES Profile Editing System, which quality controls AXBT temperature-depth profiles. The ARES Data Acquisition System performs fast Fourier transforms on windowed segments of the demodulated signal transmitted from the AXBT. For each segment, temperature is determined from peak frequency and depth from elapsed time since profile start. Valid signals are distinguished from noise by comparing peak signal levels and signal-to-noise ratios to predetermined thresholds. When evaluated using 387 profiles, the ARES Data Acquisition System produced temperature-depth profiles nearly identical to those generated using a Sippican MK-21 processor, while reducing the amount of noise from VHF interference included in those profiles. The ARES Profile Editor applies a series of automated checks to identify and correct common profile discrepancies before displaying the profile on an editing interface that provides simple user controls to make additional corrections. When evaluated against 1,177 tropical Atlantic and Pacific AXBT profiles, the ARES automated quality control system successfully corrected 87% of the profiles without any required manual intervention. Necessary future work includes improvements to the automated quality control algorithm and algorithm evaluation against a broader dataset of temperature-depth profiles from around the world across all seasons.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-05
    Description: To better understand the Madden–Julian Oscillation (MJO) in the Maritime Continent (MC), events from 1980 to 2019 were classified as active or weakening according to propagation characteristics and amplitude changes in two leading indices, the Real-time Multivariate MJO (RMM) index and Outgoing Longwave Radiation (OLR) MJO Index (OMI). Active MJO events had larger index amplitudes than weakening events, and those amplitude differences appeared at day − 3 in the RMM and day − 8 in the OMI and remained through day + 15 in both indices (day 0 marked the day an event entered the MC). Thus, active events were stronger than weakening events as they approached and crossed the MC. To understand differences in environments between these events, composites of OLR and specific humidity were compared for each. Active MJO events had consistently more negative OLR anomalies and greater specific humidity in both the boundary layer and free troposphere than weakening MJO events. Those differences persisted during both easterly and westerly phases of the Quasi-biennial Oscillation (QBO) and during La Niña and El Niño. Active MJO events during QBO westerly winds had more specific humidity than active events did during QBO easterly winds. Finally, both active and weakening MJO events featured a diurnal cycle of lower-tropospheric specific humidity over land areas of the MC, and the amount of atmospheric moisture available to active events was consistently greater than weakening ones. These results indicate that index amplitude, OLR, and tropospheric specific humidity can all be important tools in identifying active and weakening MJO events in the MC, including for different phases of the QBO and the El Niño-Southern Oscillation (ENSO).
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Monthly Weather Review 147(1), (2019): 389-406. doi: 10.1175/MWR-D-18-0158.1.
    Description: The quasi-biennial oscillation (QBO) is stratified by stratospheric zonal wind direction and height into four phase pairs [easterly midstratospheric winds (QBOEM), easterly lower-stratospheric winds, westerly midstratospheric winds (QBOWM), and westerly lower-stratospheric winds] using an empirical orthogonal function analysis of daily stratospheric (100–10 hPa) zonal wind data during 1980–2017. Madden–Julian oscillation (MJO) events in which the MJO convective envelope moved eastward across the Maritime Continent (MC) during 1980–2017 are identified using the Real-time Multivariate MJO (RMM) index and the outgoing longwave radiation (OLR) MJO index (OMI). Comparison of RMM amplitudes by the QBO phase pair over the MC (RMM phases 4 and 5) reveals that boreal winter MJO events have the strongest amplitudes during QBOEM and the weakest amplitudes during QBOWM, which is consistent with QBO-driven differences in upper-tropospheric lower-stratospheric (UTLS) static stability. Additionally, boreal winter RMM events over the MC strengthen during QBOEM and weaken during QBOWM. In the OMI, those amplitude changes generally shift eastward to the eastern MC and western Pacific Ocean, which may result from differences in RMM and OMI index methodologies. During boreal summer, as the northeastward-propagating boreal summer intraseasonal oscillation (BSISO) becomes the dominant mode of intraseasonal variability, these relationships are reversed. Zonal differences in UTLS stability anomalies are consistent with amplitude changes of eastward-propagating MJO events across the MC during boreal winter, and meridional stability differences are consistent with amplitude changes of northeastward-propagating BSISO events during boreal summer. Results remain consistent when stratifying by neutral ENSO phase.
    Description: The authors are grateful for the funding provided by the Office of Naval Research Propagation of Intra-Seasonal Tropical Oscillations (ONR PISTON) Award N0001416WX01752 and the USNA Trident Scholar program. The authors also appreciate the helpful comments of the two external reviewers.
    Description: 2019-07-07
    Keywords: Maritime Continent ; Madden-Julian oscillation ; Quasibiennial oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 38(1), (2021): 3-16, https://doi.org/10.1175/JTECH-D-20-0110.1.
    Description: Airborne expendable bathythermographs (AXBTs) are air-launched, single-use temperature–depth probes that telemeter temperature observations as VHF-modulated frequencies. This study describes the AXBT Real-Time Editing System (ARES), which is composed of two components: the ARES Data Acquisition System, which receives telemetered temperature–depth profiles with no external hardware other than a VHF radio receiver, and the ARES Profile Editing System, which quality controls AXBT temperature–depth profiles. The ARES Data Acquisition System performs fast Fourier transforms on windowed segments of the demodulated signal transmitted from the AXBT. For each segment, temperature is determined from peak frequency and depth from elapsed time since profile start. Valid signals are distinguished from noise by comparing peak signal levels and signal-to-noise ratios to predetermined thresholds. When evaluated using 387 profiles, the ARES Data Acquisition System produced temperature–depth profiles nearly identical to those generated using a Sippican MK-21 processor, while reducing the amount of noise from VHF interference included in those profiles. The ARES Profile Editor applies a series of automated checks to identify and correct common profile discrepancies before displaying the profile on an editing interface that provides simple user controls to make additional corrections. When evaluated against 1177 tropical Atlantic and Pacific AXBT profiles, the ARES automated quality control system successfully corrected 87% of the profiles without any required manual intervention. Necessary future work includes improvements to the automated quality control algorithm and algorithm evaluation against a broader dataset of temperature–depth profiles from around the world across all seasons.
    Description: This work was sponsored by the Office of Naval Research (Grants N000141812819 and N0001420WX00345) and the U.S. Navy’s Civilian Institution Office with the MIT–WHOI Joint Program.
    Keywords: Ocean ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Physical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: Airborne eXpendable BathyThermographs (AXBTs) are air-launched, single use temperature-depth probes that telemeter temperature observations as a VHF-modulated frequency. This study describes the AXBT Realtime Editing System (ARES), which was developed to receive and quality control temperature-depth profiles with no external hardware other than a VHF radio receiver. The ARES Data Acquisition System performs fast Fourier transforms on windowed segments of demodulated signal transmitted from the AXBT and uses the resulting spectra to identify valid temperature-depth observations. When evaluated using 389 profiles, the ARES data acquisition system produced temperature-depth profiles nearly identical to those generated using a Sippican MK-21 processor, while reducing the amount of noise from VHF interference included in those profiles. The ARES Profile Editor applies a series of automated checks to identify and correct common profile discrepancies, before displaying the profile on an editing interface that provides simple user controls to make additional corrections. When evaluated against 1,177 tropical Atlantic and Pacific AXBT profiles, the ARES automated quality control system successfully corrected 87% of the profiles without any manual intervention necessary. The ARES Data Acquisition and Profile Editing Systems performed exceptionally well when operationally tested with 44 AXBTs during Hurricane Dorian (2019), enabling high resolution observations across key oceanic features including Dorian’s cold wake and the Gulf Stream. Necessary future work includes improvements on the automated quality control algorithm and evaluation against a more diverse dataset of temperature-depth profiles.
    Description: This research was funded by the U.S. Navy’s Civilian Institution (CIVINS) Office with the MIT-WHOI Joint Program. Additionally, this work was funded by the Office of Naval Research, grant number N000141812819.
    Keywords: Airborne Expendable Bathythermograph ; AXBT ; Upper Ocean Observations
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...