ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(7), (2020): 1839-1852, https://doi.org/10.1175/JPO-D-19-0209.1.
    Description: The Lagrangian characteristics of the surface flow field arising when an idealized, anticyclonic, mesoscale, isolated deep-ocean eddy collides with continental slope and shelf topography are explored. In addition to fluid parcel trajectories, we consider the trajectories of biological organisms that are able to navigate and swim, and for which shallow water is a destination. Of particular interest is the movement of organisms initially located in the offshore eddy, the manner in which the eddy influences the ability of the organisms to reach the shelf break, and the spatial and temporal distributions of organisms that do so. For nonswimmers or very slow swimmers, the organisms arrive at the shelf break in distinct pulses, with different pulses occurring at different locations along the shelf break. This phenomenon is closely related to the episodic formation of trailing vortices that are formed after the eddy collides with the continental slope, turns, and travels parallel to the coast. Analysis based on finite-time Lyapunov exponents reveals initial locations of all successful trajectories reaching the shoreline, and provides maps of the transport pathways showing that much of the cross-shelf-break transport occurs in the lee of the eddy as it moves parallel to the shore. The same analysis shows that the onshore transport is interrupted after a trailing vortex detaches. As the swimming speeds are increased, the organisms are influenced less by the eddy and tend to show up en mass and in a single pulse.
    Description: IR and LP were supported by National Science Foundation (NSF) Grant OCE-1558806. DC was supported by NSF U.S. National Science Foundation’s Physical Oceanography program through Grants OCE-1059632 and OCE-1433953 as well as the Academic Programs Office, Woods Hole Oceanographic Institution. We acknowledge high-performance computing support from Yellowstone (http://n2t.net/ark:/85065/d7wd3xhc) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation.
    Keywords: Ocean ; Eddies ; Nonlinear dynamics ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...