ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2008-11-01
    Description: This paper begins with a review of basic surface frontogenesis concepts with an emphasis on fronts located over sloping terrain adjacent to mountain barriers and fronts located in large-scale baroclinic zones close to coastlines. The impact of cold-air damming and differential diabatic heating and cooling on frontogenesis is considered through two detailed case studies of intense surface fronts. The first case, from 17 to 18 April 2002, featured the westward passage of a cold (side-door) front across coastal eastern New England in which 15°–20°C temperature decreases were observed in less than one hour. The second case, from 28 February to 4 March 1972, featured a long-lived front that affected most of the United States from the Rockies to the Atlantic coast and was noteworthy for a 50°C temperature contrast between Kansas and southern Manitoba, Canada. In the April 2002 case most of New England was initially covered by an unusually warm, dry air mass. Dynamical anticyclogenesis over eastern Canada set the stage for a favorable pressure gradient to allow chilly marine air to approach coastal New England from the east. Diabatic cooling over the chilly (5°–8°C) waters of the Gulf of Maine allowed surface pressures to remain relatively high offshore while diabatic heating over the land (31°–33°C temperatures) enabled surface pressures to fall relative to over the ocean. The resulting higher pressures offshore resulted in an onshore cold push. Frontal intensity was likely enhanced prior to leaf out and grass green-up as virtually all of the available insolation went into sensible heating. The large-scale environment in the February–March 1972 case favored the accumulation of bitterly cold arctic air in Canada. Frontal formation occurred over northern Montana and North Dakota as the arctic air moved slowly southward in conjunction with surface pressure rises east of the Canadian Rockies. The arctic air accelerated southward subsequent to lee cyclogenesis–induced pressure falls ahead of an upstream trough that crossed the Rockies. The southward acceleration of the arctic air was also facilitated by dynamic anticyclogenesis in southern Canada beneath a poleward jet-entrance region. Frontal intensity varied diurnally in response to differential diabatic heating. Three types of cyclogenesis events were observed over the lifetime of the event: 1) low-amplitude frontal waves with no upper-level support, 2) low-amplitude frontal waves that formed in a jet-entrance region, and 3) cyclones that formed ahead of advancing upper-level troughs. All cyclones were either nondeveloping or weak developments despite extreme baroclinicity, likely the result of large atmospheric static stability in the arctic frontal zone and unfavorable alongfront stretching deformation. Significant frontal–mountain interactions were observed over the Rockies and the Appalachians.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-12-01
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...