ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (119)
  • Ocean circulation  (48)
  • Eddies  (41)
  • Arctic  (22)
  • Sea surface temperature
  • American Meteorological Society  (117)
  • Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu  (2)
  • MDPI Publishing
  • 2020-2023  (40)
  • 2010-2014  (79)
Collection
  • Articles  (119)
Source
Keywords
Years
Year
  • 1
    Publication Date: 2022-03-01
    Description: To examine the atmospheric responses to Arctic sea ice variability in the Northern Hemisphere cold season (from October to the following March), this study uses a coordinated set of large-ensemble experiments of nine atmospheric general circulation models (AGCMs) forced with observed daily varying sea ice, sea surface temperature, and radiative forcings prescribed during the 1979–2014 period, together with a parallel set of experiments where Arctic sea ice is substituted by its climatology. The simulations of the former set reproduce the near-surface temperature trends in reanalysis data, with similar amplitude, and their multimodel ensemble mean (MMEM) shows decreasing sea level pressure over much of the polar cap and Eurasia in boreal autumn. The MMEM difference between the two experiments allows isolating the effects of Arctic sea ice loss, which explain a large portion of the Arctic warming trends in the lower troposphere and drive a small but statistically significant weakening of the wintertime Arctic Oscillation. The observed interannual covariability between sea ice extent in the Barents–Kara Seas and lagged atmospheric circulation is distinguished from the effects of confounding factors based on multiple regression, and quantitatively compared to the covariability in MMEMs. The interannual sea ice decline followed by a negative North Atlantic Oscillation–like anomaly found in observations is also seen in the MMEM differences, with consistent spatial structure but much smaller amplitude. This result suggests that the sea ice impacts on trends and interannual atmospheric variability simulated by AGCMs could be underestimated, but caution is needed because internal atmospheric variability may have affected the observed relationship.
    Description: Published
    Description: 8419–8443
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: Arctic ; Sea ice ; Atmospheric circulation ; Climate models ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-11-27
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(6), (2022): 1233-1244, https://doi.org/10.1175/jpo-d-21-0223.1.
    Description: The Sverdrup relation is the backbone of wind-driven circulation theory; it is a simple relation between the meridional transport of the wind-driven circulation in the upper ocean and the wind stress curl. However, the relation is valid for steady circulation only. In this study, a time-dependent Sverdrup relation is postulated, in which the meridional transport in a time-dependent circulation is the sum of the local wind stress curl term and a time-delayed term representing the effect of the eastern boundary condition. As an example, this time-dependent Sverdrup relation is evaluated through its application to the equatorial circulation in the Indian Ocean, using reanalysis data and a reduced gravity model. Close examination reveals that the southward Somali Current occurring during boreal winter is due to the combination of the local wind stress curl in the Arabian Sea and delayed signals representing the time change of layer thickness at the eastern boundary.
    Description: This work is supported by NSFC (41822602, 41976016, 42005035, 42076021), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB42000000, XDA 20060502), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0306), Guangdong Basic and Applied Basic Research Foundation (2021A1515011534), Youth Innovation Promotion Association CAS, ISEE2021ZD01, and LTOZZ2002. The numerical simulation is supported by the High-Performance Computing Division in the South China Sea Institute of Oceanology.
    Description: 2022-11-27
    Keywords: Ocean circulation ; Ocean dynamics ; Rossby waves ; Wind stress curl
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-12-16
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(7), (2022): 1415–1430. https://doi.org/10.1175/JPO-D-21-0147.1.
    Description: Strong subinertial variability near a seamount at the Xisha Islands in the South China Sea was revealed by mooring observations from January 2017 to January 2018. The intraseasonal deep flows presented two significant frequency bands, with periods of 9–20 and 30–120 days, corresponding to topographic Rossby waves (TRWs) and deep eddies, respectively. The TRW and deep eddy signals explained approximately 60% of the kinetic energy of the deep subinertial currents. The TRWs at the Ma, Mb, and Mc moorings had 297, 262, and 274 m vertical trapping lengths, and ∼43, 38, and 55 km wavelengths, respectively. Deep eddies were independent from the upper layer, with the largest temperature anomaly being 〉0.4°C. The generation of the TRWs was induced by mesoscale perturbations in the upper layer. The interaction between the cyclonic–anticyclonic eddy pair and the seamount topography contributed to the generation of deep eddies. Owing to the potential vorticity conservation, the westward-propagating tilted interface across the eddy pair squeezed the deep-water column, thereby giving rise to negative vorticity west of the seamount. The strong front between the eddy pair induced a northward deep flow, thereby generating a strong horizontal velocity shear because of lateral friction and enhanced negative vorticity. Approximately 4 years of observations further confirmed the high occurrence of TRWs and deep eddies. TRWs and deep eddies might be crucial for deep mixing near rough topographies by transferring mesoscale energy to small scales.
    Description: This work was supported by the National Natural Science Foundation of China (92158204, 91958202, 42076019, 41776036, 91858203), the Open Project Program of State Key Laboratory of Tropical Oceanography (project LTOZZ2001), and Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0304).
    Description: 2022-12-16
    Keywords: Abyssal circulation ; Ocean circulation ; Ocean dynamics ; Intraseasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-21
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(6),(2022): 1191-1204, https://doi.org/10.1175/jpo-d-21-0242.1.
    Description: A simplified quasigeostrophic (QG) analytical model together with an idealized numerical model are used to study the effect of uneven ice–ocean stress on the temporal evolution of the geostrophic current under sea ice. The tendency of the geostrophic velocity in the QG model is given as a function of the lateral gradient of vertical velocity and is further related to the ice–ocean stress with consideration of a surface boundary layer. Combining the analytical and numerical solutions, we demonstrate that the uneven stress between the ice and an initially surface-intensified, laterally sheared geostrophic current can drive an overturning circulation to trigger the displacement of isopycnals and modify the vertical structure of the geostrophic velocity. When the near-surface isopycnals become tilted in the opposite direction to the deeper ones, a subsurface velocity core is generated (via geostrophic setup). This mechanism should help understand the formation of subsurface currents in the edge of Chukchi and Beaufort Seas seen in observations. Furthermore, our solutions reveal a reversed flow extending from the bottom to the middepth, suggesting that the ice-induced overturning circulation potentially influences the currents in the deep layers of the Arctic Ocean, such as the Atlantic Water boundary current.
    Description: This work was funded by the National Key Research and Development Program of China (Grant 2017YFA0604600), the National Natural Science Foundation of China (Grant 41676019), the Fundamental Research Funds for the Central Universities (Grant 2019B81214), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant KYCX19_0384), and the National Science Foundation (MAS, Grants OPP-1822334, OCE-2122633).
    Keywords: Arctic ; Sea ice ; Channel flows ; Vertical motion ; Ekman pumping ; Idealized models ; Quasigeostrophic models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-08-29
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1593-1611, https://doi.org/10.1175/jpo-d-21-0180.1.
    Description: This study presents novel observational estimates of turbulent dissipation and mixing in a standing meander between the Southeast Indian Ridge and the Macquarie Ridge in the Southern Ocean. By applying a finescale parameterization on the temperature, salinity, and velocity profiles collected from Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats in the upper 1600 m, we estimated the intensity and spatial distribution of dissipation rate and diapycnal mixing along the float tracks and investigated the sources. The indirect estimates indicate strong spatial and temporal variability of turbulent mixing varying from O(10−6) to O(10−3) m2 s−1 in the upper 1600 m. Elevated turbulent mixing is mostly associated with the Subantarctic Front (SAF) and mesoscale eddies. In the upper 500 m, enhanced mixing is associated with downward-propagating wind-generated near-inertial waves as well as the interaction between cyclonic eddies and upward-propagating internal waves. In the study region, the local topography does not play a role in turbulent mixing in the upper part of the water column, which has similar values in profiles over rough and smooth topography. However, both remotely generated internal tides and lee waves could contribute to the upward-propagating energy. Our results point strongly to the generation of turbulent mixing through the interaction of internal waves and the intense mesoscale eddy field.
    Description: The observations were funded through grants from the Australian Research Council Discovery Project (DP170102162) and Australia’s Marine National Facility. Surface drifters were provided by Dr. Shaun Dolk of the Global Drifter Program. AC was supported by an Australian Research Council Postdoctoral Fellowship. AC, HEP, and NLB acknowledge support from the Australian Government Department of the Environment and Energy National Environmental Science Program and the ARC Centre of Excellence in Climate Extremes. KP acknowledges the support from the National Science Foundation.
    Keywords: Diapycnal mixing ; Eddies ; Fronts ; Inertia-gravity waves ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-09-15
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(1),(2022): 75–97, https://doi.org/10.1175/JPO-D-21-0099.1.
    Description: Mesoscale eddies contain the bulk of the ocean’s kinetic energy (KE), but fundamental questions remain on the cross-scale KE transfers linking eddy generation and dissipation. The role of submesoscale flows represents the key point of discussion, with contrasting views of submesoscales as either a source or a sink of mesoscale KE. Here, the first observational assessment of the annual cycle of the KE transfer between mesoscale and submesoscale motions is performed in the upper layers of a typical open-ocean region. Although these diagnostics have marginal statistical significance and should be regarded cautiously, they are physically plausible and can provide a valuable benchmark for model evaluation. The cross-scale KE transfer exhibits two distinct stages, whereby submesoscales energize mesoscales in winter and drain mesoscales in spring. Despite this seasonal reversal, an inverse KE cascade operates throughout the year across much of the mesoscale range. Our results are not incompatible with recent modeling investigations that place the headwaters of the inverse KE cascade at the submesoscale, and that rationalize the seasonality of mesoscale KE as an inverse cascade-mediated response to the generation of submesoscales in winter. However, our findings may challenge those investigations by suggesting that, in spring, a downscale KE transfer could dampen the inverse KE cascade. An exploratory appraisal of the dynamics governing mesoscale–submesoscale KE exchanges suggests that the upscale KE transfer in winter is underpinned by mixed layer baroclinic instabilities, and that the downscale KE transfer in spring is associated with frontogenesis. Current submesoscale-permitting ocean models may substantially understate this downscale KE transfer, due to the models’ muted representation of frontogenesis.
    Description: The OSMOSIS experiment was funded by the U.K. Natural Environment Research Council (NERC) through Grants NE/1019999/1 and NE/101993X/1. ACNG acknowledges the support of the Royal Society and the Wolfson Foundation, and XY that of a China Scholarship Council PhD studentship.
    Keywords: Ageostrophic circulations ; Dynamics ; Eddies ; Energy transport ; Frontogenesis/frontolysis ; Instability ; Mesoscale processes ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Small scale processes ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-09-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1677-1691, https://doi.org/10.1175/jpo-d-21-0269.1.
    Description: Oceanic mesoscale motions including eddies, meanders, fronts, and filaments comprise a dominant fraction of oceanic kinetic energy and contribute to the redistribution of tracers in the ocean such as heat, salt, and nutrients. This reservoir of mesoscale energy is regulated by the conversion of potential energy and transfers of kinetic energy across spatial scales. Whether and under what circumstances mesoscale turbulence precipitates forward or inverse cascades, and the rates of these cascades, remain difficult to directly observe and quantify despite their impacts on physical and biological processes. Here we use global observations to investigate the seasonality of surface kinetic energy and upper-ocean potential energy. We apply spatial filters to along-track satellite measurements of sea surface height to diagnose surface eddy kinetic energy across 60–300-km scales. A geographic and scale-dependent seasonal cycle appears throughout much of the midlatitudes, with eddy kinetic energy at scales less than 60 km peaking 1–4 months before that at 60–300-km scales. Spatial patterns in this lag align with geographic regions where an Argo-derived estimate of the conversion of potential to kinetic energy is seasonally varying. In midlatitudes, the conversion rate peaks 0–2 months prior to kinetic energy at scales less than 60 km. The consistent geographic patterns between the seasonality of potential energy conversion and kinetic energy across spatial scale provide observational evidence for the inverse cascade and demonstrate that some component of it is seasonally modulated. Implications for mesoscale parameterizations and numerical modeling are discussed.
    Description: This work was generously funded by NSF Grants OCE-1912302, OCE-1912125 (Drushka), and OCE-1912325 (Abernathey) as part of the Ocean Energy and Eddy Transport Climate Process Team.
    Keywords: Eddies ; Energy transport ; Mesoscale processes ; Turbulence ; Oceanic mixed layer ; Altimetry ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-06
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(10), (2021): 3235–3252, https://doi.org/10.1175/JPO-D-20-0288.1.
    Description: Recent mooring measurements from the Overturning in the Subpolar North Atlantic Program have revealed abundant cyclonic eddies at both sides of Cape Farewell, the southern tip of Greenland. In this study, we present further observational evidence, from both Eulerian and Lagrangian perspectives, of deep cyclonic eddies with intense rotation (ζ/f 〉 1) around southern Greenland and into the Labrador Sea. Most of the observed cyclones exhibit strongest rotation below the surface at 700–1000 dbar, where maximum azimuthal velocities are ~30 cm s−1 at radii of ~10 km, with rotational periods of 2–3 days. The cyclonic rotation can extend to the deep overflow water layer (below 1800 dbar), albeit with weaker azimuthal velocities (~10 cm s−1) and longer rotational periods of about one week. Within the middepth rotation cores, the cyclones are in near solid-body rotation and have the potential to trap and transport water. The first high-resolution hydrographic transect across such a cyclone indicates that it is characterized by a local (both vertically and horizontally) potential vorticity maximum in its middepth core and cold, fresh anomalies in the deep overflow water layer, suggesting its source as the Denmark Strait outflow. Additionally, the propagation and evolution of the cyclonic eddies are illustrated with deep Lagrangian floats, including their detachments from the boundary currents to the basin interior. Taken together, the combined Eulerian and Lagrangian observations have provided new insights on the boundary current variability and boundary–interior exchange over a geographically large scale near southern Greenland, calling for further investigations on the (sub)mesoscale dynamics in the region.
    Description: OOI mooring data are based upon work supported by the National Science Foundation under Cooperative Agreement 1743430. S. Zou, A. Bower, and H. Furey gratefully acknowledge the support from the Physical Oceanography Program of the U.S. National Science Foundation Grant OCE-1756361. R.S. Pickart acknowledges support from National Science Foundation Grants OCE-1259618 and OCE-1756361. N. P. Holliday and L. Houpert were supported by NERC programs U.K. OSNAP (NE/K010875) and U.K. OSNAP-Decade (NE/T00858X/1).
    Keywords: North Atlantic Ocean ; Cyclogenesis/cyclolysis ; Lagrangian circulation/transport ; Mesoscale processes ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-06-06
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Liang, Y.-C., Frankignoul, C., Kwon, Y.-O., Gastineau, G., Manzini, E., Danabasoglu, G., Suo, L., Yeager, S., Gao, Y., Attema, J. J., Cherchi, A., Ghosh, R., Matei, D., Mecking, J., Tian, T., & Zhang, Y. Impacts of Arctic sea ice on cold season atmospheric variability and trends estimated from observations and a multimodel large ensemble. Journal of Climate, 34(20), (2021): 8419–8443, https://doi.org/10.1175/JCLI-D-20-0578.s1.
    Description: To examine the atmospheric responses to Arctic sea ice variability in the Northern Hemisphere cold season (from October to the following March), this study uses a coordinated set of large-ensemble experiments of nine atmospheric general circulation models (AGCMs) forced with observed daily varying sea ice, sea surface temperature, and radiative forcings prescribed during the 1979–2014 period, together with a parallel set of experiments where Arctic sea ice is substituted by its climatology. The simulations of the former set reproduce the near-surface temperature trends in reanalysis data, with similar amplitude, and their multimodel ensemble mean (MMEM) shows decreasing sea level pressure over much of the polar cap and Eurasia in boreal autumn. The MMEM difference between the two experiments allows isolating the effects of Arctic sea ice loss, which explain a large portion of the Arctic warming trends in the lower troposphere and drive a small but statistically significant weakening of the wintertime Arctic Oscillation. The observed interannual covariability between sea ice extent in the Barents–Kara Seas and lagged atmospheric circulation is distinguished from the effects of confounding factors based on multiple regression, and quantitatively compared to the covariability in MMEMs. The interannual sea ice decline followed by a negative North Atlantic Oscillation–like anomaly found in observations is also seen in the MMEM differences, with consistent spatial structure but much smaller amplitude. This result suggests that the sea ice impacts on trends and interannual atmospheric variability simulated by AGCMs could be underestimated, but caution is needed because internal atmospheric variability may have affected the observed relationship.
    Description: We acknowledge support by the Blue-Action Project (the European Union’s Horizon 2020 research and innovation programme, #727852, http://www.blue-action.eu/index.php?id=3498). The WHOI–NCAR group was supported by the U.S. National Science Foundation (NSF) Office of Polar Programs Grants 1736738 and 1737377. Their computing and data storage resources, including the Cheyenne supercomputer (doi:10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory at NCAR. NCAR is a major facility sponsored by the U.S. NSF under Cooperative Agreement No. 1852977. Guillaume Gastineau was granted access to the HPC resources of TGCC under the allocations A5-017403 and A7-017403 made by GENCI. The SST and SIC data were downloaded from the U.K. Met Office Hadley Centre Observations Datasets (http://www.metoffice.gov.uk/hadobs/hadisst). The work by NLeSC was carried out on the Dutch national e-infrastructure with the support of SURF Cooperative. The simulations of IAP AGCM were supported by the National Key R&D Program of China 2017YFE0111800. The NorESM2-CAM6 simulations were performed on resources provided by UNINETT Sigma2–the National Infrastructure for High Performance Computing and Data Storage in Norway (nn2343k, NS9015K).
    Keywords: Arctic ; Sea ice ; Atmospheric circulation ; Climate models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-17
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(3), (2022): 363–382, https://doi.org/10.1175/jpo-d-21-0084.1.
    Description: Meltwater from Greenland is an important freshwater source for the North Atlantic Ocean, released into the ocean at the head of fjords in the form of runoff, submarine melt, and icebergs. The meltwater release gives rise to complex in-fjord transformations that result in its dilution through mixing with other water masses. The transformed waters, which contain the meltwater, are exported from the fjords as a new water mass Glacially Modified Water (GMW). Here we use summer hydrographic data collected from 2013 to 2019 in Upernavik, a major glacial fjord in northwest Greenland, to describe the water masses that flow into the fjord from the shelf and the exported GMWs. Using an optimum multi-parameter technique across multiple years we then show that GMW is composed of 57.8% ± 8.1% Atlantic Water (AW), 41.0% ± 8.3% Polar Water (PW), 1.0% ± 0.1% subglacial discharge, and 0.2% ± 0.2% submarine meltwater. We show that the GMW fractional composition cannot be described by buoyant plume theory alone since it includes lateral mixing within the upper layers of the fjord not accounted for by buoyant plume dynamics. Consistent with its composition, we find that changes in GMW properties reflect changes in the AW and PW source waters. Using the obtained dilution ratios, this study suggests that the exchange across the fjord mouth during summer is on the order of 50 mSv (1 Sv ≡ 106 m3 s−1) (compared to a freshwater input of 0.5 mSv). This study provides a first-order parameterization for the exchange at the mouth of glacial fjords for large-scale ocean models.
    Description: This work was partially supported by the Centre for Climate Dynamics (SKD) at the Bjerknes Centre for Climate Research. The authors thank NASA and the OMG consortium for making observational data freely available, and acknowledge M. Morlighem for good support in the early stages of this project. MM and LHS and would also like to thank Ø. Paasche, the ACER project, and the U.S. Norway Fulbright Foundation for the Norwegian Arctic Chair Grant 2019–20 that made the visit to Scripps Institution of Oceanography possible. FS acknowledges support from the DOE Office of Science Grant DE-SC0020073, Heising-Simons Foundation and from NSF and OCE-1756272. DAS acknowledges support from U.K. NERC Grants NE/P011365/1, NE/T011920/1, and NERC Independent Research Fellowship NE/T011920/1. MW was supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by the Universities Space Research Association under contract with NASA. CSA would like to acknowledge Geocenter Denmark for support to the project “Upernavik Glacier.”
    Keywords: Ocean ; Arctic ; Atlantic Ocean ; Glaciers ; Ice sheets ; Buoyancy ; Entrainment ; In situ oceanic observations ; Annual variations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-06-03
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 34(22), (2021): 8971–8987, https://doi.org/10.1175/JCLI-D-20-0610.1.
    Description: The impact of increasing Greenland freshwater discharge on the subpolar North Atlantic (SPNA) remains unknown as there are uncertainties associated with the time scales of the Greenland freshwater anomaly (GFWA) in the SPNA. Results from numerical simulations tracking GFWA and an analytical approach are employed to estimate the response time, suggesting that a decadal time scale (13 years) is required for the SPNA to adjust for increasing GFWA. Analytical solutions obtained for a long-lasting increase of freshwater discharge show a non-steady-state response of the SPNA with increasing content of the GFWA. In contrast, solutions for a short-lived pulse of freshwater demonstrate different responses of the SPNA with a rapid increase of freshwater in the domain followed by an exponential decay after the pulse has passed. The derived theoretical relation between time scales shows that residence time scales are time dependent for a non-steady-state case and asymptote the response time scale with time. The residence time of the GFWA deduced from Lagrangian experiments is close to and smaller than the response time, in agreement with the theory. The Lagrangian analysis shows dependence of the residence time on the entrance route of the GFWA and on the depth. The fraction of the GFWA exported through Davis Strait has limited impact on the interior basins, whereas the fraction entering the SPNA from the southwest Greenland shelf spreads into the interior regions. In both cases, the residence time of the GFWA increases with depth demonstrating long persistence of the freshwater anomaly in the subsurface layers.
    Description: D. S. Dukhovskoy and E. P. Chassignet were funded by the DOE (Award DE-SC0014378) and HYCOM NOPP (Award N00014-19-1-2674). The HYCOM-CICE simulations were supported by a grant of computer time from the DoD High-Performance Computing Modernization Program at NRL SSC. G. Platov was funded by the RSF N19-17-00154. P. G. Myers was funded by an NSERC Discovery Grant (Grant RGPIN 04357). A. Proshutinsky was funded by FAMOS project (NSF Grant NSF 14-584).
    Keywords: North Atlantic Ocean ; Lagrangian circulation/transport ; Ocean circulation ; Differential equations ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-06-03
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(12),(2021): 3663–3678, https://doi.org/10.1175/JPO-D-21-0058.1.
    Description: The wind-driven exchange through complex ridges and islands between marginal seas and the open ocean is studied using both numerical and analytical models. The models are forced by a steady, spatially uniform northward wind stress intended to represent the large-scale, low-frequency wind patterns typical of the seasonal monsoons in the western Pacific Ocean. There is an eastward surface Ekman transport out of the marginal sea and westward geostrophic inflows into the marginal sea. The interaction between the Ekman transport and an island chain produces strong baroclinic flows along the island boundaries with a vertical depth that scales with the ratio of the inertial boundary layer thickness to the baroclinic deformation radius. The throughflows in the gaps are characterized by maximum transport in the center gap and decreasing transports toward the southern and northern tips of the island chain. An extended island rule theory demonstrates that throughflows are determined by the collective balance between viscosity on the meridional boundaries and the eastern side boundary of the islands. The outflowing transport is balanced primarily by a shallow current that enters the marginal sea along its equatorward boundary. The islands can block some direct exchange and result in a wind-driven overturning cell within the marginal sea, but this is compensated for by eastward zonal jets around the southern and northern tips of the island chain. Topography in the form of a deep slope, a ridge, or shallow shelves around the islands alters the current pathways but ultimately is unable to limit the total wind-driven exchange between the marginal sea and the open ocean.
    Description: This research is supported in part by the China Scholarship Council (201906330102). H. G. is financially supported by the China Scholarship Council to study at WHOI for 2 years as a guest student. M. A. S. is supported by the National Science Foundation Grant OCE-1922538.
    Keywords: Ekman pumping/transport ; Ocean circulation ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-06-16
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 35(11), (2022): 3445-3457, https://doi.org/10.1175/jcli-d-21-0656.1.
    Description: Unlike greenhouse gases (GHGs), anthropogenic aerosol (AA) concentrations have increased and then decreased over the past century or so, with the timing of the peak concentration varying in different regions. To date, it has been challenging to separate the climate impact of AAs from that due to GHGs and background internal variability. We use a pattern recognition method, taking advantage of spatiotemporal covariance information, to isolate the forced patterns for the surface ocean and associated atmospheric variables from the all-but-one forcing Community Earth System Model ensembles. We find that the aerosol-forced responses are dominated by two leading modes, with one associated with the historical increase and future decrease of global mean aerosol concentrations (dominated by the Northern Hemisphere sources) and the other due to the transition of the primary sources of AA from the west to the east and also from Northern Hemisphere extratropical regions to tropical regions. In particular, the aerosol transition effect, to some extent compensating the global mean effect, exhibits a zonal asymmetry in the surface temperature and salinity responses. We also show that this transition effect dominates the total AA effect during recent decades, e.g., 1967–2007.
    Description: All three authors are supported by U.S. National Science Foundation (OCE-2048336). The Community Earth System Model project is supported primarily by the National Science Foundation (https://www.cesm.ucar.edu/projects/community-projects/LENS/data-sets.html and https://www.cesm.ucar.edu/working_groups/CVC/simulations/cesm1-single_forcing_le.html).
    Keywords: Aerosol radiative effect ; Climate Change ; Climate variability ; Sea surface temperature ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-06-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fine, E., MacKinnon, J., Alford, M., Middleton, L., Taylor, J., Mickett, J., Cole, S., Couto, N., Boyer, A., & Peacock, T. Double diffusion, shear instabilities, and heat impacts of a pacific summer water intrusion in the Beaufort Sea. Journal of Physical Oceanography, 52(2), (2022): 189–203, https://doi.org/10.1175/jpo-d-21-0074.1.
    Description: Pacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∼20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers of O(1) m thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy (ε) was elevated along the interleaving surfaces, with values up to 3 × 10−8 W kg−1 compared to background ε of less than 10−9 W kg−1. Based on the distribution of ε as a function of density ratio Rρ, we conclude that double-diffusive convection is largely responsible for the elevated ε observed over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m−2, with the localized flux above the uppermost warm layer elevated to 2–10 W m−2. Lateral fluxes are much larger, estimated between 1000 and 5000 W m−2, and set an overall decay rate for the intrusion of 1–5 years.
    Description: This work was supported by ONR Grant N00014-16-1-2378 and NSF Grants PLR 14-56705 and PLR-1303791, NSF Graduate Research Fellowship Grant DGE-1650112, as well as by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship.
    Keywords: Arctic ; Diapycnal mixing ; Diffusion ; Fluxes ; Instability ; Mixing ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-11-04
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(11), (2022): 2627-2641, https://doi.org/10.1175/jpo-d-22-0090.1.
    Description: Changes in dynamic manometric sea level ζm represent mass-related sea level changes associated with ocean circulation and climate. We use twin model experiments to quantify magnitudes and spatiotemporal scales of ζm variability caused by barometric pressure pa loading at long periods (≳1 month) and large scales (≳300km) relevant to Gravity Recovery and Climate Experiment (GRACE) ocean data. Loading by pa drives basin-scale monthly ζm variability with magnitudes as large as a few centimeters. Largest ζm signals occur over abyssal plains, on the shelf, and in marginal seas. Correlation patterns of modeled ζm are determined by continental coasts and H/f contours (H is ocean depth and f is Coriolis parameter). On average, ζm signals forced by pa represent departures of ≲10% and ≲1% from the inverted-barometer effect ζib on monthly and annual periods, respectively. Basic magnitudes, spatial patterns, and spectral behaviors of ζm from the model are consistent with scaling arguments from barotropic potential vorticity conservation. We also compare ζm from the model driven by pa to ζm from GRACE observations. Modeled and observed ζm are significantly correlated across parts of the tropical and extratropical oceans, on shelf and slope regions, and in marginal seas. Ratios of modeled to observed ζm magnitudes are as large as ∼0.2 (largest in the Arctic Ocean) and qualitatively agree with analytical theory for the gain of the transfer function between ζm forced by pa and wind stress. Results demonstrate that pa loading is a secondary but nevertheless important contributor to monthly mass variability from GRACE over the ocean.
    Description: The authors acknowledge support from the National Aeronautics and Space Administration through the GRACE Follow-On Science Team (Grant 80NSSC20K0728) and the Sea Level Change Team (Grant 80NSSC20K1241). The contribution from I. F. and O. W. represents research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (Grant 80NM0018D0004).
    Keywords: Barotropic flows ; Large-scale motions ; Ocean circulation ; Planetary waves ; Potential vorticity ; Sea level
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Water temperature for Palau corals
    Description: Water temperature records for Acropora hyacinthus coral colonies located in either patch or fore reefs of the Palau Archipeglo from November 2017 to January 2020. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/772445
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1736736
    Keywords: Sea surface temperature ; Heat tolerance ; Coral reef ; Scleractinia ; Patch reef ; Fore reef
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(9), (2020): 2491-2506, doi:10.1175/JPO-D-20-0056.1.
    Description: An idealized two-layer shallow water model is applied to the study of the dynamics of the Arctic Ocean halocline. The model is forced by a surface stress distribution reflective of the observed wind stress pattern and ice motion and by an inflow representing the flow of Pacific Water through Bering Strait. The model reproduces the main elements of the halocline circulation: an anticyclonic Beaufort Gyre in the western basin (representing the Canada Basin), a cyclonic circulation in the eastern basin (representing the Eurasian Basin), and a Transpolar Drift between the two gyres directed from the upwind side of the basin to the downwind side of the basin. Analysis of the potential vorticity budget shows a basin-averaged balance primarily between potential vorticity input at the surface and dissipation at the lateral boundaries. However, advection is a leading-order term not only within the anticyclonic and cyclonic gyres but also between the gyres. This means that the eastern and western basins are dynamically connected through the advection of potential vorticity. Both eddy and mean fluxes play a role in connecting the regions of potential vorticity input at the surface with the opposite gyre and with the viscous boundary layers. These conclusions are based on a series of model runs in which forcing, topography, straits, and the Coriolis parameter were varied.
    Description: This study was supported by National Science Foundation Grant OPP-1822334. Comments and suggestions from two anonymous referees greatly helped to improve the paper.
    Description: 2021-02-17
    Keywords: Eddies ; Ekman pumping/transport ; Ocean circulation ; Ocean dynamics ; Potential vorticity ; Shallow-water equations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1), (2021): 19-35, https://doi.org/10.1175/JPO-D-19-0233.1.
    Description: In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72°35′N, 145°1′W. Microstructure measurements from a free-falling profiler survey showed very low [O(10−10) W kg−1] turbulent kinetic energy dissipation rates ε. A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain Rω and ε at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1–2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3 to 50 over 8 days. Observed ε was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 h) from 25 to 125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of ε= 6 × 10−10 W kg−1 at 30-m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated ε or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.
    Description: This work was supported by NSF Grants PLR 14-56705 and PLR-1303791 and by NSF Graduate Research Fellowship Grant DGE-1650112.
    Keywords: Ocean ; Arctic ; Internal waves ; Turbulence ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11), (2020): 3267–3294, https://doi.org/10.1175/JPO-D-19-0310.1.
    Description: As part of the Flow Encountering Abrupt Topography (FLEAT) program, an array of pressure-sensor equipped inverted echo sounders (PIESs) was deployed north of Palau where the westward-flowing North Equatorial Current encounters the southern end of the Kyushu–Palau Ridge in the tropical North Pacific. Capitalizing on concurrent observations from satellite altimetry, FLEAT Spray gliders, and shipboard hydrography, the PIESs’ 10-month duration hourly bottom pressure p and round-trip acoustic travel time τ records are used to examine the magnitude and predictability of sea level and pycnocline depth changes and to track signal propagations through the array. Sea level and pycnocline depth are found to vary in response to a range of ocean processes, with their magnitude and predictability strongly process dependent. Signals characterized here comprise the barotropic tides, semidiurnal and diurnal internal tides, southeastward-propagating superinertial waves, westward-propagating mesoscale eddies, and a strong signature of sea level increase and pycnocline deepening associated with the region’s relaxation from El Niño to La Niña conditions. The presence of a broad band of superinertial waves just above the inertial frequency was unexpected and the FLEAT observations and output from a numerical model suggest that these waves detected near Palau are forced by remote winds east of the Philippines. The PIES-based estimates of pycnocline displacement are found to have large uncertainties relative to overall variability in pycnocline depth, as localized deep current variations arising from interactions of the large-scale currents with the abrupt topography around Palau have significant travel time variability.
    Description: Support for this research was provided by Office of Naval Research Grants N00014-16-1-2668, N00014-18-1-2406, N00014-15-1-2488, and N00014-15-1-2622. R.C.M. was additionally supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship.
    Keywords: Tropics ; Currents ; Eddies ; ENSO ; Internal waves ; Mesoscale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11),(2020): 3331–3351, https://doi.org/10.1175/JPO-D-20-0035.1.
    Description: This study examines the generation of warm spiral structures (referred to as spiral streamers here) over Gulf Stream warm-core rings. Satellite sea surface temperature imagery shows spiral streamers forming after warmer water from the Gulf Stream or newly formed warm-core rings impinges onto old warm-core rings and then intrudes into the old rings. Field measurements in April 2018 capture the vertical structure of a warm spiral streamer as a shallow lens of low-density water winding over an old ring. Observations also show subduction on both sides of the spiral streamer, which carries surface waters downward. Idealized numerical model simulations initialized with observed water-mass densities reproduce spiral streamers over warm-core rings and reveal that their formation is a nonlinear submesoscale process forced by mesoscale dynamics. The negative density anomaly of the intruding water causes a density front at the interface between the intruding water and surface ring water, which, through thermal wind balance, drives a local anticyclonic flow. The pressure gradient and momentum advection of the local interfacial flow push the intruding water toward the ring center. The large-scale anticyclonic flow of the ring and the radial motion of the intruding water together form the spiral streamer. The observed subduction on both sides of the spiral streamer is part of the secondary cross-streamer circulation resulting from frontogenesis on the stretching streamer edges. The surface divergence of the secondary circulation pushes the side edges of the streamer away from each other, widens the warm spiral on the surface, and thus enhances its surface signal.
    Description: Authors W. G. Zhang and D. J. McGillicuddy are both supported by the National Science Foundation through Grant OCE 1657803.
    Keywords: Buoyancy ; Eddies ; Frontogenesis/frontolysis ; Mesoscale processes ; Transport ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11), (2020): 3235–3251, https://doi.org/10.1175/JPO-D-20-0095.1.
    Description: The dense outflow through Denmark Strait is the largest contributor to the lower limb of the Atlantic meridional overturning circulation, yet a description of the full velocity field across the strait remains incomplete. Here we analyze a set of 22 shipboard hydrographic–velocity sections occupied along the Látrabjarg transect at the Denmark Strait sill, obtained over the time period 1993–2018. The sections provide the first complete view of the kinematic components at the sill: the shelfbreak East Greenland Current (EGC), the combined flow of the separated EGC, and the North Icelandic Jet (NIJ), and the northward-flowing North Icelandic Irminger Current (NIIC). The total mean transport of overflow water is 3.54 ± 0.29 Sv (1 Sv ≡ 106 m3 s−1), comparable to previous estimates. The dense overflow is partitioned in terms of water mass constituents and flow components. The mean transports of the two types of overflow water—Atlantic-origin Overflow Water and Arctic-origin Overflow Water—are comparable in Denmark Strait, while the merged NIJ–separated EGC transports 55% more water than the shelfbreak EGC. A significant degree of water mass exchange takes place between the branches as they converge in Denmark Strait. There are two dominant time-varying configurations of the flow that are characterized as a cyclonic state and a noncyclonic state. These appear to be wind-driven. A potential vorticity analysis indicates that the flow through Denmark Strait is subject to symmetric instability. This occurs at the top of the overflow layer, implying that the mixing/entrainment process that modifies the overflow water begins at the sill.
    Description: Funding for the study was provided by National Science Foundation (NSF) Grants OCE-1259618, OCE-1756361, and OCE-1558742. The German research cruises were financially supported through various EU Projects (e.g. THOR, NACLIM) and national projects (most recently TRR 181 “Energy Transfer in Atmosphere and Ocean” funded by the German Research Foundation and RACE II “Regional Atlantic Circulation and Global Change” funded by the German Federal Ministry for Education and Research). GWKM acknowledges the support of the Natural Sciences and Engineering Research Council of Canada. LP was supported by NSF Grant OCE-1657870.
    Keywords: Currents ; Instability ; Ocean circulation ; Ocean dynamics ; Potential vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(3), (2021): 955–973, https://doi.org/10.1175/JPO-D-20-0240.1.
    Description: Fresh Arctic waters flowing into the Atlantic are thought to have two primary fates. They may be mixed into the deep ocean as part of the overturning circulation, or flow alongside regions of deep water formation without impacting overturning. Climate models suggest that as increasing amounts of freshwater enter the Atlantic, the overturning circulation will be disrupted, yet we lack an understanding of how much freshwater is mixed into the overturning circulation’s deep limb in the present day. To constrain these freshwater pathways, we build steady-state volume, salt, and heat budgets east of Greenland that are initialized with observations and closed using inverse methods. Freshwater sources are split into oceanic Polar Waters from the Arctic and surface freshwater fluxes, which include net precipitation, runoff, and ice melt, to examine how they imprint the circulation differently. We find that 65 mSv (1 Sv ≡ 106 m3 s−1) of the total 110 mSv of surface freshwater fluxes that enter our domain participate in the overturning circulation, as do 0.6 Sv of the total 1.2 Sv of Polar Waters that flow through Fram Strait. Based on these results, we hypothesize that the overturning circulation is more sensitive to future changes in Arctic freshwater outflow and precipitation, while Greenland runoff and iceberg melt are more likely to stay along the coast of Greenland.
    Description: We gratefully acknowledge the U.S. National Science Foundation: this work was supported by Grants OCE-1258823, OCE-1756272, OCE-1948335, and OCE-2038481. L.H.S. thanks the U.S. Norway Fulbright Foundation for the Norwegian Arctic Chair Grant 2019-20 that made the visit to Scripps Institution of Oceanography possible. N.P.H. acknowledges support by the U.K. Natural Environment Research Council (NERC) National Capability program CLASS (NE/R015953/1), and Grants U.K.-OSNAP (NE/K010875/1, NE/K010875/2) and U.K.-OSNAP Decade (NE/T00858X/1). We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6.
    Keywords: Arctic ; North Atlantic Ocean ; Conservation equations ; Meridional overturning circulation ; Ocean circulation ; Inverse methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(7), (2021): 2087–2102, https://doi.org/10.1175/JPO-D-20-0255.1.
    Description: The boundary current system in the Labrador Sea plays an integral role in modulating convection in the interior basin. Four years of mooring data from the eastern Labrador Sea reveal persistent mesoscale variability in the West Greenland boundary current. Between 2014 and 2018, 197 middepth intensified cyclones were identified that passed the array near the 2000-m isobath. In this study, we quantify these features and show that they are the downstream manifestation of Denmark Strait Overflow Water (DSOW) cyclones. A composite cyclone is constructed revealing an average radius of 9 km, maximum azimuthal speed of 24 cm s−1, and a core propagation velocity of 27 cm s−1. The core propagation velocity is significantly smaller than upstream near Denmark Strait, allowing them to trap more water. The cyclones transport a 200-m-thick lens of dense water at the bottom of the water column and increase the transport of DSOW in the West Greenland boundary current by 17% relative to the background flow. Only a portion of the features generated at Denmark Strait make it to the Labrador Sea, implying that the remainder are shed into the interior Irminger Sea, are retroflected at Cape Farewell, or dissipate. A synoptic shipboard survey east of Cape Farewell, conducted in summer 2020, captured two of these features that shed further light on their structure and timing. This is the first time DSOW cyclones have been observed in the Labrador Sea—a discovery that could have important implications for interior stratification.
    Description: A. P. and R. S. P. were funded by National Science Foundation Grants OCE-1259618 and OCE-1756361. I. L. B. and F. S. were funded by National Science Foundation Grants OCE-1258823 and OCE-1756272. N. P. H. was supported by the Natural Environment Research Council U.K. OSNAP program (NE/K010875/1 and NE/K010700/1). M. A. S. was supported by NSF Grants OCE-1558742 and OPP-1822334.
    Description: 2021-12-08
    Keywords: Boundary currents ; Eddies ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(8),(2020): 2315-2321, doi:10.1175/JPO-D-19-0327.1.
    Description: Low-frequency currents and eddies transport sediment, pathogens, larvae, and heat along the coast and between the shoreline and deeper water. Here, low-frequency currents (between 0.1 and 4.0 mHz) observed in shallow surfzone waters for 120 days during a wide range of wave conditions are compared with theories for generation by instabilities of alongshore currents, by ocean-wave-induced sea surface modulations, and by a nonlinear transfer of energy from breaking waves to low-frequency motions via a two-dimensional inverse energy cascade. For these data, the low-frequency currents are not strongly correlated with shear of the alongshore current, with the strength of the alongshore current, or with wave-group statistics. In contrast, on many occasions, the low-frequency currents are consistent with an inverse energy cascade from breaking waves. The energy of the low-frequency surfzone currents increases with the directional spread of the wave field, consistent with vorticity injection by short-crested breaking waves, and structure functions increase with spatial lags, consistent with a cascade of energy from few-meter-scale vortices to larger-scale motions. These results include the first field evidence for the inverse energy cascade in the surfzone and suggest that breaking waves and nonlinear energy transfers should be considered when estimating nearshore transport processes across and along the coast.
    Description: Funding was provided by a Vannevar Bush Faculty Fellowship [from OUSD(R&E)] and NSF.
    Keywords: Ocean ; Coastlines ; Eddies ; Wave breaking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cusack, J. M., Brearley, J. A., Garabato, A. C. N., Smeed, D. A., Polzin, K. L., Velzeboer, N., & Shakespeare, C. J. Observed eddy-internal wave interactions in the Southern Ocean. Journal of Physical Oceanography, 50(10), (2020): 3042-3062, doi:10.1175/JPO-D-20-0001.1.
    Description: The physical mechanisms that remove energy from the Southern Ocean’s vigorous mesoscale eddy field are not well understood. One proposed mechanism is direct energy transfer to the internal wave field in the ocean interior, via eddy-induced straining and shearing of preexisting internal waves. The magnitude, vertical structure, and temporal variability of the rate of energy transfer between eddies and internal waves is quantified from a 14-month deployment of a mooring cluster in the Scotia Sea. Velocity and buoyancy observations are decomposed into wave and eddy components, and the energy transfer is estimated using the Reynolds-averaged energy equation. We find that eddies gain energy from the internal wave field at a rate of −2.2 ± 0.6 mW m−2, integrated from the bottom to 566 m below the surface. This result can be decomposed into a positive (eddy to wave) component, equal to 0.2 ± 0.1 mW m−2, driven by horizontal straining of internal waves, and a negative (wave to eddy) component, equal to −2.5 ± 0.6 mW m−2, driven by vertical shearing of the wave spectrum. Temporal variability of the transfer rate is much greater than the mean value. Close to topography, large energy transfers are associated with low-frequency buoyancy fluxes, the underpinning physics of which do not conform to linear wave dynamics and are thereby in need of further research. Our work suggests that eddy–internal wave interactions may play a significant role in the energy balance of the Southern Ocean mesoscale eddy and internal wave fields.
    Description: Funding for DIMES was provided by U.K. Natural Environment Research Council (NERC) Grants NE/E007058/1 and NE/E005667/1. JMC acknowledges the support of a NERC PhD studentship, and ACNG that of the Royal Society and the Wolfson Foundation. NV acknowledges support from the ARC Centre of Excellence for Climate Extremes (CLEX) Honours Scholarship and the ANU PBSA Partnership - Spotless Scholarship. CJS acknowledges support from an ARC Discovery Early Career Researcher Award DE180100087 and an Australian National University Futures Scheme award. Numerical simulations were conducted on the National Computational Infrastructure (NCI) facility, Canberra, Australia. This study has been conducted using E.U. Copernicus Marine Service Information. We thank two anonymous reviewers for their comments which helped to improve the manuscript significantly. Codes and output files are available online at the project repository (https://github.com/jessecusack/DIMES_eddy_wave_interactions).
    Keywords: Southern Ocean ; Eddies ; Internal waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(6),(2020): 1717-1732, doi:10.1175/JPO-D-19-0273.1.
    Description: Recent measurements and modeling indicate that roughly half of the Pacific-origin water exiting the Chukchi Sea shelf through Barrow Canyon forms a westward-flowing current known as the Chukchi Slope Current (CSC), yet the trajectory and fate of this current is presently unknown. In this study, through the combined use of shipboard velocity data and information from five profiling floats deployed as quasi-Lagrangian particles, we delve further into the trajectory and the fate of the CSC. During the period of observation, from early September to early October 2018, the CSC progressed far to the north into the Chukchi Borderland. The northward excursion is believed to result from the current negotiating Hanna Canyon on the Chukchi slope, consistent with potential vorticity dynamics. The volume transport of the CSC, calculated using a set of shipboard transects, decreased from approximately 2 Sv (1 Sv ≡ 106 m3 s−1) to near zero over a period of 4 days. This variation can be explained by a concomitant change in the wind stress curl over the Chukchi shelf from positive to negative. After turning northward, the CSC was disrupted and four of the five floats veered offshore, with one of the floats permanently leaving the current. It is hypothesized that the observed disruption was due to an anticyclonic eddy interacting with the CSC, which has been observed previously. These results demonstrate that, at times, the CSC can get entrained into the Beaufort Gyre.
    Description: This work was principally supported by the Stratified Ocean Dynamics of the Arctic (SODA) program under ONR Grant N000141612450. S.B. wants to thank Labex iMust for supporting his research. R.S.P. acknowledges U.S. National Science Foundation Grants OPP-1702371, OPP-1733564, and PLR-1303617. P.L. acknowledges National Oceanic and Atmospheric Administration Grant NA14-OAR4320158. M.L. acknowledges National Natural Science Foundation of China Grants 41706025 and 41506018. T.P. thanks ENS de Lyon for travel support funding. The authors gratefully acknowledge the support of Steve Jayne, Pelle Robins, and Alex Ekholm at the Woods Hole Oceanographic Institution for preparation, deployment, and data provision for the ALTO floats. Chanhyung Jeon assisted in preparing and deploying the floats. The invaluable support of the crew of the R/V Sikuliaq is also gratefully acknowledged.
    Keywords: Arctic ; Continental shelf/slope ; Currents ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(7), (2020): 1839-1852, https://doi.org/10.1175/JPO-D-19-0209.1.
    Description: The Lagrangian characteristics of the surface flow field arising when an idealized, anticyclonic, mesoscale, isolated deep-ocean eddy collides with continental slope and shelf topography are explored. In addition to fluid parcel trajectories, we consider the trajectories of biological organisms that are able to navigate and swim, and for which shallow water is a destination. Of particular interest is the movement of organisms initially located in the offshore eddy, the manner in which the eddy influences the ability of the organisms to reach the shelf break, and the spatial and temporal distributions of organisms that do so. For nonswimmers or very slow swimmers, the organisms arrive at the shelf break in distinct pulses, with different pulses occurring at different locations along the shelf break. This phenomenon is closely related to the episodic formation of trailing vortices that are formed after the eddy collides with the continental slope, turns, and travels parallel to the coast. Analysis based on finite-time Lyapunov exponents reveals initial locations of all successful trajectories reaching the shoreline, and provides maps of the transport pathways showing that much of the cross-shelf-break transport occurs in the lee of the eddy as it moves parallel to the shore. The same analysis shows that the onshore transport is interrupted after a trailing vortex detaches. As the swimming speeds are increased, the organisms are influenced less by the eddy and tend to show up en mass and in a single pulse.
    Description: IR and LP were supported by National Science Foundation (NSF) Grant OCE-1558806. DC was supported by NSF U.S. National Science Foundation’s Physical Oceanography program through Grants OCE-1059632 and OCE-1433953 as well as the Academic Programs Office, Woods Hole Oceanographic Institution. We acknowledge high-performance computing support from Yellowstone (http://n2t.net/ark:/85065/d7wd3xhc) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation.
    Keywords: Ocean ; Eddies ; Nonlinear dynamics ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(8),(2021): 2425–2441, https://doi.org/10.1175/JPO-D-20-0317.1.
    Description: The frequency and latitudinal dependence of the midlatitude wind-driven meridional overturning circulation (MOC) is studied using theory and linear and nonlinear applications of a quasigeostrophic numerical model. Wind forcing is varied either by changing the strength of the wind or by shifting the meridional location of the wind stress curl pattern. At forcing periods of less than the first-mode baroclinic Rossby wave basin crossing time scale, the linear response in the middepth and deep ocean is in phase and opposite to the Ekman transport. For forcing periods that are close to the Rossby wave basin crossing time scale, the upper and deep MOC are enhanced, and the middepth MOC becomes phase shifted, relative to the Ekman transport. At longer forcing periods the deep MOC weakens and the middepth MOC increases, but eventually for long enough forcing periods (decadal) the entire wind-driven MOC spins down. Nonlinearities and mesoscale eddies are found to be important in two ways. First, baroclinic instability causes the middepth MOC to weaken, lose correlation with the Ekman transport, and lose correlation with the MOC in the opposite gyre. Second, eddy thickness fluxes extend the MOC beyond the latitudes of direct wind forcing. These results are consistent with several recent studies describing the four-dimensional structure of the MOC in the North Atlantic Ocean.
    Description: This study was supported by National Science Foundation Grant OCE-1947290.
    Description: 2022-01-13
    Keywords: Eddies ; Large-scale motions ; Meridional overturning circulation ; Ocean dynamics ; Planetary waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liang, Y., Kwon, Y., & Frankignoul, C. Autumn Arctic Pacific sea ice dipole as a source of predictability for subsequent spring Barents Sea ice condition. Journal of Climate, 34(2), (2021): 787-804, https://doi.org/10.1175/JCLI-D-20-0172.1.
    Description: This study uses observational and reanalysis datasets in 1980–2016 to show a close connection between a boreal autumn sea ice dipole in the Arctic Pacific sector and sea ice anomalies in the Barents Sea (BS) during the following spring. The September–October Arctic Pacific sea ice dipole variations are highly correlated with the subsequent April–May BS sea ice variations (r = 0.71). The strong connection between the regional sea ice variabilities across the Arctic uncovers a new source of predictability for spring BS sea ice prediction at 7-month lead time. A cross-validated linear regression prediction model using the Arctic Pacific sea ice dipole with 7-month lead time is demonstrated to have significant prediction skills with 0.54–0.85 anomaly correlation coefficients. The autumn sea ice dipole, manifested as sea ice retreat in the Beaufort and Chukchi Seas and expansion in the East Siberian and Laptev Seas, is primarily forced by preceding atmospheric shortwave anomalies from late spring to early autumn. The spring BS sea ice increases are mostly driven by an ocean-to-sea ice heat flux reduction in preceding months, associated with reduced horizontal ocean heat transport into the BS. The dynamical linkage between the two regional sea ice anomalies is suggested to involve positive stratospheric polar cap anomalies during autumn and winter, with its center slowly moving toward Greenland. The migration of the stratospheric anomalies is followed in midwinter by a negative North Atlantic Oscillation–like pattern in the troposphere, leading to reduced ocean heat transport into the BS and sea ice extent increase.
    Description: This study is supported by NSF’s Office of Polar Programs (Grant 1736738). We also acknowledge support by the Blue-Action project (European Union’s Horizon 2020 research and innovation programme, Grant 727852).
    Keywords: Arctic ; Sea ice ; Atmospheric circulation ; Ocean circulation ; Seasonal forecasting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(6), (2020): 1557-1582, doi:10.1175/JPO-D-19-0239.1.
    Description: We examine various contributions to the vertical velocity field within large mesoscale eddies by analyzing multiple solutions to an idealized numerical model of a representative anticyclonic warm core Gulf Stream ring. Initial conditions are constructed to reproduce the observed density and nutrient profiles collected during the Warm Core Rings Program. The contributions to vertical fluxes diagnosed from the numerical simulations are compared against a divergence-based, semidiagnostic equation and a generalized omega equation to better understand the dynamics of the vertical velocity field. Frictional decay alone is found to be ineffective in raising isopycnals and transporting nutrients to the upper ocean. With representative wind forcing, the magnitude of vorticity gradient–induced Ekman pumping is not necessarily larger than the current-induced counterpart on a time scale relevant to ecosystem response. Under realistic forcing conditions, strain deformation can perturb the ring to be noncircular and induce vertical velocities much larger than the Ekman vertical velocities. Nutrient budget diagnosis, together with analysis of the relative magnitudes of the various types of vertical fluxes, allows us to describe the time-scale dependence of nutrient delivery. At time scales that are relevant to individual phytoplankton (from hours to days), the magnitudes of nutrient flux by Ekman velocities and deformation-induced velocities are comparable. Over the life span of a typical warm core ring, which can span multiple seasons, surface current–induced Ekman pumping is the most effective mechanism in upper-ocean nutrient enrichment because of its persistence in the center of anticyclones regardless of the direction of the wind forcing.
    Description: This work was supported by the National Science Foundation Ocean Science Division under Grant OCE-1558960. PG also acknowledges support of the NASA Physical Oceanography Program Grant NNX16H59G. KC would like to thank D. McGillicuddy Jr. for inspiring discussions and suggestions during the course of this study. Constructive comments from two anonymous reviewers are appreciated.
    Keywords: Ageostrophic circulations ; Eddies ; Ekman pumping/transport ; Mesoscale processes ; Upwelling/downwelling ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(9), (2020): 3845-3862, doi:10.1175/JCLI-D-19-0215.1.
    Description: The latitudinal structure of the Atlantic meridional overturning circulation (AMOC) variability in the North Atlantic is investigated using numerical results from three ocean circulation simulations over the past four to five decades. We show that AMOC variability south of the Labrador Sea (53°N) to 25°N can be decomposed into a latitudinally coherent component and a gyre-opposing component. The latitudinally coherent component contains both decadal and interannual variabilities. The coherent decadal AMOC variability originates in the subpolar region and is reflected by the zonal density gradient in that basin. It is further shown to be linked to persistent North Atlantic Oscillation (NAO) conditions in all three models. The interannual AMOC variability contained in the latitudinally coherent component is shown to be driven by westerlies in the transition region between the subpolar and the subtropical gyre (40°–50°N), through significant responses in Ekman transport. Finally, the gyre-opposing component principally varies on interannual time scales and responds to local wind variability related to the annual NAO. The contribution of these components to the total AMOC variability is latitude-dependent: 1) in the subpolar region, all models show that the latitudinally coherent component dominates AMOC variability on interannual to decadal time scales, with little contribution from the gyre-opposing component, and 2) in the subtropical region, the gyre-opposing component explains a majority of the interannual AMOC variability in two models, while in the other model, the contributions from the coherent and the gyre-opposing components are comparable. These results provide a quantitative decomposition of AMOC variability across latitudes and shed light on the linkage between different AMOC variability components and atmospheric forcing mechanisms.
    Description: The authors gratefully acknowledge support from the Physical Oceanography Program of the U.S. National Science Foundation (Awards OCE-1756143 and OCE-1537136) and the Climate Program Office of the National Oceanic and Atmospheric Administration (Award NA15OAR4310088). Gratitude is extended to Claus Böning and Arne Biastoch who shared ORCA025 output. S. Zou thanks F. Li, M. Buckley, and L. Li for helpful discussions. We also thank three anonymous reviewers for helpful suggestions.
    Keywords: Deep convection ; Ocean circulation ; Thermocline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3), (2020): 679-694, doi:10.1175/JPO-D-19-0218.1.
    Description: The zonally integrated flow in a basin can be separated into the divergent/nondivergent parts, and a uniquely defined meridional overturning circulation (MOC) can be calculated. For a basin with significant volume exchange at zonal open boundaries, this method is competent in removing the components associated with the nonzero source terms due to zonal transports at open boundaries. This method was applied to the zonally integrated flow in the Indian Ocean basin extended all the way to the Antarctic by virtue of the ECCO dataset. The contributions due to two major zonal flow systems at open boundaries, the Indonesian Throughflow (ITF) and the Antarctic Circumpolar Current (ACC), were well separated from the rotational flow component, and a nondivergent overturning circulation pattern was identified. Comparisons with previous studies on the MOC of the Indian Ocean in different seasons showed overall consistency but with refinements in details to the south of the entry of the ITF, reflecting the influence of ITF on the MOC pattern in the domain. Other options of decomposition are also examined.
    Description: LH was supported by the National Basic Research Program of China through Grant 2019YFA0606703 and “The Fundamental Research Funds of Shandong University” (2019GN051). The authors thank the anonymous reviewers and the editor for their constructive comments. Code availability: The Matlab code that performs the decomposition and produces some figures in this paper is available at https://github.com/lei-han-SDU/IMOC/.
    Description: 2020-09-02
    Keywords: Meridional overturning circulation ; Ocean circulation ; Streamfunction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 1045-1064, doi:10.1175/JPO-D-19-0137.1.
    Description: Three simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (〉1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.
    Description: This work was supported by the Gulf Research Program of the National Academy of Sciences under Awards 2000006422 and 2000009966. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf Research Program or the National Academy of Sciences. The authors acknowledge the GLORYS project for providing the ocean reanalysis data used in the ROMS simulation. GLORYS is jointly conducted by MERCATOR OCEAN, CORIOLIS, and CNRS/INSU. Installation, recovery, data acquisition, and processing of the CANEK group current-meter moorings were possible because of CICESE-PetróleosMexicanos Grant PEP-CICESE 428229851 and the dedicated work of the crew of the B/O Justo Sierra and scientists of the CANEK group. The authors thank Dr. Aljaz Maslo, CICESE, for assistance with analysis of model data. The Bureau of Ocean Energy Management (BOEM), U.S. Dept. of the Interior, provided funding for the Lagrangian Study of the Deep Circulation in the Gulf of Mexico and the Observations and Dynamics of the Loop Current study. HYCOM simulation data are available from the HYCOM data server (https://www.hycom.org/data/goml0pt04/expt-02pt2), MITgcm data are available from the ECCO data server (http://ecco.ucsd.edu/gom_results2.html), and the ROMS simulation data are available from GRIIDC (NA.x837.000:0001).
    Keywords: Ocean circulation ; Abyssal circulation ; Bottom currents/bottom water ; Eddies ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(5),(2020): 1227-1244, doi:10.1175/JPO-D-19-0280.1.
    Description: The Nordic seas are commonly described as a single basin to investigate their dynamics and sensitivity to environmental changes when using a theoretical framework. Here, we introduce a conceptual model for a two-basin marginal sea that better represents the Nordic seas geometry. In our conceptual model, the marginal sea is characterized by both a cyclonic boundary current and a front current as a result of different hydrographic properties east and west of the midocean ridge. The theory is compared to idealized model simulations and shows good agreement over a wide range of parameter settings, indicating that the physics in the two-basin marginal sea is well captured by the conceptual model. The balances between the atmospheric buoyancy forcing and the lateral eddy heat fluxes from the boundary current and the front current differ between the Lofoten and the Greenland Basins, since the Lofoten Basin is more strongly eddy dominated. Results show that this asymmetric sensitivity leads to opposing responses depending on the strength of the atmospheric buoyancy forcing. Additionally, the front current plays an essential role for the heat and volume budget of the two basins, by providing an additional pathway for heat toward the interior of both basins via lateral eddy heat fluxes. The variability of the temperature difference between east and west influences the strength of the different flow branches through the marginal sea and provides a dynamical explanation for the observed correlation between the front current and the slope current of the Norwegian Atlantic Current in the Nordic seas.
    Description: We thank Ilker Fer and two anonymous reviewers whose comments improved this paper. S. L. Ypma and S. Georgiou were supported by NWO (Netherlands Organisation for Scientific Research) VIDI Grant 864.13.011 awarded to C. A. Katsman. M. A. Spall was supported by National Science Foundation Grants OCE-1558742 and OPP-1822334. E. Lambert is funded by the ERA4CS project INSeaPTION. The model data analyzed in this study are available on request from the corresponding author. This study has been conducted using E.U. Copernicus Marine Service Information. The altimeter products were produced by Ssalto/Duacs and distributed by Aviso+, with support from CNES (https://www.aviso.altimetry.fr).
    Description: 2020-10-27
    Keywords: Boundary currents ; Deep convection ; Eddies ; Fronts ; Instability ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Warm Core Ring Census (1980-2017)
    Description: Yearly census of Gulf Stream Warm Core Ring formation from 1980 to 2017. This continuous census file contains the formation and demise times and locations, and the area at formation for all 961 WCRs formed between 1980 and 2017 that lived for a week or more. Each row represents a unique Warm Core Ring and is identified by a unique alphanumeric code 'WEyyyymmddA', where 'WE' represents a Warm Eddy (as identified in the analysis charts); 'yyyymmdd' is the year, month and day of formation; and the last character 'A' represents the sequential sighting of the eddies in a particular year. For example, the first ring in 2017 having a trailing alphabet of 'E' indicates that four rings were carried over from 2016 which are still observed on January 1, 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/810182
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-0815679, NSF Division of Ocean Sciences (NSF OCE) OCE-1657853, National Oceanic and Atmospheric Administration (NOAA) NOAA-NA11NOS0120038
    Keywords: Gulf Stream ; Warm Core Rings ; Census ; Eddies ; Slope Sea ; North Atlantic ; Shelf-Slope Interactions
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(11), (2019): 2781-2797, doi: 10.1175/JPO-D-19-0111.1.
    Description: To ground truth the large-scale dynamical balance of the North Atlantic subtropical gyre with observations, a barotropic vorticity budget is constructed in the ECCO state estimate and compared with hydrographic observations and wind stress data products. The hydrographic dataset at the center of this work is the A22 WOCE section, which lies along 66°W and creates a closed volume with the North and South American coasts to its west. The planetary vorticity flux across A22 is quantified, providing a metric for the net meridional flow in the western subtropical gyre. The wind stress forcing over the subtropical gyre to the west and east of the A22 section is calculated from several wind stress data products. These observational budget terms are found to be consistent with an approximate barotropic Sverdrup balance in the eastern subtropical gyre and are on the same order as budget terms in the ECCO state estimate. The ECCO vorticity budget is closed by bottom pressure torques in the western subtropical gyre, which is consistent with previous studies. In sum, the analysis provides observational ground truth for the North Atlantic subtropical vorticity balance and explores the seasonal variability of this balance for the first time using the ECCO state estimate. This balance is found to hold on monthly time scales in ECCO, suggesting that the integrated subtropical gyre responds to forcing through fast barotropic adjustment.
    Description: We thank Alonso Hernández-Guerra, M. Dolores Pérez-Hernández, and María Casanova-Masjoan for providing the inverse model results from Casanova-Masjoan et al. (2018). The A22 section is part of the WOCE/CLIVAR observing effort, with all data available at http://cchdo.ucsd.edu/. We thank Carl Wunsch, Patrick Heimbach, Chris Hill, and Diana Lees Spiegel for their assistance with the ECCO fields. The state estimates were provided by the ECCO Consortium for Estimating the Circulation and Climate of the Ocean funded by the National Oceanographic Partnership Program (NOPP) and can be downloaded at http://www.ecco-group.org/products.htm. The citable URL for the ECCO version 4 release 2 product is http://hdl.handle.net/1721.1/102062. We are grateful to Joseph Pedlosky and Glenn Flierl for their comments on an earlier version of this work. IALB and JMT were supported financially by U.S. NSF Grants OCE-0726720, 1332667, and 1332834. MS was supported by the U.S. NASA Sea Level Change Team (Contract NNX14AJ51G) and through the ECCO Consortium funding via the Jet Propulsion Laboratory. We thank two anonymous reviewers, whose thoughtful comments led to improvements.
    Description: 2020-04-17
    Keywords: North Atlantic Ocean ; Barotropic flows ; Boundary currents ; Ocean circulation ; Gyres ; Vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(11), (2019): 2867-2881, doi: 10.1175/JPO-D-19-0072.1.
    Description: The Antarctic Circumpolar Current plays a central role in the ventilation of heat and carbon in the global ocean. In particular, the isopycnal slopes determine where each water mass outcrops and thus how the ocean interacts with the atmosphere. The region-integrated isopycnal slopes have been suggested to be eddy saturated, that is, stay relatively constant as the wind forcing changes, but whether or not the flow is saturated in realistic present day and future parameter regimes is unknown. This study analyzes an idealized two-layer quasigeostrophic channel model forced by a wind stress and a residual overturning generated by a mass flux across the interface between the two layers, with and without a blocking ridge. The sign and strength of the residual overturning set which way the isopycnal slopes change with the wind forcing, leading to an increase in slope with an increase in wind forcing for a positive overturning and a decrease in slope for a negative overturning, following the usual conventions; this behavior is caused by the dominant standing meander weakening as the wind stress weakens causing the isopycnal slopes to become more sensitive to changes in the wind stress and converge with the slopes of a flat-bottomed simulation. Eddy saturation only appears once the wind forcing passes a critical level. These results show that theories for saturation must have both topography and residual overturning in order to be complete and provide a framework for understanding how the isopycnal slopes in the Southern Ocean may change in response to future changes in wind forcing.
    Description: MKY and RF acknowledge support through NSF Awards OCE-1536515 and AGS-1835576. MKY acknowledges funding from NDSEG. GRF was supported by NSF OCE-1459702. We are very grateful for conversations with David Marshall, Andrew Stewart, and two anonymous reviewers that greatly improved the manuscript. The code for running the model is found at https://github.com/mkyoungs/JPO-QG-Channel.
    Description: 2020-04-30
    Keywords: Southern Ocean ; Eddies ; Storm tracks ; Quasigeostrophic models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(24), (2019): 8449-8463, doi: 10.1175/JCLI-D-19-0252.1.
    Description: A theory for the mean ice thickness and the Transpolar Drift in the Arctic Ocean is developed. Asymptotic expansions of the ice momentum and thickness equations are used to derive analytic expressions for the leading-order ice thickness and velocity fields subject to wind stress forcing and heat loss to the atmosphere. The theory is most appropriate for the eastern and central Arctic, but not for the region of the Beaufort Gyre subject to anticyclonic wind stress curl. The scale analysis reveals two distinct regimes: a thin ice regime in the eastern Arctic and a thick ice regime in the western Arctic. In the eastern Arctic, the ice drift is controlled by a balance between wind and ocean drag, while the ice thickness is controlled by heat loss to the atmosphere. In contrast, in the western Arctic, the ice thickness is determined by a balance between wind and internal ice stress, while the drift is indirectly controlled by heat loss to the atmosphere. The southward flow toward Fram Strait is forced by the across-wind gradient in ice thickness. The basic predictions for ice thickness, heat loss, ice volume, and ice export from the theory compare well with an idealized, coupled ocean–ice numerical model over a wide range of parameter space. The theory indicates that increasing atmospheric temperatures or wind speed result in a decrease in maximum ice thickness and ice volume. Increasing temperatures also result in a decrease in heat loss to the atmosphere and ice export through Fram Strait, while increasing winds drive increased heat loss and ice export.
    Description: MAS was supported by the National Science Foundation under Grant OPP-1822334. Comments and suggestions from Michael Steele, Gianluca Meneghello, and an anonymous reviewer helped to clarify the work.
    Description: 2020-05-15
    Keywords: Arctic ; Sea ice ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(1), (2020): 255-268, doi:10.1175/JPO-D-19-0166.1.
    Description: Regional connectivity is important to the global climate salinity response, particularly because salinity anomalies do not have a damping feedback with atmospheric freshwater fluxes and may therefore be advected over long distances by ocean circulation, resulting in nonlocal influences. Climate model intercomparison experiments such as CMIP5 exhibit large uncertainty in some aspects of the salinity response, hypothesized here to be a result of ocean dynamics. We use two types of Lagrangian particle tracking experiments to investigate pathways of exchange for salinity anomalies. The first uses forward trajectories to estimate average transport time scales between water cycle regimes. The second uses reverse trajectories and a freshwater accumulation method to quantitatively identify remote influences in the salinity response. Additionally, we compare velocity fields with both resolved and parameterized eddies to understand the impact of eddy stirring on intergyre exchange. These experiments show that surface anomalies are readily exchanged within the ocean gyres by the mean circulation, but intergyre exchange is slower and largely eddy driven. These dynamics are used to analyze the North Atlantic salinity response to climate warming and water cycle intensification, where the system is broadly forced with fresh surface anomalies in the subpolar gyre and salty surface anomalies in the subtropical gyres. Under these competing forcings, strong intergyre eddy fluxes carry anomalously salty subtropical water into the subpolar gyre which balances out much of the local freshwater input.
    Description: We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. We also thank the creators of the SODA and ECCO reanalysis products. This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program Award 80NSSC17K0372, and by National Science Foundation Award OCE-1433132. The SODA outputs used here can be accessed at http://www.atmos.umd.edu/~ocean/, and the ECCO outputs at https://ecco.jpl.nasa.gov/. Data from the CMIP5 ensemble is available at https://esgf-node.llnl.gov/projects/esgf-llnl/. The particle tracking code used for these experiments can be found at https://github.com/slevang/particle-tracking.
    Description: 2020-07-20
    Keywords: North Atlantic Ocean ; Eddies ; Hydrologic cycle ; Lagrangian circulation/transport ; Transport ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(2), (2020): 455-469, doi:10.1175/JPO-D-19-0190.1.
    Description: The mechanisms by which time-dependent wind stress anomalies at midlatitudes can force variability in the meridional overturning circulation at low latitudes are explored. It is shown that winds are effective at forcing remote variability in the overturning circulation when forcing periods are near the midlatitude baroclinic Rossby wave basin-crossing time. Remote overturning is required by an imbalance in the midlatitude mass storage and release resulting from the dependence of the Rossby wave phase speed on latitude. A heuristic theory is developed that predicts the strength and frequency dependence of the remote overturning well when compared to a two-layer numerical model. The theory indicates that the variable overturning strength, relative to the anomalous Ekman transport, depends primarily on the ratio of the meridional spatial scale of the anomalous wind stress curl to its latitude. For strongly forced systems, a mean deep western boundary current can also significantly enhance the overturning variability at all latitudes. For sufficiently large thermocline displacements, the deep western boundary current alternates between interior and near-boundary pathways in response to fluctuations in the wind, leading to large anomalies in the volume of North Atlantic Deep Water stored at midlatitudes and in the downstream deep western boundary current transport.
    Description: MAS and DN were supported by the National Science Foundation under Grant OCE-1634468.
    Description: 2020-11-10
    Keywords: Meridional overturning circulation ; Ocean circulation ; Rossby waves ; Thermocline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2017-04-04
    Description: We study the quasi-geostrophic merging dynamics of axisymmetric baroclinic vortices to understand how baroclinicity affects merging rates and the development of the nonlinear cascade of enstrophy. The initial vortices are taken to simulate closely the horizontal' and vertical structure of Gulf Stream rings. A quasigeostrophic model is set with a horizontal resolution of 9 km and 6 vertical levels to resolve the mean stratification of the Gulf Stream region. The results show that the baroclinic merging is slower than the purely barotropic process, The merging is shown to occur in two phases: the tirst, which produces clove-shaped vortices and diffusive mixing of vorticity contours; and the second, which consists of the sliding of the remaining vorticity cores with a second diffusive mixing of the intemal vorticity field. Comparison among Nof, Cushman-Roisin, Polvani et al, and Dewar and Killworth merging events indicates a substantial agreement in the kinematics of the DYOCRSS. Parameter sensitivity experiments show that the decrease of the baroclinicity parameter of the system, Γ^2, [defined as Γ^2 = (D^2 fo^2)/ (No^2 H^2)], increases the speed of merging while its increase slows down the merging. However, the halting elfect of baroclinicity (large Γ^2 or small Rossby radii of deformation) reaches a saturation level where the merging becomes insensitive to larger F2 values. Furthermore, we show that a regime of small Γ^2 exists at which the merged baroclinic vortex is unstable (metastable) and breaks again into two new vortices, Thus, in the baroelinic case the range of Γ^2 detemines the stability of the merged vortex. We analyze these results by local energy and vorticity balances, showing that the horizontal divergence of pressure work term [∇ *(pv)] and the relative-vorticity advection term (v * ∇ (∇ ^2 φ) trigger the merging during the first phase. Due to this horizontal redistribution process, a net kinetic to gravitational energy conversion occurs via buoyancy work in the region external to the cores of the vortices. The second phase of merging is dominated by a direct baroclinic conversion of available gravitational energy into kinetic energy, which in tum triggers a horizontal energy redistribution producing the final fusion of the vortex centers. This energy and vorticity analysis supports the hypothesis that merging is an internal mixing process triggered by a horizontal redistribution of kinetic energy.
    Description: The work has been financed by a grant from the Progetto Finalizzato "Calcolo Parallelo"
    Description: Published
    Description: 1618/1637
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: Ocean modeling ; Vortex dynamics ; Baroclinicity ; Eddies ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 9839–9859, doi:10.1175/JCLI-D-12-00647.1.
    Description: Spatial and temporal covariability between the atmospheric transient eddy heat fluxes (i.e., υ′T′ and υ′q′) in the Northern Hemisphere winter (January–March) and the paths of the Gulf Stream (GS), Kuroshio Extension (KE), and Oyashio Extension (OE) are examined based on an atmospheric reanalyses and ocean observations for 1979–2009. For the climatological winter mean, the northward heat fluxes by the synoptic (2–8 days) transient eddies exhibit canonical storm tracks with their maxima collocated with the GS and KE/OE. The intraseasonal (8 days–3 months) counterpart, while having overall similar amplitude, shows a spatial pattern with more localized maxima near the major orography and blocking regions. Lateral heat flux divergence by transient eddies as the sum of the two frequency bands exhibits very close coupling with the exact locations of the ocean fronts. Linear regression is used to examine the lead–lag relationship between interannual changes in the northward heat fluxes by the transient eddies and the meridional changes in the paths of the GS, KE, and OE, respectively. One to three years prior to the northward shifts of each ocean front, the atmospheric storm tracks shift northward and intensify, which is consistent with wind-driven changes of the ocean. Following the northward shifts of the ocean fronts, the synoptic storm tracks weaken in all three cases. The zonally integrated northward heat transport by the synoptic transient eddies increases by ~5% of its maximum mean value prior to the northward shift of each ocean front and decreases to a similar amplitude afterward.
    Description: Support from the National Aeronautics and Space Administration (NASA) Physical Oceanography Program (NNX09AF35G to TJ and Y-OK) and the Department of Energy (DOE) Climate and Environmental Sciences Division (DE-SC0007052 to Y-OK) is gratefully acknowledged.
    Description: 2014-06-15
    Keywords: Atmosphere-ocean interaction ; Eddies ; Energy transport ; Storm tracks ; Heat budgets/fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1398–1406, doi:10.1175/JPO-D-13-028.1.
    Description: An adiabatic, inertial, and quasigeostrophic model is used to discuss the interaction of surface Ekman transport with an island. The theory extends the recent work of Spall and Pedlosky to include an analytical and nonlinear model for the interaction. The presence of an island that interrupts a uniform Ekman layer transport raises interesting questions about the resulting circulation. The consequential upwelling around the island can lead to a local intake of fluid from the geostrophic region beneath the Ekman layer or to a more complex flow around the island in which the fluid entering the Ekman layer on one portion of the island's perimeter is replaced by a flow along the island's boundary from a downwelling region located elsewhere on the island. This becomes especially pertinent when the flow is quasigeostrophic and adiabatic. The oncoming geostrophic flow that balances the offshore Ekman flux is largely diverted around the island, and the Ekman flux is fed by a transfer of fluid from the western to the eastern side of the island. As opposed to the linear, dissipative model described earlier, this transfer takes place even in the absence of a topographic skirt around the island. The principal effect of topography in the inertial model is to introduce an asymmetry between the circulation on the northern and southern sides of the island. The quasigeostrophic model allows a simple solution to the model problem with topography and yet the resulting three-dimensional circulation is surprisingly complex with streamlines connecting each side of the island.
    Description: This research was supported in part by NSF Grant OCE Grant 0925061.
    Keywords: Baroclinic flows ; Large-scale motions ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 229–245, doi:10.1175/JPO-D-12-0218.1.
    Description: Data from a mooring deployed at the edge of the East Greenland shelf south of Denmark Strait from September 2007 to October 2008 are analyzed to investigate the processes by which dense water is transferred off the shelf. It is found that water denser than 27.7 kg m−3—as dense as water previously attributed to the adjacent East Greenland Spill Jet—resides near the bottom of the shelf for most of the year with no discernible seasonality. The mean velocity in the central part of the water column is directed along the isobaths, while the deep flow is bottom intensified and veers offshore. Two mechanisms for driving dense spilling events are investigated, one due to offshore forcing and the other associated with wind forcing. Denmark Strait cyclones propagating southward along the continental slope are shown to drive off-shelf flow at their leading edges and are responsible for much of the triggering of individual spilling events. Northerly barrier winds also force spilling. Local winds generate an Ekman downwelling cell. Nonlocal winds also excite spilling, which is hypothesized to be the result of southward-propagating coastally trapped waves, although definitive confirmation is still required. The combined effect of the eddies and barrier winds results in the strongest spilling events, while in the absence of winds a train of eddies causes enhanced spilling.
    Description: The authors wish to thank Paula Fratantoni, Frank Bahr, and Dan Torres for processing the mooring data. The mooring array was capably deployed by the crew of the R/V Arni Fridriksson and recovered by the crew of the R/V Knorr. We thank Hedinn Valdimarsson for his assistance in the field work. Ken Brink provided valuable insights regarding the dynamics of shelf waves. Funding for the study was provided by National Science Foundation Grant OCE-0722694, the Arctic Research Initiative of the Woods Hole Oceanographic Institution. We also wish to thank the Natural Environment Research Council for Ph.D. studentship funding, and the University of East Anglia’s Roberts Fund and Royal Meteorological Society for supporting travel for collaboration.
    Description: 2014-07-01
    Keywords: Geographic location/entity ; Continental shelf/slope ; Circulation/ Dynamics ; Meridional overturning circulation ; Upwelling/downwelling ; Atm/Ocean Structure/ Phenomena ; Eddies ; Extreme events ; Physical Meteorology and Climatology ; Air-sea interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 413–426, doi:10.1175/JPO-D-13-0117.1.
    Description: Salinity and temperature profiles from drifting ice-tethered profilers in the Beaufort gyre region of the Canada Basin are used to characterize and quantify the regional near-inertial internal wave field over one year. Vertical displacements of potential density surfaces from the surface to 750-m depth are tracked from fall 2006 to fall 2007. Because of the time resolution and irregular sampling of the ice-tethered profilers, near-inertial frequency signals are marginally resolved. Complex demodulation is used to determine variations with a time scale of several days in the amplitude and phase of waves at a specified near-inertial frequency. Characteristics and variability of the wave field over the course of the year are investigated quantitatively and related to changes in surface wind forcing and sea ice cover.
    Description: The ITP program and J. Toole’s contributions were supported by the National Science Foundation Office of Polar Programs Arctic Observing Network. We acknowledge the support of the Office of Naval Research (Grant N00014-11-1-0454) for this study. Support for H. Dosser was also provided by the Natural Sciences and Engineering Research Council of Canada.
    Description: 2014-08-01
    Keywords: Geographic location/entity ; Arctic ; Circulation/ Dynamics ; Inertia-gravity waves ; Internal waves ; Observational techniques and algorithms ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 834-849, doi:10.1175/JPO-D-13-0179.1.
    Description: A hydrostatic numerical model with alongshore-uniform barotropic M2 tidal boundary forcing and idealized shelfbreak canyon bathymetries is used to study internal-tide generation and onshore propagation. A control simulation with Mid-Atlantic Bight representative bathymetry is supported by other simulations that serve to identify specific processes. The canyons and adjacent slopes are transcritical in steepness with respect to M2 internal wave characteristics. Although the various canyons are symmetrical in structure, barotropic-to-baroclinic energy conversion rates Cυ are typically asymmetrical within them. The resulting onshore-propagating internal waves are the strongest along beams in the horizontal plane, with the stronger beam in the control simulation lying on the side with higher Cυ. Analysis of the simulation results suggests that the cross-canyon asymmetrical Cυ distributions are caused by multiple-scattering effects on one canyon side slope, because the phase variation in the spatially distributed internal-tide sources, governed by variations in the orientation of the bathymetry gradient vector, allows resonant internal-tide generation. A less complex, semianalytical, modal internal wave propagation model with sources placed along the critical-slope locus (where the M2 internal wave characteristic is tangent to the seabed) and variable source phasing is used to diagnose the physics of the horizontal beams of onshore internal wave radiation. Model analysis explains how the cross-canyon phase and amplitude variations in the locally generated internal tides affect parameters of the internal-tide beams. Under the assumption that strong internal tides on continental shelves evolve to include nonlinear wave trains, the asymmetrical internal-tide generation and beam radiation effects may lead to nonlinear internal waves and enhanced mixing occurring preferentially on one side of shelfbreak canyons, in the absence of other influencing factors.
    Description: All three authors were supported by Office of Naval Research (ONR) Grant N00014-11-1-0701. WGZ was additionally supported by the National Science Foundation (NSF) Grant OCE-1154575, and TFD was additionally supported by NSF Grant OCE-1060430.
    Description: 2014-09-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Internal waves ; Ocean circulation ; Topographic effects ; Waves, oceanic ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2593–2616, doi:10.1175/JPO-D-13-0120.1.
    Description: The first direct estimate of the rate at which geostrophic turbulence mixes tracers across the Antarctic Circumpolar Current is presented. The estimate is computed from the spreading of a tracer released upstream of Drake Passage as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The meridional eddy diffusivity, a measure of the rate at which the area of the tracer spreads along an isopycnal across the Antarctic Circumpolar Current, is 710 ± 260 m2 s−1 at 1500-m depth. The estimate is based on an extrapolation of the tracer-based diffusivity using output from numerical tracers released in a one-twentieth of a degree model simulation of the circulation and turbulence in the Drake Passage region. The model is shown to reproduce the observed spreading rate of the DIMES tracer and suggests that the meridional eddy diffusivity is weak in the upper kilometer of the water column with values below 500 m2 s−1 and peaks at the steering level, near 2 km, where the eddy phase speed is equal to the mean flow speed. These vertical variations are not captured by ocean models presently used for climate studies, but they significantly affect the ventilation of different water masses.
    Description: NSF support through Awards OCE-1233832, OCE-1232962, and OCE-1048926 is gratefully acknowledged.
    Description: 2015-04-01
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diffusion ; Eddies ; Ocean circulation ; Turbulence ; Physical Meteorology and Climatology ; Isopycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 2842–2860, doi:10.1175/JCLI-D-13-00227.1.
    Description: Mooring measurements from the Kuroshio Extension System Study (June 2004–June 2006) and from the ongoing Kuroshio Extension Observatory (June 2004–present) are combined with float measurements of the Argo network to study the variability of the North Pacific Subtropical Mode Water (STMW) across the entire gyre, on time scales from days, to seasons, to a decade. The top of the STMW follows a seasonal cycle, although observations reveal that it primarily varies in discrete steps associated with episodic wind events. The variations of the STMW bottom depth are tightly related to the sea surface height (SSH), reflecting mesoscale eddies and large-scale variations of the Kuroshio Extension and recirculation gyre systems. Using the observed relationship between SSH and STMW, gridded SSH products and in situ estimates from floats are used to construct weekly maps of STMW thickness, providing nonbiased estimates of STMW total volume, annual formation and erosion volumes, and seasonal and interannual variability for the past decade. Year-to-year variations are detected, particularly a significant decrease of STMW volume in 2007–10 primarily attributable to a smaller volume formed. Variability of the heat content in the mode water region is dominated by the seasonal cycle and mesoscale eddies; there is only a weak link to STMW on interannual time scales, and no long-term trends in heat content and STMW thickness between 2002 and 2011 are detected. Weak lagged correlations among air–sea fluxes, oceanic heat content, and STMW thickness are found when averaged over the northwestern Pacific recirculation gyre region.
    Description: This work was sponsored by the National Science Foundation (Grants OCE-0220161, OCE-0825152, and OCE-0827125).
    Description: 2014-10-15
    Keywords: Atmosphere-ocean interaction ; Mesoscale processes ; Mesoscale systems ; Ocean dynamics ; Eddies ; Water masses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 3596–3618, doi:10.1175/JCLI-D-13-00070.1.
    Description: Estimates of the recent mean and time varying water mass transformation rates associated with North Atlantic surface-forced overturning are presented. The estimates are derived from heat and freshwater surface fluxes and sea surface temperature fields from six atmospheric reanalyses—the Japanese 25-yr Reanalysis (JRA), the NCEP–NCAR reanalysis (NCEP1), the NCEP–U.S. Department of Energy (DOE) reanalysis (NCEP2), the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-I), the Climate Forecast System Reanalysis (CFSR), and the Modern-Era Reanalysis for Research and Applications (MERRA)—together with sea surface salinity fields from two globally gridded datasets (World Ocean Atlas and Met Office EN3 datasets). The resulting 12 estimates of the 1979–2007 mean surface-forced streamfunction all depict a subpolar cell, with maxima north of 45°N, near σ = 27.5 kg m−3, and a subtropical cell between 20° and 40°N, near σ = 26.1 kg m−3. The mean magnitude of the subpolar cell varies between 12 and 18 Sv (1 Sv ≡ 106 m3 s−1), consistent with estimates of the overturning circulation from subsurface observations. Analysis of the thermal and haline components of the surface density fluxes indicates that large differences in the inferred low-latitude circulation are largely a result of the biases in reanalysis net heat flux fields, which range in the global mean from −13 to 19 W m−2. The different estimates of temporal variability in the subpolar cell are well correlated with each other. This suggests that the uncertainty associated with the choice of reanalysis product does not critically limit the ability of the method to infer the variability in the subpolar overturning. In contrast, the different estimates of subtropical variability are poorly correlated with each other, and only a subset of them captures a significant fraction of the variability in independently estimated North Atlantic Subtropical Mode Water volume.
    Description: JPG is funded by UK Natural Environment Research Council New Investigator Grant NE/I001654/1. Y-OK was supported by the U.S. National Science Foundation under Grant OCE-0424492. RJB is supported by a fellowship from the UK National Centre for Earth Observation.
    Description: 2014-11-15
    Keywords: Atmosphere-ocean interaction ; Meridional overturning circulation ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1306–1328, doi:10.1175/JPO-D-12-0191.1.
    Description: The ice–ocean system is investigated on inertial to monthly time scales using winter 2009–10 observations from the first ice-tethered profiler (ITP) equipped with a velocity sensor (ITP-V). Fluctuations in surface winds, ice velocity, and ocean velocity at 7-m depth were correlated. Observed ocean velocity was primarily directed to the right of the ice velocity and spiraled clockwise while decaying with depth through the mixed layer. Inertial and tidal motions of the ice and in the underlying ocean were observed throughout the record. Just below the ice–ocean interface, direct estimates of the turbulent vertical heat, salt, and momentum fluxes and the turbulent dissipation rate were obtained. Periods of elevated internal wave activity were associated with changes to the turbulent heat and salt fluxes as well as stratification primarily within the mixed layer. Turbulent heat and salt fluxes were correlated particularly when the mixed layer was closest to the freezing temperature. Momentum flux is adequately related to velocity shear using a constant ice–ocean drag coefficient, mixing length based on the planetary and geometric scales, or Rossby similarity theory. Ekman viscosity described velocity shear over the mixed layer. The ice–ocean drag coefficient was elevated for certain directions of the ice–ocean shear, implying an ice topography that was characterized by linear ridges. Mixing length was best estimated using the wavenumber of the beginning of the inertial subrange or a variable drag coefficient. Analyses of this and future ITP-V datasets will advance understanding of ice–ocean interactions and their parameterizations in numerical models.
    Description: Support for this study and the overall ITP program was provided by the National Science Foundation and Woods Hole Oceanographic Institution. Support for S. Cole was partially though the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Devonshire Foundation.
    Description: 2014-11-01
    Keywords: Geographic location/entity ; Arctic ; Sea ice ; Circulation/ Dynamics ; Ekman pumping/transport ; Internal waves ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Oceanic mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2498–2523, doi:10.1175/JPO-D-13-0183.1.
    Description: This study examines the observability of a stratified ocean in a square flat basin on a midlatitude beta plane. Here, “observability” means the ability to establish, in a finite interval of time, the time-dependent ocean state given density observations over the same interval and with no regard for errors. The dynamics is linearized and hydrostatic, so that the motion can be decomposed into normal modes and the observability analysis is simplified. An observability Gramian (a symmetric matrix) is determined for the flows in an inviscid interior, in frictional boundary layers, and in a closed basin. Its properties are used to establish the condition for complete observability and to identify optimal data locations for each of these flows. It is found that complete observability of an oceanic interior in time-dependent Sverdrup balance requires that the observations originate from the westernmost location at each considered latitude. The degree of observability increases westward due to westward propagation of long baroclinic Rossby waves: data collected in the west are more informative than data collected in the east. Likewise, the best locations for observing variability in the western (eastern) boundary layer are near (far from) the boundary. The observability of a closed basin is influenced by the westward propagation and the boundaries. Optimal data locations that are identified for different resolutions (0.01 to 1 yr) and lengths of data records (0.2 to 20 yr) show a variable influence of the planetary vorticity gradient. Data collected near the meridional boundaries appear always less informative, from the viewpoint of basin observability, than data collected away from these boundaries.
    Description: This work was supported by the U.S. National Science Foundation.
    Description: 2015-03-01
    Keywords: Circulation/ Dynamics ; Ocean circulation ; Rossby waves ; Mathematical and statistical techniques ; Inverse methods ; Variability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 2352–2371, doi:10.1175/JPO-D-13-079.1.
    Description: An idealized eddy-resolving numerical model and an analytic three-layer model are used to develop ideas about what controls the circulation of Atlantic Water in the Arctic Ocean. The numerical model is forced with a surface heat flux, uniform winds, and a source of low-salinity water near the surface around the perimeter of an Arctic basin. Despite this idealized configuration, the model is able to reproduce many general aspects of the Arctic Ocean circulation and hydrography, including exchange through Fram Strait, circulation of Atlantic Water, a halocline, ice cover and transport, surface heat flux, and a Beaufort Gyre. The analytic model depends on a nondimensional number, and provides theoretical estimates of the halocline depth, stratification, freshwater content, and baroclinic shear in the boundary current. An empirical relationship between freshwater content and sea surface height allows for a prediction of the transport of Atlantic Water in the cyclonic boundary current. Parameters typical of the Arctic Ocean produce a cyclonic boundary current of Atlantic Water of O(1 − 2 Sv; where 1 Sv ≡ 106 m3 s−1) and a halocline depth of O(200 m), in reasonable agreement with observations. The theory compares well with a series of numerical model calculations in which mixing and environmental parameters are varied, thus lending credibility to the dynamics of the analytic model. In these models, lateral eddy fluxes from the boundary and vertical diffusion in the interior are important drivers of the halocline and the circulation of Atlantic Water in the Arctic Ocean.
    Description: This study was supported by the National Science Foundation under Grants OCE- 0850416, OCE-0959381, and OCE-1232389.
    Description: 2014-05-01
    Keywords: Arctic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 283–300, doi:10.1175/JPO-D-11-0240.1.
    Description: Motivated by the recent interest in ocean energetics, the widespread use of horizontal eddy viscosity in models, and the promise of high horizontal resolution data from the planned wide-swath satellite altimeter, this paper explores the impacts of horizontal eddy viscosity and horizontal grid resolution on geostrophic turbulence, with a particular focus on spectral kinetic energy fluxes Π(K) computed in the isotropic wavenumber (K) domain. The paper utilizes idealized two-layer quasigeostrophic (QG) models, realistic high-resolution ocean general circulation models, and present-generation gridded satellite altimeter data. Adding horizontal eddy viscosity to the QG model results in a forward cascade at smaller scales, in apparent agreement with results from present-generation altimetry. Eddy viscosity is taken to roughly represent coupling of mesoscale eddies to internal waves or to submesoscale eddies. Filtering the output of either the QG or realistic models before computing Π(K) also greatly increases the forward cascade. Such filtering mimics the smoothing inherent in the construction of present-generation gridded altimeter data. It is therefore difficult to say whether the forward cascades seen in present-generation altimeter data are due to real physics (represented here by eddy viscosity) or to insufficient horizontal resolution. The inverse cascade at larger scales remains in the models even after filtering, suggesting that its existence in the models and in altimeter data is robust. However, the magnitude of the inverse cascade is affected by filtering, suggesting that the wide-swath altimeter will allow a more accurate determination of the inverse cascade at larger scales as well as providing important constraints on smaller-scale dynamics.
    Description: BKA received support from Office of Naval Research Grant N00014-11-1-0487, National Science Foundation (NSF) Grants OCE-0924481 and OCE- 09607820, and University of Michigan startup funds. KLP acknowledges support from Woods Hole Oceanographic Institution bridge support funds. RBS acknowledges support from NSF grants OCE-0960834 and OCE-0851457, a contract with the National Oceanography Centre, Southampton, and a NASA subcontract to Boston University. JFS and JGR were supported by the projects ‘‘Global and remote littoral forcing in global ocean models’’ and ‘‘Agesotrophic vorticity dynamics of the ocean,’’ respectively, both sponsored by the Office of Naval Research under program element 601153N.
    Description: 2013-08-01
    Keywords: Eddies ; Nonlinear dynamics ; Ocean dynamics ; Satellite observations ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2234–2253, doi:10.1175/JPO-D-12-033.1.
    Description: Meridional velocity, mass, and heat transport in the equatorial oceans are difficult to estimate because of the nonapplicability of the geostrophic balance. For this purpose a steady-state model is utilized in the equatorial Indian Ocean using NCEP wind stress and temperature and salinity data from the World Ocean Atlas 2005 (WOA05) and Argo. The results show a Somali Current flowing to the south during the winter monsoon carrying −11.5 ± 1.3 Sv (1 Sv ≡ 106 m3 s−1) and −12.3 ± 0.3 Sv from WOA05 and Argo, respectively. In the summer monsoon the Somali Current reverses to the north transporting 16.8 ± 1.2 Sv and 19.8 ± 0.6 Sv in the WOA05 and Argo results. Transitional periods are considered together and in consequence, there is not a clear Somali Current present in this period. Model results fit with in situ measurements made around the region, although Argo data results are quite more realistic than WOA05 data results.
    Description: This study has been partly funded by the MOC Project (CTM 2008- 06438) and the Spanish contribution to the Argo network (AC2009 ACI2009-0998), financed by the Spanish Government and Feder.
    Description: 2013-06-01
    Keywords: Indian Ocean ; Subtropics ; Currents ; Ocean circulation ; Transport ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2206–2228, doi:10.1175/JPO-D-11-0191.1.
    Description: This study investigates the anisotropic properties of the eddy-induced material transport in the near-surface North Atlantic from two independent datasets, one simulated from the sea surface height altimetry and one derived from real-ocean surface drifters, and systematically examines the interactions between the mean- and eddy-induced material transport in the region. The Lagrangian particle dispersion, which is widely used to characterize the eddy-induced tracer fluxes, is quantified by constructing the “spreading ellipses.” The analysis consistently demonstrates that this dispersion is spatially inhomogeneous and strongly anisotropic. The spreading is larger and more anisotropic in the subtropical than in the subpolar gyre, and the largest ellipses occur in the Gulf Stream vicinity. Even at times longer than half a year, the spreading exhibits significant nondiffusive behavior in some parts of the domain. The eddies in this study are defined as deviations from the long-term time-mean. The contributions from the climatological annual cycle, interannual, and subannual (shorter than one year) variability are investigated, and the latter is shown to have the strongest effect on the anisotropy of particle spreading. The influence of the mean advection on the eddy-induced particle spreading is investigated using the “eddy-following-full-trajectories” technique and is found to be significant. The role of the Ekman advection is, however, secondary. The pronounced anisotropy of particle dispersion is expected to have important implications for distributing oceanic tracers, and for parameterizing eddy-induced tracer transfer in non-eddy-resolving models.
    Description: IR was supported by Grant NSF-OCE-0725796. IK would like to acknowledge support by the National Science foundation Grant OCE-0842834.
    Description: 2013-06-01
    Keywords: North Atlantic Ocean ; Diffusion ; Dispersion ; Eddies ; Lagrangian circulation/transport ; Trajectories
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 905–919, doi:10.1175/JPO-D-12-0150.1.
    Description: Interactions between vortices and a shelfbreak current are investigated, with particular attention to the exchange of waters between the continental shelf and slope. The nonlinear, three-dimensional interaction between an anticyclonic vortex and the shelfbreak current is studied in the laboratory while varying the ratio ε of the maximum azimuthal velocity in the vortex to the maximum alongshelf velocity in the shelfbreak current. Strong interactions between the shelfbreak current and the vortex are observed when ε 〉 1; weak interactions are found when ε 〈 1. When the anticyclonic vortex comes in contact with the shelfbreak front during a strong interaction, a streamer of shelf water is drawn offshore and wraps anticyclonically around the vortex. Measurements of the offshore transport and identification of the particle trajectories in the shelfbreak current drawn offshore from the vortex allow quantification of the fraction of the shelfbreak current that is deflected onto the slope; this fraction increases for increasing values of ε. Experimental results in the laboratory are strikingly similar to results obtained from observations in the Middle Atlantic Bight (MAB); after proper scaling, measurements of offshore transport and offshore displacement of shelf water for vortices in the MAB that span a range of values of ε agree well with laboratory predictions.
    Description: Laboratory work was supported by the National Science Foundation through Grant OCE- 0081756. Glider observations in March–April 2006 were supported by the National Science Foundation through Grant OCE-0220769. Glider observations in July– October 2007 were supported by a grant from Raytheon. RET was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Cooperative Institute for the North Atlantic Region. The REMUS observations were funded by the Office of Naval Research. GGG was supported by the National Science Foundation through Grant OCE-1129125 for analysis and writing.
    Description: 2013-11-01
    Keywords: Continental shelf/slope ; Eddies ; Fronts ; Transport ; Laboratory/physical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2283–2296, doi:10.1175/JPO-D-11-0227.1.
    Description: The dynamic influence of thermohaline circulation on wind-driven circulation in the South China Sea (SCS) is studied using a simple reduced gravity model, in which the upwelling driven by mixing in the abyssal ocean is treated in terms of an upward pumping distributed at the base of the upper layer. Because of the strong upwelling of deep water, the cyclonic gyre in the northern SCS is weakened, but the anticyclonic gyre in the southern SCS is intensified in summer, while cyclonic gyres in both the southern and northern SCS are weakened in winter. For all seasons, the dynamic influence of thermohaline circulation on wind-driven circulation is larger in the northern SCS than in the southern SCS. Analysis suggests that the upwelling associated with the thermohaline circulation in the deep ocean plays a crucial role in regulating the wind-driven circulation in the upper ocean.
    Description: G. Wang is supported by the National Science Foundation of China (NSFC Grants 41125019, 40725017, and 40976017).D.Chen is supported by grants from the Ministry of Science and Technology (2010DFA21012), the State Oceanic Administration (201105018), and the NSFC (91128204).
    Description: 2013-06-01
    Keywords: Abyssal circulation ; Dynamics ; Ocean circulation ; Upwelling/downwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1611–1626, doi:10.1175/JPO-D-12-0204.1.
    Description: A new method is proposed for extrapolating subsurface velocity and density fields from sea surface density and sea surface height (SSH). In this, the surface density is linked to the subsurface fields via the surface quasigeostrophic (SQG) formalism, as proposed in several recent papers. The subsurface field is augmented by the addition of the barotropic and first baroclinic modes, whose amplitudes are determined by matching to the sea surface height (pressure), after subtracting the SQG contribution. An additional constraint is that the bottom pressure anomaly vanishes. The method is tested for three regions in the North Atlantic using data from a high-resolution numerical simulation. The decomposition yields strikingly realistic subsurface fields. It is particularly successful in energetic regions like the Gulf Stream extension and at high latitudes where the mixed layer is deep, but it also works in less energetic eastern subtropics. The demonstration highlights the possibility of reconstructing three-dimensional oceanic flows using a combination of satellite fields, for example, sea surface temperature (SST) and SSH, and sparse (or climatological) estimates of the regional depth-resolved density. The method could be further elaborated to integrate additional subsurface information, such as mooring measurements.
    Description: JW and AM were supported by NASA (NNX12AD47G) and NSF (OCE 0928617). JLM was supported by the Office of Naval Research and the Office of Science (BER), U.S. Department of Energy under DE-GF0205ER64119. GRF is supported by OCE-0752346 and JHL by NORSEE (Nordic Seas Eddy Exchanges) funded by the Norwegian Research Council.
    Description: 2014-02-01
    Keywords: Eddies ; Ocean dynamics ; Potential vorticity ; Surface pressure ; Surface temperature ; Inverse methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1940–1958, doi:10.1175/JPO-D-13-020.1.
    Description: The spatial structure of the tidal and background circulation over the inner shelf south of Martha's Vineyard, Massachusetts, was investigated using observations from a high-resolution, high-frequency coastal radar system, paired with satellite SSTs and in situ ADCP velocities. Maximum tidal velocities for the dominant semidiurnal constituent increased from 5 to 35 cm s−1 over the 20-km-wide domain with phase variations up to 60°. A northeastward jet along the eastern edge and a recirculation region inshore dominated the annually averaged surface currents, along with a separate along-shelf jet offshore. Owing in part to this variable circulation, the spatial structure of seasonal SST anomalies had implications for the local heat balance. Cooling owing to the advective heat flux divergence was large enough to offset more than half of the seasonal heat gain owing to surface heat flux. Tidal stresses were the largest terms in the mean along- and across-shelf momentum equations in the area of the recirculation, with residual wind stress and the Coriolis term dominating to the west and south, respectively. The recirculation was strongest in summer, with mean winds and tidal stresses accounting for much of the differences between summer and winter mean circulation. Despite the complex bathymetry and short along-shelf spatial scales, a simple model of tidal rectification was able to recreate the features of the northeastward jet and match an estimate of the across-shelf structure of sea surface height inferred from the residual of the momentum analysis.
    Description: 2014-03-01
    Keywords: Coastal flows ; Momentum ; Sea surface temperature ; Tides ; Surface observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 1669–1684, doi:10.1175/JCLI-D-12-00246.1.
    Description: Climate change west of the Antarctic Peninsula is the most rapid of anywhere in the Southern Hemisphere, with associated changes in the rates and distributions of freshwater inputs to the ocean. Here, results from the first comprehensive survey of oxygen isotopes in seawater in this region are used to quantify spatial patterns of meteoric water (glacial discharge and precipitation) separately from sea ice melt. High levels of meteoric water are found close to the coast, due to orographic effects on precipitation and strong glacial discharge. Concentrations decrease offshore, driving significant southward geostrophic flows (up to ~30 cm s−1). These produce high meteoric water concentrations at the southern end of the sampling grid, where collapse of the Wilkins Ice Shelf may also have contributed. Sea ice melt concentrations are lower than meteoric water and patchier because of the mobile nature of the sea ice itself. Nonetheless, net sea ice production in the northern part of the sampling grid is inferred; combined with net sea ice melt in the south, this indicates an overall southward ice motion. The survey is contextualized temporally using a decade-long series of isotope data from a coastal Antarctic Peninsula site. This shows a temporal decline in meteoric water in the upper ocean, contrary to expectations based on increasing precipitation and accelerating deglaciation. This is driven by the increasing occurrence of deeper winter mixed layers and has potential implications for concentrations of trace metals supplied to the euphotic zone by glacial discharge. As the regional freshwater system evolves, the continuing isotope monitoring described here will elucidate the ongoing impacts on climate and the ecosystem.
    Description: The Palmer LTER participants acknowledge Award 0823101 from the Organisms and Ecosystems program in NSF OPP
    Description: 2013-09-01
    Keywords: Southern Ocean ; Ocean circulation ; Freshwater ; Precipitation ; Snowmelt/icemelt ; Isotopic analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 7781–7801, doi:10.1175/JCLI-D-11-00442.1.
    Description: Air–sea fluxes from the Community Climate System Model version 4 (CCSM4) are compared with the Coordinated Ocean-Ice Reference Experiment (CORE) dataset to assess present-day mean biases, variability errors, and late twentieth-century trend differences. CCSM4 is improved over the previous version, CCSM3, in both air–sea heat and freshwater fluxes in some regions; however, a large increase in net shortwave radiation into the ocean may contribute to an enhanced hydrological cycle. The authors provide a new baseline for assessment of flux variance at annual and interannual frequency bands in future model versions and contribute a new metric for assessing the coupling between the atmospheric and oceanic planetary boundary layer (PBL) schemes of any climate model. Maps of the ratio of CCSM4 variance to CORE reveal that variance on annual time scales has larger error than on interannual time scales and that different processes cause errors in mean, annual, and interannual frequency bands. Air temperature and specific humidity in the CCSM4 atmospheric boundary layer (ABL) follow the sea surface conditions much more closely than is found in CORE. Sensible and latent heat fluxes are less of a negative feedback to sea surface temperature warming in the CCSM4 than in the CORE data with the model’s PBL allowing for more heating of the ocean’s surface.
    Description: The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. S. Stevensonwas supported byNASAGrantNNX09A020H and B. Fox-Kemper by Grants NSF 0934737 and NASA NNX09AF38G.
    Description: 2013-05-15
    Keywords: Atmosphere-ocean interaction ; Boundary layer ; Sea surface temperature ; Climate models ; Coupled models ; Model evaluation/performance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 28 (2011): 1539–1553, doi:10.1175/JTECH-D-11-00001.1.
    Description: Turbulent Reynolds stresses are now routinely estimated from acoustic Doppler current profiler (ADCP) measurements in estuaries and tidal channels using the variance method, yet biases due to surface gravity waves limit its use in the coastal ocean. Recent modifications to this method, including spatially filtering velocities to isolate the turbulence from wave velocities and fitting a cospectral model to the below-wave band cospectra, have been used to remove this bias. Individually, each modification performed well for the published test datasets, but a comparative analysis over the range of conditions in the coastal ocean has not yet been performed. This work uses ADCP velocity measurements from five previously published coastal ocean and estuarine datasets, which span a range of wave and current conditions as well as instrument configurations, to directly compare methods for estimating stresses in the presence of waves. The computed stresses from each were compared to bottom stress estimates from a quadratic drag law and, where available, estimates of wind stress. These comparisons, along with an analysis of the cospectra, indicated that spectral fitting performs well when the wave climate is wide-banded and/or multidirectional as well as when instrument noise is high. In contrast, spatial filtering performs better when waves are narrow-banded, low frequency, and when wave orbital velocities are strong relative to currents. However, as spatial filtering uses vertically separated velocity bins to remove the wave bias, spectral fitting is able to resolve stresses over a larger fraction of the water column.
    Description: J. Rosman acknowledges funding from the National Science Foundation (OCE-1061108).
    Keywords: Coastal flows ; Momentum ; Ocean circulation ; Waves, oceanic ; In situ observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1012–1021, doi:10.1175/JPO-D-11-0184.1.
    Description: Pacific Water flows across the shallow Chukchi Sea before reaching the Arctic Ocean, where it is a source of heat, freshwater, nutrients, and carbon. A substantial portion of Pacific Water is routed through Barrow Canyon, located in the northeast corner of the Chukchi. Barrow Canyon is a region of complex geometry and forcing where a variety of water masses have been observed to coexist. These factors contribute to a dynamic physical environment, with the potential for significant water mass transformation. The measurements of turbulent kinetic energy dissipation presented here indicate diapycnal mixing is important in the upper canyon. Elevated dissipation rates were observed near the pycnocline, effectively mixing winter and summer water masses, as well as within the bottom boundary layer. The slopes of shear/stratification layers, combined with analysis of rotary spectra, suggest that near-inertial wave activity may be important in modulating dissipation near the bottom. Because the canyon is known to be a hotspot of productivity with an active benthic community, mixing may be an important factor in maintenance of the biological environment.
    Description: ELS was supported as a WHOI Postdoctoral Scholar through the WHOI Ocean and Climate Change Institute.
    Description: 2012-12-01
    Keywords: Arctic ; Continental shelf/slope ; Mixing ; Small scale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2168–2186, doi:10.1175/JPO-D-11-08.1.
    Description: This paper studies the interaction of an Antarctic Circumpolar Current (ACC)–like wind-driven channel flow with a continental slope and a flat-bottomed bay-shaped shelf near the channel’s southern boundary. Interaction between the model ACC and the topography in the second layer induces local changes of the potential vorticity (PV) flux, which further causes the formation of a first-layer PV front near the base of the topography. Located between the ACC and the first-layer slope, the newly formed PV front is constantly perturbed by the ACC and in turn forces the first-layer slope with its own variability in an intermittent but persistent way. The volume transport of the slope water across the first-layer slope edge is mostly directly driven by eddies and meanders of the new front, and its magnitude is similar to the maximum Ekman transport in the channel. Near the bay’s opening, the effect of the topographic waves, excited by offshore variability, dominates the cross-isobath exchange and induces a mean clockwise shelf circulation. The waves’ propagation is only toward the west and tends to be blocked by the bay’s western boundary in the narrow-shelf region. The ensuing wave–coast interaction amplifies the wave amplitude and the cross-shelf transport. Because the interaction only occurs near the western boundary, the shelf water in the west of the bay is more readily carried offshore than that in the east and the mean shelf circulation is also intensified along the bay’s western boundary.
    Description: Y. Zhang acknowledges the support of the MIT-WHOI Joint Program in Physical Oceanography and NSF OCE-9901654 and OCE- 0451086. J. Pedlosky acknowledges the support of NSF OCE-9901654 and OCE-0451086.
    Keywords: Baroclinic flows ; Eddies ; Fronts ; Mass fluxes/transport ; Mesoscale processes ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 343–349, doi:10.1175/JCLI-D-11-00059.1.
    Description: The Equatorial Undercurrent (EUC) is a major component of the tropical Pacific Ocean circulation. EUC velocity in most global climate models is sluggish relative to observations. Insufficient ocean resolution slows the EUC in the eastern Pacific where nonlinear terms should dominate the zonal momentum balance. A slow EUC in the east creates a bottleneck for the EUC to the west. However, this bottleneck does not impair other major components of the tropical circulation, including upwelling and poleward transport. In most models, upwelling velocity and poleward transport divergence fall within directly estimated uncertainties. Both of these transports play a critical role in a theory for how the tropical Pacific may change under increased radiative forcing, that is, the ocean dynamical thermostat mechanism. These findings suggest that, in the mean, global climate models may not underrepresent the role of equatorial ocean circulation, nor perhaps bias the balance between competing mechanisms for how the tropical Pacific might change in the future. Implications for model improvement under higher resolution are also discussed.
    Description: KBK gratefully acknowledges the J. Lamar Worzel Assistant Scientist Fund. GCJ is supported by NOAA’s Office of Oceanic and Atmospheric Research. RM gratefully acknowledges the generous support and hospitality of the Divecha Centre for Climate Change and CAOS at IISc, Bangalore, and partial support by NASA PO grants.
    Description: 2012-07-01
    Keywords: Tropics ; Ocean circulation ; Ocean dynamics ; Climate models ; Coupled models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 659–668, doi:10.1175/JPO-D-11-0125.1.
    Description: Ice-tethered profiler (ITP) measurements from the Arctic Ocean’s Canada Basin indicate an ocean surface layer beneath sea ice with significant horizontal density structure on scales of hundreds of kilometers to the order 1 km submesoscale. The observed horizontal gradients in density are dynamically important in that they are associated with restratification of the surface ocean when dense water flows under light water. Such restratification is prevalent in wintertime and competes with convective mixing upon buoyancy forcing (e.g., ice growth and brine rejection) and shear-driven mixing when the ice moves relative to the ocean. Frontal structure and estimates of the balanced Richardson number point to the likelihood of dynamical restratification by isopycnal tilt and submesoscale baroclinic instability. Based on the evidence here, it is likely that submesoscale processes play an important role in setting surface-layer properties and lateral density variability in the Arctic Ocean.
    Description: Funding was provided by the National Science Foundation Office of Polar Programs Arctic Sciences Section under Awards ARC-0519899, ARC-0856479, and ARC-0806306. Support was also provided by the Woods Hole Oceanographic Institution Arctic Research Initiative.
    Description: 2012-10-01
    Keywords: Arctic ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 329-351, doi:10.1175/JPO-D-11-026.1.
    Description: Data from a closely spaced array of moorings situated across the Beaufort Sea shelfbreak at 152°W are used to study the Western Arctic Shelfbreak Current, with emphasis on its configuration during the summer season. Two dynamically distinct states of the current are revealed in the absence of wind, with each lasting approximately one month. The first is a surface-intensified shelfbreak jet transporting warm and buoyant Alaskan Coastal Water in late summer. This is the eastward continuation of the Alaskan Coastal Current. It is both baroclinically and barotropically unstable and hence capable of forming the surface-intensified warm-core eddies observed in the southern Beaufort Sea. The second configuration, present during early summer, is a bottom-intensified shelfbreak current advecting weakly stratified Chukchi Summer Water. It is baroclinically unstable and likely forms the middepth warm-core eddies present in the interior basin. The mesoscale instabilities extract energy from the mean flow such that the surface-intensified jet should spin down over an e-folding distance of 300 km beyond the array site, whereas the bottom-intensified configuration should decay within 150 km. This implies that Pacific Summer Water does not extend far into the Canadian Beaufort Sea as a well-defined shelfbreak current. In contrast, the Pacific Winter Water configuration of the shelfbreak jet is estimated to decay over a much greater distance of approximately 1400 km, implying that it should reach the first entrance to the Canadian Arctic Archipelago.
    Description: This work was supported by National Science Foundation GrantsOCE-0726640,OPP-0731928, and OPP-0713250.
    Description: 2012-09-01
    Keywords: Arctic ; Continental shelf/slope ; Boundary currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 855–868, doi:10.1175/JPO-D-10-05010.1.
    Description: Data from the Hudson River estuary demonstrate that the tidal variations in vertical salinity stratification are not consistent with the patterns associated with along-channel tidal straining. These observations result from three additional processes not accounted for in the traditional tidal straining model: 1) along-channel and 2) lateral advection of horizontal gradients in the vertical salinity gradient and 3) tidal asymmetries in the strength of vertical mixing. As a result, cross-sectionally averaged values of the vertical salinity gradient are shown to increase during the flood tide and decrease during the ebb. Only over a limited portion of the cross section does the observed stratification increase during the ebb and decrease during the flood. These observations highlight the three-dimensional nature of estuarine flows and demonstrate that lateral circulation provides an alternate mechanism that allows for the exchange of materials between surface and bottom waters, even when direct turbulent mixing through the pycnocline is prohibited by strong stratification.
    Description: The funding for this research was obtained from NSF Grant OCE-08-25226.
    Description: 2012-11-01
    Keywords: Mixing ; Ocean circulation ; Shear structure/flows ; Transport ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 291–305, doi:10.1175/JPO-D-11-043.1.
    Description: A number of previous observational studies have found that the waters of the deep Pacific Ocean have an age, or elapsed time since contact with the surface, of 700–1000 yr. Numerical models suggest ages twice as old. Here, the authors present an inverse framework to determine the mean age and its upper and lower bounds given Global Ocean Data Analysis Project (GLODAP) radiocarbon observations, and they show that the potential range of ages increases with the number of constituents or sources that are included in the analysis. The inversion requires decomposing the World Ocean into source waters, which is obtained here using the total matrix intercomparison (TMI) method at up to 2° × 2° horizontal resolution with 11 113 surface sources. The authors find that the North Pacific at 2500-m depth can be no younger than 1100 yr old, which is older than some previous observational estimates. Accounting for the broadness of surface regions where waters originate leads to a reservoir-age correction of almost 100 yr smaller than would be estimated with a two or three water-mass decomposition and explains some of the discrepancy with previous observational studies. A best estimate of mean age is also presented using the mixing history along circulation pathways. Subject to the caveats that inference of the mixing history would benefit from further observations and that radiocarbon cannot rule out the presence of extremely old waters from exotic sources, the deep North Pacific waters are 1200–1500 yr old, which is more in line with existing numerical model results.
    Description: GG is supported by the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists. PJH is supported by NSF Award 0960787.
    Description: 2012-08-01
    Keywords: North Pacific Ocean ; Mass fluxes/transport ; Ocean circulation ; Tracers ; Optimization ; Variational analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 1361–1389, doi:10.1175/JCLI-D-11-00091.1.
    Description: The ocean component of the Community Climate System Model version 4 (CCSM4) is described, and its solutions from the twentieth-century (20C) simulations are documented in comparison with observations and those of CCSM3. The improvements to the ocean model physical processes include new parameterizations to represent previously missing physics and modifications of existing parameterizations to incorporate recent new developments. In comparison with CCSM3, the new solutions show some significant improvements that can be attributed to these model changes. These include a better equatorial current structure, a sharper thermocline, and elimination of the cold bias of the equatorial cold tongue all in the Pacific Ocean; reduced sea surface temperature (SST) and salinity biases along the North Atlantic Current path; and much smaller potential temperature and salinity biases in the near-surface Pacific Ocean. Other improvements include a global-mean SST that is more consistent with the present-day observations due to a different spinup procedure from that used in CCSM3. Despite these improvements, many of the biases present in CCSM3 still exist in CCSM4. A major concern continues to be the substantial heat content loss in the ocean during the preindustrial control simulation from which the 20C cases start. This heat loss largely reflects the top of the atmospheric model heat loss rate in the coupled system, and it essentially determines the abyssal ocean potential temperature biases in the 20C simulations. There is also a deep salty bias in all basins. As a result of this latter bias in the deep North Atlantic, the parameterized overflow waters cannot penetrate much deeper than in CCSM3.
    Description: NCAR is sponsored by the National Science Foundation. The CCSM is also sponsored by the Department of Energy. SGY was supported by the NOAA Climate Program Office under Climate Variability and Predictability Program Grant NA09OAR4310163.
    Description: 2012-09-01
    Keywords: Ocean circulation ; Climate models ; General circulation models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1684–1700, doi:10.1175/JPO-D-11-0230.1.
    Description: The influences of precipitation on water mass transformation and the strength of the meridional overturning circulation in marginal seas are studied using theoretical and idealized numerical models. Nondimensional equations are developed for the temperature and salinity anomalies of deep convective water masses, making explicit their dependence on both geometric parameters such as basin area, sill depth, and latitude, as well as on the strength of atmospheric forcing. In addition to the properties of the convective water, the theory also predicts the magnitude of precipitation required to shut down deep convection and switch the circulation into the haline mode. High-resolution numerical model calculations compare well with the theory for the properties of the convective water mass, the strength of the meridional overturning circulation, and also the shutdown of deep convection. However, the numerical model also shows that, for precipitation levels that exceed this critical threshold, the circulation retains downwelling and northward heat transport, even in the absence of deep convection.
    Description: This study was supported by the National Science Foundation underGrantsOCE-0850416, OCE-0959381, andOCE-0859381.
    Description: 2013-04-01
    Keywords: Boundary currents ; Deep convection ; Eddies ; Meridional overturning circulation ; Ocean dynamics ; Stability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2743–2756, doi:10.1175/2010JPO4339.1.
    Description: Analysis of modern and historical observations demonstrates that the temperature of the intermediate-depth (150–900 m) Atlantic water (AW) of the Arctic Ocean has increased in recent decades. The AW warming has been uneven in time; a local 1°C maximum was observed in the mid-1990s, followed by an intervening minimum and an additional warming that culminated in 2007 with temperatures higher than in the 1990s by 0.24°C. Relative to climatology from all data prior to 1999, the most extreme 2007 temperature anomalies of up to 1°C and higher were observed in the Eurasian and Makarov Basins. The AW warming was associated with a substantial (up to 75–90 m) shoaling of the upper AW boundary in the central Arctic Ocean and weakening of the Eurasian Basin upper-ocean stratification. Taken together, these observations suggest that the changes in the Eurasian Basin facilitated greater upward transfer of AW heat to the ocean surface layer. Available limited observations and results from a 1D ocean column model support this surmised upward spread of AW heat through the Eurasian Basin halocline. Experiments with a 3D coupled ice–ocean model in turn suggest a loss of 28–35 cm of ice thickness after 50 yr in response to the 0.5 W m−2 increase in AW ocean heat flux suggested by the 1D model. This amount of thinning is comparable to the 29 cm of ice thickness loss due to local atmospheric thermodynamic forcing estimated from observations of fast-ice thickness decline. The implication is that AW warming helped precondition the polar ice cap for the extreme ice loss observed in recent years.
    Description: This study was supported by JAMSTEC (IP and VI), NOAA (IP, VI, and ID), NSF (IP,VA,VI, ID, JT, andMS),NASA(IP andVI), BMBF (ID), and UK NERC (SB) grants.
    Keywords: Arctic ; Forcing ; Temperature ; Sea ice ; Heating ; Coupled models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 889–910, doi:10.1175/2010JPO4496.1.
    Description: This paper examines interaction between a barotropic point vortex and a steplike topography with a bay-shaped shelf. The interaction is governed by two mechanisms: propagation of topographic Rossby waves and advection by the forcing vortex. Topographic waves are supported by the potential vorticity (PV) jump across the topography and propagate along the step only in one direction, having higher PV on the right. Near one side boundary of the bay, which is in the wave propagation direction and has a narrow shelf, waves are blocked by the boundary, inducing strong out-of-bay transport in the form of detached crests. The wave–boundary interaction as well as out-of-bay transport is strengthened as the minimum shelf width is decreased. The two control mechanisms are related differently in anticyclone- and cyclone-induced interactions. In anticyclone-induced interactions, the PV front deformations are moved in opposite directions by the point vortex and topographic waves; a topographic cyclone forms out of the balance between the two opposing mechanisms and is advected by the forcing vortex into the deep ocean. In cyclone-induced interactions, the PV front deformations are moved in the same direction by the two mechanisms; a topographic cyclone forms out of the wave–boundary interaction but is confined to the coast. Therefore, anticyclonic vortices are more capable of driving water off the topography. The anticyclone-induced transport is enhanced for smaller vortex–step distance or smaller topography when the vortex advection is relatively strong compared to the wave propagation mechanism.
    Description: Y. Zhang acknowledges the support of theMIT-WHOI Joint Programin Physical Oceanography, NSF OCE-9901654 and OCE-0451086. J. Pedlosky acknowledges the support of NSF OCE- 9901654 and OCE-0451086.
    Keywords: Transport ; Eddies ; Barotropic flow ; Topographic effects ; Vortices ; Currents ; Potential vorticity ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 24 (2011): 4844–4858, doi:10.1175/2011JCLI4130.1.
    Description: The factors that determine the heat transport and overturning circulation in marginal seas subject to wind forcing and heat loss to the atmosphere are explored using a combination of a high-resolution ocean circulation model and a simple conceptual model. The study is motivated by the exchange between the subpolar North Atlantic Ocean and the Nordic Seas, a region that is of central importance to the oceanic thermohaline circulation. It is shown that mesoscale eddies formed in the marginal sea play a major role in determining the mean meridional heat transport and meridional overturning circulation across the sill. The balance between the oceanic eddy heat flux and atmospheric cooling, as characterized by a nondimensional number, is shown to be the primary factor in determining the properties of the exchange. Results from a series of eddy-resolving primitive equation model calculations for the meridional heat transport, overturning circulation, density of convective waters, and density of exported waters compare well with predictions from the conceptual model over a wide range of parameter space. Scaling and model results indicate that wind effects are small and the mean exchange is primarily buoyancy forced. These results imply that one must accurately resolve or parameterize eddy fluxes in order to properly represent the mean exchange between the North Atlantic and the Nordic Seas, and thus between the Nordic Seas and the atmosphere, in climate models.
    Description: This study was supported by the National Science Foundation under Grants OCE-0726339 and OCE-0850416.
    Keywords: Eddies ; Forcing ; Meridional overturning circulation ; Transport ; North Atlantic Ocean ; Seas/gulfs/bays
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1741–1755, doi:10.1175/2011JPO4437.1.
    Description: An in-depth data analysis was conducted to understand the occurrence of a strong sea surface temperature (SST) front in the central Bay of Bengal before the formation of Cyclone Nargis in April 2008. Nargis changed its course after encountering the front and tracked along the front until making landfall. One unique feature of this SST front was its coupling with high sea surface height anomalies (SSHAs), which is unusual for a basin where SST is normally uncorrelated with SSHA. The high SSHAs were associated with downwelling Rossby waves, and the interaction between downwelling and surface fresh waters was a key mechanism to account for the observed SST–SSHA coupling. The near-surface salinity field in the bay is characterized by strong stratification and a pronounced horizontal gradient, with low salinity in the northeast. During the passage of downwelling Rossby waves, freshening of the surface layer was observed when surface velocities were southwestward. Horizontal convergence of freshwater associated with downwelling Rossby waves increased the buoyancy of the upper layer and caused the mixed layer to shoal to within a few meters of the surface. Surface heating trapped in the thin mixed layer caused the fresh layer to warm, whereas the increase in buoyancy from low-salinity waters enhanced the high SSHA associated with Rossby waves. Thus, high SST coincided with high SSHA. The dominant role of salinity in controlling high SSHA suggests that caution should be exercised when computing hurricane heat potential in the bay from SSHA. This situation is different from most tropical oceans, where temperature has the dominant effect on SSHA.
    Description: This work was supported by the NOAA/Office of Climate Observation (OCO) program.
    Keywords: Rossby waves ; Sea surface temperature ; Sea/ocean surface
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1874–1893, doi:10.1175/2011JPO4604.1.
    Description: A two-dimensional cross-shelf model of the New England continental shelf and slope is used to investigate the mean cross-shelf and vertical circulation at the shelf break and their seasonal variation. The model temperature and salinity fields are nudged toward climatology. Annual and seasonal mean wind stresses are applied on the surface in separate equilibrium simulations. The along-shelf pressure gradient force associated with the along-shelf sea level tilt is tuned to match the modeled and observed depth-averaged along-shelf velocity. Steady-state model solutions show strong seasonal variation in along-shelf and cross-shelf velocity, with the strongest along-shelf jet and interior onshore flow in winter, consistent with observations. Along-shelf sea level tilt associated with the tuned along-shelf pressure gradient increases shoreward because of decreasing water depth. The along-shelf sea level tilt varies seasonally with the wind and is the strongest in winter and weakest in summer. A persistent upwelling is generated at the shelf break with a maximum strength of 2 m day−1 at 50-m depth in winter. The modeled shelfbreak upwelling differs from the traditional view in that most of the upwelled water is from the upper continental slope instead of from the shelf in the form of a detached bottom boundary layer.
    Description: WGZ was supported by the Woods Hole Oceanographic Institution postdoctoral scholarship program. GGGandDJMwere supported byONRGrant N-00014- 06-1-0739.
    Keywords: Ocean circulation ; North Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1182–1208, doi:10.1175/2010JPO4564.1.
    Description: The authors use data collected by a line of tall current meter moorings deployed across the axis of the Kuroshio Extension (KE) jet at the location of maximum time-mean eddy kinetic energy to characterize the mean jet structure, the eddy variability, and the nature of eddy–mean flow interactions observed during the Kuroshio Extension System Study (KESS). A picture of the 2-yr record mean jet structure is presented in both geographical and stream coordinates, revealing important contrasts in jet strength, width, vertical structure, and flanking recirculation structure. Eddy variability observed is discussed in the context of some of its various sources: jet meandering, rings, waves, and jet instability. Finally, various scenarios for eddy–mean flow interaction consistent with the observations are explored. It is shown that the observed cross-jet distributions of Reynolds stresses at the KESS location are consistent with wave radiation away from the jet, with the sense of the eddy feedback effect on the mean consistent with eddy driving of the observed recirculations. The authors consider these results in the context of a broader description of eddy–mean flow interactions in the larger KE region using KESS data in combination with in situ measurements from past programs in the region and satellite altimetry. This demonstrates important consistencies in the along-stream development of time-mean and eddy properties in the KE with features of an idealized model of a western boundary current (WBC) jet used to understand the nature and importance of eddy–mean flow interactions in WBC jet systems.
    Description: This work was supported by National Science Foundation funding for the KESS program under Grants OCE-0220161 (SW, NGH, and SRJ), OCE- 0825550 (SW), OCE-0850744 (NGH), and OCE-0849808 (SRJ). SW was also supported by the MIT Presidential Fellowship. The financial assistance of the Houghton Fund, the MIT Student Assistance Fund, and WHOI Academic Programs is also gratefully acknowledged.
    Keywords: Eddies ; Boundary currents ; Jets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 6221–6233, doi:10.1175/2010JCLI3402.1.
    Description: Enhanced decadal variability in sea surface temperature (SST) centered on the Kuroshio Extension (KE) has been found in the Community Climate System Model version 3 (CCSM3) as well as in other coupled climate models. This decadal peak has higher energy than is found in nature, almost twice as large in some cases. While previous analyses have concentrated on the mechanisms for such decadal variability in coupled models, an analysis of the causes of excessive SST response to changes in wind stress has been missing. Here, a detailed comparison of the relationships between interannual changes in SST and sea surface height (SSH) as a proxy for geostrophic surface currents in the region in both CCSM3 and observations, and how these relationships depend on the mean ocean circulation, temperature, and salinity, is made. We use observationally based climatological temperature and salinity fields as well as satellite-based SSH and SST fields for comparison. The primary cause for the excessive SST variability is the coincidence of the mean KE with the region of largest SST gradients in the model. In observations, these two regions are separated by almost 500 km. In addition, the too shallow surface oceanic mixed layer in March north of the KE in the subarctic Pacific contributes to the biases. These biases are not unique to CCSM3 and suggest that mean biases in current, temperature, and salinity structures in separated western boundary current regions can exert a large influence on the size of modeled decadal SST variability.
    Description: Support for L.T. was provided by the NASA sponsored Ocean Surface Topography Science Team, under Contract 1267196 with the University of Washington, administered by the Jet Propulsion Laboratory. Support for Y.-O. K. comes from the NOAA Office of Global Programs (grant to C. Deser and Y.-O. Kwon) and the WHOI Heyman fellowship.
    Keywords: Bias ; Coupled models ; Decadal variability ; Ocean models ; Sea surface temperature ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 241-246, doi:10.1175/2010JPO4557.1.
    Description: The vertical dispersion of a tracer released on a density surface near 1500-m depth in the Antarctic Circumpolar Current west of Drake Passage indicates that the diapycnal diffusivity, averaged over 1 yr and over tens of thousands of square kilometers, is (1.3 ± 0.2) × 10−5 m2 s−1. Diapycnal diffusivity estimated from turbulent kinetic energy dissipation measurements about the area occupied by the tracer in austral summer 2010 was somewhat less, but still within a factor of 2, at (0.75 ± 0.07) × 10−5 m2 s−1. Turbulent diapycnal mixing of this intensity is characteristic of the midlatitude ocean interior, where the energy for mixing is believed to derive from internal wave breaking. Indeed, despite the frequent and intense atmospheric forcing experienced by the Southern Ocean, the amplitude of finescale velocity shear sampled about the tracer was similar to background amplitudes in the midlatitude ocean, with levels elevated to only 20%–50% above the Garrett–Munk reference spectrum. These results add to a long line of evidence that diapycnal mixing in the interior middepth ocean is weak and is likely too small to dictate the middepth meridional overturning circulation of the ocean.
    Description: This material is based upon work supported by the National Science Foundation Grants OCE-0622825,OCE-0622670, OCE-0622630, and OCE-0623177.
    Keywords: Diapycnal mixing ; Currents ; Antarctica ; Ocean circulation ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 24 (2011): 2429–2449, doi:10.1175/2010JCLI3997.1.
    Description: Continuous estimates of the oceanic meridional heat transport in the Atlantic are derived from the Rapid Climate Change–Meridional Overturning Circulation (MOC) and Heatflux Array (RAPID–MOCHA) observing system deployed along 26.5°N, for the period from April 2004 to October 2007. The basinwide meridional heat transport (MHT) is derived by combining temperature transports (relative to a common reference) from 1) the Gulf Stream in the Straits of Florida; 2) the western boundary region offshore of Abaco, Bahamas; 3) the Ekman layer [derived from Quick Scatterometer (QuikSCAT) wind stresses]; and 4) the interior ocean monitored by “endpoint” dynamic height moorings. The interior eddy heat transport arising from spatial covariance of the velocity and temperature fields is estimated independently from repeat hydrographic and expendable bathythermograph (XBT) sections and can also be approximated by the array. The results for the 3.5 yr of data thus far available show a mean MHT of 1.33 ± 0.40 PW for 10-day-averaged estimates, on which time scale a basinwide mass balance can be reasonably assumed. The associated MOC strength and variability is 18.5 ± 4.9 Sv (1 Sv ≡ 106 m3 s−1). The continuous heat transport estimates range from a minimum of 0.2 to a maximum of 2.5 PW, with approximately half of the variance caused by Ekman transport changes and half caused by changes in the geostrophic circulation. The data suggest a seasonal cycle of the MHT with a maximum in summer (July–September) and minimum in late winter (March–April), with an annual range of 0.6 PW. A breakdown of the MHT into “overturning” and “gyre” components shows that the overturning component carries 88% of the total heat transport. The overall uncertainty of the annual mean MHT for the 3.5-yr record is 0.14 PW or about 10% of the mean value.
    Description: This research was supported by the U.S. National Science Foundation under Awards OCE0241438 and OCE0728108, by the U.K. RAPID Programme (RAPID Grant NER/T/S/2002/00481), and by the U.S. National Oceanic and Atmospheric Administration, as part of its Western Boundary Time Series Program.
    Keywords: Atlantic Ocean ; Meridonial overturning circulation ; Sea surface temperature ; Transport ; Anomalies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 789-801, doi:10.1175/2009JPO4039.1.
    Description: The issue of internal wave–mesoscale eddy interactions is revisited. Previous observational work identified the mesoscale eddy field as a possible source of internal wave energy. Characterization of the coupling as a viscous process provides a smaller horizontal transfer coefficient than previously obtained, with vh 50 m2 s−1 in contrast to νh 200–400 m2 s−1, and a vertical transfer coefficient bounded away from zero, with νυ + (f2/N2)Kh 2.5 ± 0.3 × 10−3 m2 s−1 in contrast to νυ + (f2/N2)Kh = 0 ± 2 × 10−2 m2 s−1. Current meter data from the Local Dynamics Experiment of the PolyMode field program indicate mesoscale eddy–internal wave coupling through horizontal interactions (i) is a significant sink of eddy energy and (ii) plays an O(1) role in the energy budget of the internal wave field.
    Keywords: Eddies ; Internal waves ; Mesoscale processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 25 (2008): 2091-2105, doi:10.1175/2008JTECHO587.1.
    Description: An automated, easily deployed Ice-Tethered Profiler (ITP) instrument system, developed for deployment on perennial sea ice in the polar oceans to measure changes in upper ocean water properties in all seasons, is described, and representative data from prototype instruments are presented. The ITP instrument consists of three components: a surface subsystem that sits atop an ice floe; a weighted, plastic-jacketed wire-rope tether of arbitrary length (up to 800 m) suspended from the surface element; and an instrumented underwater unit that employs a traction drive to profile up and down the wire tether. ITPs profile the water column at a programmed sampling interval; after each profile, the underwater unit transfers two files holding oceanographic and engineering data to the surface unit using an inductive modem and from the surface instrument to a shore-based data server using an Iridium transmitter. The surface instrument also accumulates battery voltage readings, buoy temperature data, and locations from a GPS receiver at a specified interval (usually every hour) and transmits those data daily. Oceanographic and engineering data are processed, displayed, and made available in near–real time (available online at http://www.whoi.edu/itp). Six ITPs were deployed in the Arctic Ocean between 2004 and 2006 in the Beaufort gyre with various programmed sampling schedules of two to six one-way traverses per day between 10- and 750–760-m depth, providing more than 5300 profiles in all seasons (as of July 2007). The acquired CTD profile data document interesting spatial variations in the major water masses of the Canada Basin, show the double-diffusive thermohaline staircase that lies above the warm, salty Atlantic layer, measure seasonal surface mixed layer deepening, and document several mesoscale eddies. Augmenting the systems already deployed and to replace expiring systems, an international array of more than one dozen ITPs will be deployed as part of the Arctic Observing Network during the International Polar Year (IPY) period (2007–08) holding promise for more valuable real-time upper ocean observations for operational needs, to support studies of ocean processes, and to facilitate numerical model initialization and validation.
    Description: Initial development of the ITP concept was supported by the Cecil H. and Ida M. Green Technology Innovation Program. Funding for construction and deployment of the prototype ITPs was provided by the National Science Foundation Oceanographic Technology and Interdisciplinary Coordination (OTIC) Program and Office of Polar Programs (OPP) under Grant OCE-0324233. Continued support has been provided by the OPP Arctic Sciences Section under Awards ARC-0519899 and ARC-0631951, and internal WHOI funding.
    Keywords: Profilers ; Sea ice ; Instrumentation/sensors ; Arctic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1486–1500, doi:10.1175/2007JPO3767.1.
    Description: Fits of an annual harmonic to depth-average along-shelf current time series longer than 200 days from 27 sites over the Middle Atlantic Bight (MAB) continental shelf have amplitudes of a few centimeters per second. These seasonal variations are forced by seasonal variations in the wind stress and the cross-shelf density gradient. The component of wind stress that drives the along-shelf flow over most of the MAB mid- and outer shelf is oriented northeast–southwest, perpendicular to the major axis of the seasonal variation in the wind stress. Consequently, there is not a significant seasonal variation in the wind-driven along-shelf flow, except over the southern MAB shelf and the inner shelf of New England where the wind stress components forcing the along-shelf flow are north–south and east–west, respectively. The seasonal variation in the residual along-shelf flow, after removing the wind-driven component, has an amplitude of a few centimeters per second with maximum southwestward flow in spring onshore of the 60-m isobath and autumn offshore of the 60-m isobath. The spring maximum onshore of the 60-m isobath is consistent with the maximum river discharges in spring enhancing cross-shelf salinity gradients. The autumn maximum offshore of the 60-m isobath and a steady phase increase with water depth offshore of Cape Cod are both consistent with the seasonal variation in the cross-shelf temperature gradient associated with the development and destruction of a near-bottom pool of cold water over the mid and outer shelf (“cold pool”) due to seasonal variations in surface heat flux and wind stress.
    Description: This research was funded by the Ocean Sciences Division of the National Science Foundation under Grants OCE-820773, OCE-841292, and OCE- 848961.
    Keywords: Seasonal variability ; Ocean circulation ; Continental shelf ; Wind stress ; Density currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1091-1106, doi:10.1175/2007JPO3805.1.
    Description: A model of deep ocean circulation driven by turbulent mixing is produced in a long, rectangular laboratory tank. The salinity difference is substituted for the thermal difference between tropical and polar regions. Freshwater gently flows in at the top of one end, dense water enters at the same rate at the top of the other end, and an overflow in the middle removes the same amount of surface water as is pumped in. Mixing is provided by a rod extending from top to bottom of the tank and traveling back and forth at constant speed with Reynolds numbers 〉500. A stratified upper layer (“thermocline”) deepens from the mixing and spreads across the entire tank. Simultaneously, a turbulent plume (“deep ocean overflow”) from a dense-water source descends through the layer and supplies bottom water, which spreads over the entire tank floor and rises into the upper layer to arrest the upper-layer deepening. Data are taken over a wide range of parameters and compared to scaling theory, energetic considerations, and simple models of turbulently mixed fluid. There is approximate agreement with a simple theory for Reynolds number 〉1000 in experiments with a tank depth less than the thermocline depth. A simple argument shows that mixing and plume potential energy flux rates are equal in magnitude, and it is suggested that the same is approximately true for the ocean.
    Description: The research was supported by the Ocean Climate Change Institute of Woods Hole Oceanographic Institution.
    Keywords: Ocean circulation ; Mixing ; In situ observations ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 2556-2574, doi:10.1175/2008JPO3666.1.
    Description: Vertical profiles of horizontal velocity obtained during the Mid-Ocean Dynamics Experiment (MODE) provided the first published estimates of the high vertical wavenumber structure of horizontal velocity. The data were interpreted as being representative of the background internal wave field, and thus, despite some evidence of excess downward energy propagation associated with coherent near-inertial features that was interpreted in terms of atmospheric generation, these data provided the basis for a revision to the Garrett and Munk spectral model. These data are reinterpreted through the lens of 30 years of research. Rather than representing the background wave field, atmospheric generation, or even near-inertial wave trapping, the coherent high wavenumber features are characteristic of internal wave capture in a mesoscale strain field. Wave capture represents a generalization of critical layer events for flows lacking the spatial symmetry inherent in a parallel shear flow or isolated vortex.
    Description: Salary support for this analysis was provided by Woods Hole Oceanographic Institution bridge support funds.
    Keywords: Eddies ; Ocean dynamics ; Internal waves ; Ocean variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 20 (2007): 2760-2768, doi:10.1175/JCLI4138a.1
    Description: The correlation between parameters characterizing observed westerly wind bursts (WWBs) in the equatorial Pacific and the large-scale SST is analyzed using singular value decomposition. The WWB parameters include the amplitude, location, scale, and probability of occurrence for a given SST distribution rather than the wind stress itself. This approach therefore allows for a nonlinear relationship between the SST and the wind signal of the WWBs. It is found that about half of the variance of the WWB parameters is explained by only two large-scale SST modes. The first mode represents a developed El Niño event, while the second mode represents the seasonal cycle. More specifically, the central longitude of WWBs, their longitudinal extent, and their probability seem to be determined to a significant degree by the ENSO-driven signal. The amplitude of the WWBs is found to be strongly influenced by the phase of the seasonal cycle. It is concluded that the WWBs, while partially stochastic, seem an inherent part of the large-scale deterministic ENSO dynamics. Implications for ENSO predictability and prediction are discussed.
    Description: Eli Tziperman is supported by the U.S. National Science Foundation Climate Dynamics Program Grant ATM- 0351123 and by the McDonnell Foundation. Lisan Yu is supported by the NASA Ocean Vector Wind Science Team under JPL Contract 1216955 and NSF Climate Dynamics Grant ATM-0350266.
    Keywords: Sea surface temperature ; Wind bursts ; Tropics ; Pacific Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 20 (2007): 3785–3801, doi:10.1175/JCLI4234.1
    Description: The influences of strong gradients in sea surface temperature on near-surface cross-front winds are explored in a series of idealized numerical modeling experiments. The atmospheric model is the Naval Research Laboratory Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) model, which is fully coupled to the Regional Ocean Modeling System (ROMS) ocean model. A series of idealized, two-dimensional model calculations is carried out in which the wind blows from the warm-to-cold side or the cold-to-warm side of an initially prescribed ocean front. The evolution of the near-surface winds, boundary layer, and thermal structure is described, and the balances in the momentum equation are diagnosed. The changes in surface winds across the front are consistent with previous models and observations, showing a strong positive correlation with the sea surface temperature and boundary layer thickness. The coupling arises mainly as a result of changes in the flux Richardson number across the front, and the strength of the coupling coefficient grows quadratically with the strength of the cross-front geostrophic wind. The acceleration of the winds over warm water results primarily from the rapid change in turbulent mixing and the resulting unbalanced Coriolis force in the vicinity of the front. Much of the loss/gain of momentum perpendicular to the front in the upper and lower boundary layer results from acceleration/deceleration of the flow parallel to the front via the Coriolis term. This mechanism is different from the previously suggested processes of downward mixing of momentum and adjustment to the horizontal pressure gradient, and is active for flows off the equator with sufficiently strong winds. Although the main focus of this work is on the midlatitude, strong wind regime, calculations at low latitudes and with weak winds show that the pressure gradient and turbulent mixing terms dominate the cross-front momentum budget, consistent with previous work.
    Description: This work was supported by the Office of Naval Research Grant N00014-05-1-0300.
    Keywords: Fronts ; Sea surface temperature ; Wind stress ; Coupled models ; Boundary layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1066–1076, doi:10.1175/JPO3032.1.
    Description: A 50-day time series of high-resolution temperature in the deepest layers of the Canada Basin in the Arctic Ocean indicates that the deep Canada Basin is a dynamically active environment, not the quiet, stable basin often assumed. Vertical motions at the near-inertial (tidal) frequency have amplitudes of 10– 20 m. These vertical displacements are surprisingly large considering the downward near-inertial internal wave energy flux typically observed in the Canada Basin. In addition to motion in the internal-wave frequency band, the measurements indicate distinctive subinertial temperature fluctuations, possibly due to intrusions of new water masses.
    Keywords: Arctic ; Ocean dynamics ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1203–1221, doi:10.1175/2007JPO3768.1.
    Description: Analyses of current time series longer than 200 days from 33 sites over the Middle Atlantic Bight continental shelf reveal a consistent mean circulation pattern. The mean depth-averaged flow is equatorward, alongshelf, and increases with increasing water depth from 3 cm s−1 at the 15-m isobath to 10 cm s−1 at the 100-m isobath. The mean cross-shelf circulation exhibits a consistent cross-shelf and vertical structure. The near-surface flow is typically offshore (positive, range −3 to 6 cm s−1). The interior flow is onshore and remarkably constant (−0.2 to −1.4 cm s−1). The near-bottom flow increases linearly with increasing water depth from −1 cm s−1 (onshore) in shallow water to 4 cm s−1 (offshore) at the 250-m isobath over the slope, with the direction reversal near the 50-m isobath. A steady, two-dimensional model (no along-isobath variations in the flow) reproduces the main features of the observed circulation pattern. The depth-averaged alongshelf flow is primarily driven by an alongshelf pressure gradient (sea surface slope of 3.7 × 10−8 increasing to the north) and an opposing mean wind stress that also drives the near-surface offshore flow. The alongshelf pressure gradient accounts for both the increase in the alongshelf flow with water depth and the geostrophic balance onshore flow in the interior. The increase in the near-bottom offshore flow with water depth is due to the change in the relative magnitude of the contributions from the geostrophic onshore flow that dominates in shallow water and the offshore flow driven by the bottom stress that dominates in deeper water.
    Description: This research was funded by Ocean Sciences Division of the National Science Foundation under Grants OCE-820773, OCE-841292, and OCE-848961.
    Keywords: Ocean models ; Ocean circulation ; Continental shelf ; Currents ; In situ observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 133–145, doi:10.1175/2007JPO3782.1.
    Description: Five ice-tethered profilers (ITPs), deployed between 2004 and 2006, have provided detailed potential temperature θ and salinity S profiles from 21 anticyclonic eddy encounters in the central Canada Basin of the Arctic Ocean. The 12–35-m-thick eddies have center depths between 42 and 69 m in the Arctic halocline, and are shallower and less dense than the majority of eddies observed previously in the central Canada Basin. They are characterized by anomalously cold θ and low stratification, and have horizontal scales on the order of, or less than, the Rossby radius of deformation (about 10 km). Maximum azimuthal speeds estimated from dynamic heights (assuming cyclogeostrophic balance) are between 9 and 26 cm s−1, an order of magnitude larger than typical ambient flow speeds in the central basin. Eddy θ–S and potential vorticity properties, as well as horizontal and vertical scales, are consistent with their formation by instability of a surface front at about 80°N that appears in historical CTD and expendable CTD (XCTD) measurements. This would suggest eddy lifetimes longer than 6 months. While the baroclinic instability of boundary currents cannot be ruled out as a generation mechanism, it is less likely since deeper eddies that would originate from the deeper-reaching boundary flows are not observed in the survey region.
    Description: The engineering design work for the ITP was initiated by the Cecil H. and Ida M. Green Technology Innovation Program (an internal program at the Woods Hole Oceanographic Institution). Prototype development and construction were funded jointly by the U.S. National Science Foundation (NSF) Oceanographic Technology and Interdisciplinary Coordination Program and Office of Polar Programs (OPP) under Award OCE-0324233. Continued support has been provided by the OPP Arctic Sciences Section under Award ARC-0519899 and internal WHOI funding.
    Keywords: Arctic ; Eddies ; Profilers ; Stability ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1644-1668, doi:10.1175/2007JPO3829.1.
    Description: The mean structure and time-dependent behavior of the shelfbreak jet along the southern Beaufort Sea, and its ability to transport properties into the basin interior via eddies are explored using high-resolution mooring data and an idealized numerical model. The analysis focuses on springtime, when weakly stratified winter-transformed Pacific water is being advected out of the Chukchi Sea. When winds are weak, the observed jet is bottom trapped with a low potential vorticity core and has maximum mean velocities of O(25 cm s−1) and an eastward transport of 0.42 Sv (1 Sv ≡ 106 m3 s−1). Despite the absence of winds, the current is highly time dependent, with relative vorticity and twisting vorticity often important components of the Ertel potential vorticity. An idealized primitive equation model forced by dense, weakly stratified waters flowing off a shelf produces a mean middepth boundary current similar in structure to that observed at the mooring site. The model boundary current is also highly variable, and produces numerous strong, small anticyclonic eddies that transport the shelf water into the basin interior. Analysis of the energy conversion terms in both the mooring data and the numerical model indicates that the eddies are formed via baroclinic instability of the boundary current. The structure of the eddies in the basin interior compares well with observations from drifting ice platforms. The results suggest that eddies shed from the shelfbreak jet contribute significantly to the offshore flux of heat, salt, and other properties, and are likely important for the ventilation of the halocline in the western Arctic Ocean. Interaction with an anticyclonic basin-scale circulation, meant to represent the Beaufort gyre, enhances the offshore transport of shelf water and results in a loss of mass transport from the shelfbreak jet.
    Description: This study was supported by the National Science Foundation Office of Polar Programs under Grants 0421904 and 035268 (MS), and by the Office of Naval Research Grant N00014-02-1-0317 (RP and PF). Analysis by AJP was supported by the Office of Naval Research under Grant N00014-97-1-0135 and by the National Science Foundation under Grant OPP-9815303.
    Keywords: Arctic ; Eddies ; Transport ; Currents ; Jets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1992-2002, doi:10.1175/2008JPO3669.1.
    Description: This paper extends A. Bracco and J. Pedlosky’s investigation of the eddy-formation mechanism in the eastern Labrador Sea by including a more realistic depiction of the boundary current. The quasigeostrophic model consists of a meridional, coastally trapped current with three vertical layers. The current configuration and topographic domain are chosen to match, as closely as possible, the observations of the boundary current and the varying topographic slope along the West Greenland coast. The role played by the bottom-intensified component of the boundary current on the formation of the Labrador Sea Irminger Rings is explored. Consistent with the earlier study, a short, localized bottom-trapped wave is responsible for most of the perturbation energy growth. However, for the instability to occur in the three-layer model, the deepest component of the boundary current must be sufficiently strong, highlighting the importance of the near-bottom flow. The model is able to reproduce important features of the observed vortices in the eastern Labrador Sea, including the polarity, radius, rate of formation, and vertical structure. At the time of formation, the eddies have a surface signature as well as a strong circulation at depth, possibly allowing for the transport of both surface and near-bottom water from the boundary current into the interior basin. This work also supports the idea that changes in the current structure could be responsible for the observed interannual variability in the number of Irminger Rings formed.
    Description: AB is supported by WHOI unrestricted funds, JP by the National Science Foundation OCE 85108600, and RP by 0450658.
    Keywords: Eddies ; Boundary currents ; Quasigeostrophic models ; North Atlantic ; Coastlines
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1103-1121, doi:10.1175/jpo3041.1.
    Description: The role of mesoscale oceanic eddies is analyzed in a quasigeostrophic coupled ocean–atmosphere model operating at a large Reynolds number. The model dynamics are characterized by decadal variability that involves nonlinear adjustment of the ocean to coherent north–south shifts of the atmosphere. The oceanic eddy effects are diagnosed by the dynamical decomposition method adapted for nonstationary external forcing. The main effects of the eddies are an enhancement of the oceanic eastward jet separating the subpolar and subtropical gyres and a weakening of the gyres. The flow-enhancing effect is due to nonlinear rectification driven by fluctuations of the eddy forcing. This is a nonlocal process involving generation of the eddies by the flow instabilities in the western boundary current and the upstream part of the eastward jet. The eddies are advected by the mean current to the east, where they backscatter into the rectified enhancement of the eastward jet. The gyre-weakening effect, which is due to the time-mean buoyancy component of the eddy forcing, is a result of the baroclinic instability of the westward return currents. The diagnosed eddy forcing is parameterized in a non-eddy-resolving ocean model, as a nonstationary random process, in which the corresponding parameters are derived from the control coupled simulation. The key parameter of the random process—its variance—is related to the large-scale flow baroclinicity index. It is shown that the coupled model with the non-eddy-resolving ocean component and the parameterized eddies correctly simulates climatology and low-frequency variability of the control eddy-resolving coupled solution.
    Description: Funding for this work came from NSF Grants OCE 02-221066 and OCE 03-44094. Additional funding for PB was provided by the U.K. Royal Society Fellowship and by WHOI Grants 27100056 and 52990035.
    Keywords: Ocean dynamics ; Ocean models ; Eddies ; Jets ; Coupled models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1092–1097, doi:10.1175/JPO3045.1.
    Description: The impact of the observed relationship between sea surface temperature and surface wind stress on baroclinic instability in the ocean is explored using linear theory and a nonlinear model. A simple parameterization of the influence of sea surface temperature on wind stress is used to derive a surface boundary condition for the vertical velocity at the base of the oceanic Ekman layer. This boundary condition is applied to the classic linear, quasigeostrophic stability problem for a uniformly sheared flow originally studied by Eady in the 1940s. The results demonstrate that for a wind directed from warm water toward cold water, the coupling acts to enhance the growth rate, and increase the wavelength, of the most unstable wave. Winds in the opposite sense reduce the growth rate and decrease the wavelength of the most unstable wave. For representative coupling strengths, the change in growth rate can be as large as ±O(50%). This effect is largest for shallow, strongly stratified, low-latitude flows.
    Description: This work was supported by the Office of Naval Research Grant N00014-05-1-0300.
    Keywords: Wind stress ; Instability ; Sea surface temperature ; Baroclinic flows ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 6153–6169, doi:10.1175/JCLI3970.1.
    Description: The present study used a new net surface heat flux (Qnet) product obtained from the Objective Analyzed Air–Sea Fluxes (OAFlux) project and the International Satellite Cloud Climatology Project (ISCCP) to examine two specific issues—one is to which degree Qnet controls seasonal variations of sea surface temperature (SST) in the tropical Atlantic Ocean (20°S–20°N, east of 60°W), and the other is whether the physical relation can serve as a measure to evaluate the physical representation of a heat flux product. To better address the two issues, the study included the analysis of three additional heat flux products: the Southampton Oceanographic Centre (SOC) heat flux analysis based on ship reports, and the model fluxes from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis and the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). The study also uses the monthly subsurface temperature fields from the World Ocean Atlas to help analyze the seasonal changes of the mixed layer depth (hMLD). The study showed that the tropical Atlantic sector could be divided into two regimes based on the influence level of Qnet. SST variability poleward of 5°S and 10°N is dominated by the annual cycle of Qnet. In these regions the warming (cooling) of the sea surface is highly correlated with the increased (decreased) Qnet confined in a relatively shallow (deep) hMLD. The seasonal evolution of SST variability is well predicted by simply relating the local Qnet with a variable hMLD. On the other hand, the influence of Qnet diminishes in the deep Tropics within 5°S and 10°N and ocean dynamic processes play a dominant role. The dynamics-induced changes in SST are most evident along the two belts, one of which is located on the equator and the other off the equator at about 3°N in the west, which tilts to about 10°N near the northwestern African coast. The study also showed that if the degree of consistency between the correlation relationships of Qnet, hMLD, and SST variability serves as a measure of the quality of the Qnet product, then the Qnet from OAFlux + ISCCP and ERA-40 are most physically representative, followed by SOC. The NCEP–NCAR Qnet is least representative. It should be noted that the Qnet from OAFlux + ISCCP and ERA-40 have a quite different annual mean pattern. OAFlux + ISCCP agrees with SOC in that the tropical Atlantic sector gains heat from the atmosphere on the annual mean basis, where the ERA-40 and the NCEP–NCAR model reanalyses indicate that positive Qnet occurs only in the narrow equatorial band and in the eastern portion of the tropical basin. Nevertheless, seasonal variances of the Qnet from OAFlux + ISCCP and ERA-40 are very similar once the respective mean is removed, which explains why the two agree with each other in accounting for the seasonal variability of SST. In summary, the study suggests that an accurate estimation of surface heat flux is crucially important for understanding and predicting SST fluctuations in the tropical Atlantic Ocean. It also suggests that future emphasis on improving the surface heat flux estimation should be placed more on reducing the mean bias.
    Description: This study is support by the NOAA CLIVAR Atlantic under Grant NA06GP0453 and NOAA Climate observations and Climate Change and Data Detection under Grant NA17RJ1223.
    Keywords: Sea surface temperature ; Surface fluxes ; Seasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 1004-1017, doi:10.1175/2009JPO4300.1.
    Description: Sea surface temperature variations along the entire U.S. East Coast from 1875 to 2007 are characterized using a collection of historical observations from lighthouses and lightships combined with recent buoy and shore-based measurements. Long-term coastal temperature trends are warming in the Gulf of Maine [1.0° ± 0.3°C (100 yr)−1] and Middle Atlantic Bight [0.7° ± 0.3°C (100 yr)−1], whereas trends are weakly cooling or not significant in the South Atlantic Bight [−0.1° ± 0.3°C (100 yr)−1] and off Florida [−0.3° ± 0.2°C (100 yr)−1]. Over the last century, temperatures along the northeastern U.S. coast have warmed at a rate 1.8–2.5 times the regional atmospheric temperature trend but are comparable to warming rates for the Arctic and Labrador, the source of coastal ocean waters north of Cape Hatteras (36°N). South of Cape Hatteras, coastal ocean temperature trends match the regional atmospheric temperature trend. The observations and a simple model show that along-shelf transport, associated with the mean coastal current system running from Labrador to Cape Hatteras, is the mechanism controlling long-term temperature changes for this region and not the local air–sea exchange of heat.
    Description: This work was supported by NSF Grant OCE-0220773.
    Keywords: Sea surface temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 26 (2009): 1867-1890, doi:10.1175/2009JTECHO667.1.
    Description: The accuracies of the meteorological sensors (air temperature, relative humidity, barometric pressure, near-surface temperature, longwave and shortwave radiation, and wind speed and direction) that compose the Improved Meteorological (IMET) system used on buoys at long-term ocean time series sites known as ocean reference stations (ORS) are analyzed to determine their absolute error characteristics. The predicted errors are compared to in situ measurement discrepancies and other observations (direct flux shipboard sensors) to confirm the predictions. The meteorological errors are then propagated through bulk flux formulas and the Coupled Ocean–Atmosphere Response Experiment (COARE) algorithm to give predicted errors for the heat flux components, the freshwater flux, and the momentum flux. Absolute errors are presented for three frequency bands [instantaneous (1-min sampling), diurnal, and annual]. The absolute uncertainty in the annually averaged net heat flux is found to be 8 W m−2 for conditions similar to the current ORS deployments in the subtropics.
    Description: Support for the buoy deployments and the analysis from the NOAA Climate Observation Program is greatly appreciated (Grants NA17RJ1223 and NA17RJ1224).
    Keywords: Sensors ; Subtropics ; Surface observations ; Sea surface temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 1441–1457, doi:10.1175/2010JPO4293.1.
    Description: Based on the classical Ekman layer theory, a simple analytical solution of the steady flow induced by a stationary hurricane in a homogenous ocean is discussed. The model consists of flow converging in an inward spiral in the deeper layer and diverging in the upper layer. The simple analytical model indicates that both the upwelling flux and the horizontal transport increase linearly with increasing radius of maximum winds. Furthermore, they both have a parabolic relationship with the maximum wind speed. The Coriolis parameter also affects the upwelling flux: the response to a hurricane is stronger at low latitudes than that at middle latitudes. Numerical solutions based on a regional version of an ocean general circulation model are similar to the primary results obtained through the analytical solution. Thus, the simplifications made in formulating the analytical solution are reasonable. Although the analytical solution in this paper is sought for a rather idealized ocean, it can help to make results from the more complicated numerical model understandable. These conceptual models provide a theoretical limit structure of the oceanic response to a moving hurricane over a stratified ocean.
    Description: ZML was supported by CAS (kzcx2-yw-226, SQ200813), NSFC under Grants 40906009 and 40776008, and Dr. Xiaodong Shang through ‘‘100 Talents Program’’ of CAS.
    Keywords: Hurricanes ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1551-1573, doi:10.1175/2008JPO4152.1.
    Description: A conceptually simple model is presented for predicting the amplitude and periodicity of eddies generated by a steady poleward outflow in a 1½-layer β-plane formulation. The prediction model is rooted in linear quasigeostrophic dynamics but is capable of predicting the amplitude of the β plume generated by outflows in the nonlinear range. Oscillations in the plume amplitude are seen to represent a near-zero group velocity response to an adjustment process that can be traced back to linear dynamics. When the plume-amplitude oscillations become large enough so that the coherent β plume is replaced by a robust eddy field, the eddy amplitude is still constrained by the plume-amplitude prediction model. The eddy periodicity remains close to that of the predictable, near-zero group-velocity linear oscillations. Striking similarities between the patterns of variability in the model and observations south of Indonesia’s Lombok Strait suggest that the processes investigated in this study may play an important role in the generation of the observed eddy field of the Indo-Australian Basin.
    Description: This work was completed at the Woods Hole Oceanographic Institution while TS Durland was supported by the Ocean and Climate Change Institute. MA Spall was supported by NSF Grant OCE-0423975 and J Pedlosky by NSF Grant OCE-0451086. TS Durland acknowledges additional report preparation support from NASA Grant NNG05GN98G.
    Keywords: Eddies ; Intraseasonal variability ; Nonlinear models ; Shallow-water equations ; Plumes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 2942-2956, doi:10.1175/2009JPO4041.1.
    Description: Recent work by S. Lentz et al. documents offshore transport in the inner shelf due to a wave-driven return flow associated with the Hasselmann wave stress (the Stokes–Coriolis force). This analysis is extended using observations from the central Oregon coast to identify the wave-driven return flow present and quantify the potential bias of wind-driven across-shelf exchange by unresolved wave-driven circulation. Using acoustic Doppler current profiler (ADCP) measurements at six stations, each in water depths of 13–15 m, observed depth-averaged, across-shelf velocities were generally correlated with theoretical estimates of the proposed return flow. During times of minimal wind forcing, across-shelf velocity profiles were vertically sheared, with stronger velocities near the top of the measured portion of the water column, and increased in magnitude with increasing significant wave height, consistent with circulation due to the Hasselmann wave stress. Yet velocity magnitudes and vertical shears were stronger than that predicted by linear wave theory, and more similar to the stratified “summer” velocity profiles described by S. Lentz et al. Additionally, substantial temporal and spatial variability of the wave-driven return flow was found, potentially due to changing wind and wave conditions as well as local bathymetric variability. Despite the wave-driven circulation found, subtracting estimates of the return flow from the observed across-shelf velocity had no significant effect on estimates of the across-shelf exchange due to along-shelf wind forcing at these water depths along the Oregon coast during summer.
    Description: This work was performed with the Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), funded primarily by the Gordon and Betty Moore Foundation and David and Lucile Packard Foundation. SL acknowledges support from NSF Ocean Science Grant #OCE-0548961. AK acknowledges support from the WHOI Coastal Ocean Institute Fellowship.
    Keywords: Waves, oceanic ; Ekman pumping/transport ; Coastlines ; Ocean circulation ; Gravity waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...