ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-01
    Description: The pioneering large-scale studies of cyclone frequency, location, and intensity conducted by Fred Sanders prompt similar questions about lesser-studied anticyclone development. The results of a climatology of closed anticyclones (CAs) at 200, 500, and 850 hPa, with an emphasis on the subtropics and midlatitudes, is presented to assess the seasonally varying distribution and hemispheric differences of these features. To construct the CA climatology, a counting program was applied to twice-daily 2.5° NCEP–NCAR reanalysis 200-, 500-, and 850-hPa geopotential height fields for the period 1950–2003. Stationary CAs, defined as those CAs that were located at a particular location for consecutive time periods, were counted only once. The climatology results show that 200-hPa CAs occur preferentially during summer over subtropical continental regions, while 500-hPa CAs occur preferentially over subtropical oceans in all seasons and over subtropical continents in summer. Conversely, 850-hPa CAs occur preferentially over oceanic regions beneath upper-level midocean troughs, and are most prominent in the Northern Hemisphere, and over midlatitude continents in winter. Three case studies of objectively identified CAs that produced heal waves over the United States, Europe, and Australia in 1995, 2003, and 2004, respectively, are presented to supplement the climatological results. The case studies, examining the subset of CAs than can produce heat waves, illustrate how climatologically hot continental tropical air masses produced over arid and semiarid regions of the subtropics and lower midlatitudes can become abnormally hot in conjunction with dynamically driven upper-level ridge amplification. Subsequently, these abnormally hot air masses are advected downstream away from their source regions in conjunction with transient disturbances embedded in anomalously strong westerly jets.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...