ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 18 (1982), S. 157-171 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract As part of a multidisciplinary study performed for the National Commission on Air Quality, the phenomena of atmospheric transport and the removal of SO2 and SO4 − during a major regional sulfate episode (the period July 18–25, 1978 in the eastern U.S.) had been examined. The main objective of this study was the evaluation and the quantification of varying source/receptor relationships under atmospheric conditions conducive to long-range transport of fine particulate matter. In the case study presented here, air mass trajectories were obtained using the numerical NMC trajectory predictions and the results of the isobaric trajectory computations at the 850 mb level. The effects of alternative regional SO2 emission reduction scenarios on the predicted ambient SO2 and SO4 − concentrations were also investigated using the new modeling methods that were specifically developed for this purpose.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-01
    Description: The year 1919 was important in meteorology, not only because it was the year that the American Meteorological Society was founded, but also for two other reasons. One of the foundational papers in extratropical cyclone structure by Jakob Bjerknes was published in 1919, leading to what is now known as the Norwegian cyclone model. Also that year, a series of meetings was held that led to the formation of organizations that promoted the international collaboration and scientific exchange required for extratropical cyclone research, which by necessity involves spatial scales spanning national borders. This chapter describes the history of scientific inquiry into the structure, evolution, and dynamics of extratropical cyclones, their constituent fronts, and their attendant jet streams and storm tracks. We refer to these phenomena collectively as the centerpiece of meteorology because of their central role in fostering meteorological research during this century. This extremely productive period in extratropical cyclone research has been possible because of 1) the need to address practical challenges of poor forecasts that had large socioeconomic consequences, 2) the intermingling of theory, observations, and diagnosis (including dynamical modeling) to provide improved physical understanding and conceptual models, and 3) strong international cooperation. Conceptual frameworks for cyclones arise from a desire to classify and understand cyclones; they include the Norwegian cyclone model and its sister the Shapiro–Keyser cyclone model. The challenge of understanding the dynamics of cyclones led to such theoretical frameworks as quasigeostrophy, baroclinic instability, semigeostrophy, and frontogenesis. The challenge of predicting explosive extratropical cyclones in particular led to new theoretical developments such as potential-vorticity thinking and downstream development. Deeper appreciation of the limits of predictability has resulted from an evolution from determinism to chaos. Last, observational insights led to detailed cyclone and frontal structure, storm tracks, and rainbands.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-11-01
    Description: No Abstract available.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-11-01
    Description: The pioneering large-scale studies of cyclone frequency, location, and intensity conducted by Fred Sanders prompt similar questions about lesser-studied anticyclone development. The results of a climatology of closed anticyclones (CAs) at 200, 500, and 850 hPa, with an emphasis on the subtropics and midlatitudes, is presented to assess the seasonally varying distribution and hemispheric differences of these features. To construct the CA climatology, a counting program was applied to twice-daily 2.5° NCEP–NCAR reanalysis 200-, 500-, and 850-hPa geopotential height fields for the period 1950–2003. Stationary CAs, defined as those CAs that were located at a particular location for consecutive time periods, were counted only once. The climatology results show that 200-hPa CAs occur preferentially during summer over subtropical continental regions, while 500-hPa CAs occur preferentially over subtropical oceans in all seasons and over subtropical continents in summer. Conversely, 850-hPa CAs occur preferentially over oceanic regions beneath upper-level midocean troughs, and are most prominent in the Northern Hemisphere, and over midlatitude continents in winter. Three case studies of objectively identified CAs that produced heal waves over the United States, Europe, and Australia in 1995, 2003, and 2004, respectively, are presented to supplement the climatological results. The case studies, examining the subset of CAs than can produce heat waves, illustrate how climatologically hot continental tropical air masses produced over arid and semiarid regions of the subtropics and lower midlatitudes can become abnormally hot in conjunction with dynamically driven upper-level ridge amplification. Subsequently, these abnormally hot air masses are advected downstream away from their source regions in conjunction with transient disturbances embedded in anomalously strong westerly jets.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-12-01
    Description: No Abstract available.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-11-01
    Description: This paper begins with a review of basic surface frontogenesis concepts with an emphasis on fronts located over sloping terrain adjacent to mountain barriers and fronts located in large-scale baroclinic zones close to coastlines. The impact of cold-air damming and differential diabatic heating and cooling on frontogenesis is considered through two detailed case studies of intense surface fronts. The first case, from 17 to 18 April 2002, featured the westward passage of a cold (side-door) front across coastal eastern New England in which 15°–20°C temperature decreases were observed in less than one hour. The second case, from 28 February to 4 March 1972, featured a long-lived front that affected most of the United States from the Rockies to the Atlantic coast and was noteworthy for a 50°C temperature contrast between Kansas and southern Manitoba, Canada. In the April 2002 case most of New England was initially covered by an unusually warm, dry air mass. Dynamical anticyclogenesis over eastern Canada set the stage for a favorable pressure gradient to allow chilly marine air to approach coastal New England from the east. Diabatic cooling over the chilly (5°–8°C) waters of the Gulf of Maine allowed surface pressures to remain relatively high offshore while diabatic heating over the land (31°–33°C temperatures) enabled surface pressures to fall relative to over the ocean. The resulting higher pressures offshore resulted in an onshore cold push. Frontal intensity was likely enhanced prior to leaf out and grass green-up as virtually all of the available insolation went into sensible heating. The large-scale environment in the February–March 1972 case favored the accumulation of bitterly cold arctic air in Canada. Frontal formation occurred over northern Montana and North Dakota as the arctic air moved slowly southward in conjunction with surface pressure rises east of the Canadian Rockies. The arctic air accelerated southward subsequent to lee cyclogenesis–induced pressure falls ahead of an upstream trough that crossed the Rockies. The southward acceleration of the arctic air was also facilitated by dynamic anticyclogenesis in southern Canada beneath a poleward jet-entrance region. Frontal intensity varied diurnally in response to differential diabatic heating. Three types of cyclogenesis events were observed over the lifetime of the event: 1) low-amplitude frontal waves with no upper-level support, 2) low-amplitude frontal waves that formed in a jet-entrance region, and 3) cyclones that formed ahead of advancing upper-level troughs. All cyclones were either nondeveloping or weak developments despite extreme baroclinicity, likely the result of large atmospheric static stability in the arctic frontal zone and unfavorable alongfront stretching deformation. Significant frontal–mountain interactions were observed over the Rockies and the Appalachians.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-05
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-12
    Description: Medium-range forecasts for Cyclone Joachim, an extratropical cyclone that impacted western Europe on 16 December 2011, consistently predicted a high-impact intense cyclone; however, these forecasts failed to verify. The potential source and propagation of forecast errors for this case are diagnosed from the 51-member European Centre for Medium-Range Forecasts Ensemble Prediction System initialized 5 days prior to the cyclone’s landfall. Ensemble members are subdivided into two groups: one that contained the eight members that had the most accurate forecast of Joachim and, the other, the eight members that predicted the most intense cyclone. Composite differences between these two subgroups indicate that the difference between these forecasts originate in tropopause-based subsynoptic waves along a deep trough in the eastern Pacific. These errors move eastward over a northern stream ridge centered on the west coast of North America and modulate the evolution of a trough that dives equatorward out of Canada and is associated with the development of Joachim. Forecast error calculations and relaxation experiments indicate that reducing forecast errors associated with these subsynoptic features leads to more accurate forecasts. These results present further evidence that subsynoptic errors, especially those originating in the warm sector of a cyclone, can be a significant source of downstream forecast errors.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-23
    Description: A 1996–2013 May–August U.S. progressive derecho climatology existing entirely within the modern radar era is constructed identifying 256 derecho events over the 18-yr span. A corridor of enhanced derecho activity in agreement with previous derecho studies stretches from southern Minnesota to the border of Ohio and West Virginia with a marked decrease east of the Appalachian Mountains. A secondary maximum in progressive derecho activity exists in Kansas and Oklahoma. Analyses of derecho frequency by month of the warm season indicate a northward shift in frequency through July and an increase in derecho frequency through the first half of the warm season followed by a large decrease in August. The 256 identified derecho events are divided subjectively into seven distinct categories based on the synoptic environments in which they form. While the prevailing “northwest flow” conceptual model is upheld as the dominant progressive derecho synoptic category, the common occurrence of warm-season progressive derechos ahead of well-defined upper-level troughs is presented. This connection between upper-level troughs and progressive derecho formation expands on the relationship between upper-level troughs and serial derecho formation that has been the focus of past studies. In addition, a link between progressive derecho formation and easterly low-level flow to the north of a Rocky Mountain lee cyclone is bolstered. Consistent with previous derecho studies, all composite categories are characterized by large low-level moisture and the presence of an upper-level jet at derecho initiation.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-05-01
    Description: Subtropical cyclones (STCs) derive a considerable portion of their energy from baroclinic and diabatic processes. The opportunity to investigate the roles of baroclinic and diabatic processes during the evolution of STCs from a potential vorticity (PV) perspective motivates this study. The roles of baroclinic and diabatic processes during the evolution of STCs are determined by calculating three PV metrics from the 0.5° NCEP Climate Forecast System Reanalysis dataset. The three PV metrics quantify the relative contributions of lower-tropospheric baroclinic processes, midtropospheric latent heat release, and upper-tropospheric dynamical processes during the evolution of individual cyclones. An evaluation of the three PV metrics, as well as the sign of the upper-tropospheric thermal vorticity, during the evolution of individual cyclones is used to devise an objective STC identification technique and construct a 1979–2010 climatology of North Atlantic (NATL) STCs that undergo tropical transition.An investigation of the intraseasonal variability associated with the location and frequency of STCs identified in the 1979–2010 climatology shows that STCs typically form over the southern Gulf of Mexico and western NATL during April–June; over the northern Gulf of Mexico and western NATL during July–September; and over the western, central, and eastern NATL during October–December. STC formation occurs most frequently during September, when baroclinic and convectively driven forcings overlap across portions of the NATL. The frequency of STC formation is sensitive to the phase of ENSO and is maximized during periods of anomalously low SSTs in the eastern equatorial Pacific.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...