ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Molecular  (46)
  • American Association for the Advancement of Science (AAAS)  (46)
  • American Institute of Physics (AIP)
  • 1990-1994  (46)
  • 1992  (46)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (46)
  • American Institute of Physics (AIP)
Years
  • 1990-1994  (46)
Year
  • 1
    Publication Date: 1992-11-13
    Description: When glycine418 of Escherichia coli glutathione reductase, which is in a closely packed region of the dimer interface, is replaced with a bulky tryptophan residue, the enzyme becomes highly cooperative (Hill coefficient 1.76) for glutathione binding. The cooperativity is lost when the mutant subunit is hybridized with a wild-type subunit to create a heterodimer. The mutation appears to disrupt atomic packing at the dimer interface, which induces a change of kinetic mechanism. A single mutation in a region of the protein remote from the active site can thus act as a molecular switch to confer cooperativity on an enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scrutton, N S -- Deonarain, M P -- Berry, A -- Perham, R N -- New York, N.Y. -- Science. 1992 Nov 13;258(5085):1140-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439821" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Escherichia coli/*enzymology/genetics ; Genes, Bacterial ; Glutathione/metabolism ; Glutathione Reductase/*chemistry/genetics/metabolism ; Glycine/chemistry ; Kinetics ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; *Mutagenesis, Site-Directed ; NADP/metabolism ; Plasmids ; Protein Multimerization ; Tryptophan/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wertman, K F -- Drubin, D G -- GM42759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Oct 30;258(5083):759-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439782" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/genetics/metabolism ; Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Models, Molecular ; Molecular Structure ; Mutation ; Rabbits ; Tetrahymena/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1992-11-20
    Description: Macrophage colony-stimulating factor (M-CSF) triggers the development of cells of the monocyte-macrophage lineage and has a variety of stimulatory effects on mature cells of this class. The biologically active form of M-CSF is a disulfide-linked dimer that activates an intrinsic tyrosine kinase activity on the M-CSF receptor by inducing dimerization of the receptor molecules. The structure of a recombinant human M-CSF dimer, determined at 2.5 angstroms by x-ray crystallography, contains two bundles of four alpha helices laid end-to-end, with an interchain disulfide bond. Individual monomers of M-CSF show a close structural similarity to the cytokines granulocyte-macrophage colony-stimulating factor and human growth hormone. Both of these cytokines are monomeric in their active form, and their specific receptors lack intrinsic tyrosine kinase activity. The similarity of these structures suggests that the receptor binding determinants for all three cytokines may be similar.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pandit, J -- Bohm, A -- Jancarik, J -- Halenbeck, R -- Koths, K -- Kim, S H -- New York, N.Y. -- Science. 1992 Nov 20;258(5086):1358-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1455231" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography ; Disulfides ; Granulocyte-Macrophage Colony-Stimulating Factor/ultrastructure ; Growth Hormone/chemistry ; Macrophage Colony-Stimulating Factor/*ultrastructure ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/ultrastructure ; Sequence Homology, Amino Acid ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-01-24
    Description: The c-Myc oncoprotein belongs to a family of proteins whose DNA binding domains contain a basic region-helix-loop-helix (bHLH) motif. Systematic mutagenesis of c-Myc revealed that dimerized bHLH motifs formed a parallel four-helix bundle with the amino termini of helices 1 and 2 directed toward the inner and outer nucleotides of the DNA binding site, respectively. Both the basic region and the carboxyl-terminal end of the loop contributed to DNA binding specificity. The DNA binding domain of c-Myc may therefore be structurally similar to that of restriction endonuclease Eco RI.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halazonetis, T D -- Kandil, A N -- New York, N.Y. -- Science. 1992 Jan 24;255(5043):464-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Research, Merck Sharp and Dohme Research Laboratories, West Point, PA 19486.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1734524" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; DNA-Binding Proteins/*chemistry ; Deoxyribonuclease EcoRI/*chemistry ; Humans ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Conformation ; Proto-Oncogene Proteins c-myc/*chemistry ; Sequence Alignment ; Transcription Factors/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-03-06
    Description: Trypsin (Tr) and chymotrypsin (Ch) have similar tertiary structures, yet Tr cleaves peptides at arginine and lysine residues and Ch prefers large hydrophobic residues. Although replacement of the S1 binding site of Tr with the analogous residues of Ch is sufficient to transfer Ch specificity for ester hydrolysis, specificity for amide hydrolysis is not transferred. Trypsin is converted to a Ch-like protease when the binding pocket alterations are further modified by exchange of the Ch surface loops 185 through 188 and 221 through 225 for the analogous Tr loops. These loops are not structural components of either the S1 binding site or the extended substrate binding sites. This mutant enzyme is equivalent to Ch in its catalytic rate, but its substrate binding is impaired. Like Ch, this mutant utilizes extended substrate binding to accelerate catalysis, and substrate discrimination occurs during the acylation step rather than in substrate binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hedstrom, L -- Szilagyi, L -- Rutter, W J -- DK21344/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1992 Mar 6;255(5049):1249-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hormone Research Institute, University of California, San Francisco 94143-0534.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1546324" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chymotrypsin/*chemistry/metabolism ; Hydrolysis ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Mutagenesis, Site-Directed ; Protein Conformation ; Substrate Specificity ; Trypsin/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1992-07-17
    Description: The transforming growth factors-beta (TGF-beta 1 through -beta 5) are a family of homodimeric cytokines that regulate proliferation and function in many cell types. Family members have 66 to 80% sequence identity and nine strictly conserved cysteines. A crystal structure of a member of this family, TGF-beta 2, has been determined at 2.1 angstrom (A) resolution and refined to an R factor of 0.172. The monomer lacks a well-defined hydrophobic core and displays an unusual elongated nonglobular fold with dimensions of approximately 60 A by 20 A by 15 A. Eight cysteines form four intrachain disulfide bonds, which are clustered in a core region forming a network complementary to the network of hydrogen bonds. The dimer is stabilized by the ninth cysteine, which forms an interchain disulfide bond, and by two identical hydrophobic interfaces. Sequence profile analysis of other members of the TGF-beta superfamily, including the activins, inhibins, and several developmental factors, imply that they also adopt the TGF-beta fold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Daopin, S -- Piez, K A -- Ogawa, Y -- Davies, D R -- New York, N.Y. -- Science. 1992 Jul 17;257(5068):369-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1631557" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography ; Drosophila ; Humans ; Mice ; Models, Molecular ; Molecular Conformation ; Molecular Structure ; Transforming Growth Factor beta/*chemistry ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-04-24
    Description: A cleavage reagent directed to the active site of the Tetrahymena catalytic RNA was synthesized by derivatization of the guanosine substrate with a metal chelator. When complexed with iron(II), this reagent cleaved the RNA in five regions. Cleavage at adenosine 207, which is far from the guanosine-binding site in the primary and secondary structure, provides a constraint for the higher order folding of the RNA. This cleavage site constitutes physical evidence for a key feature of the Michel-Westhof model. Targeting a reactive entity to a specific site should be generally useful for determining proximity within folded RNA molecules or ribonucleoprotein complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, J F -- Cech, T R -- New York, N.Y. -- Science. 1992 Apr 24;256(5056):526-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1315076" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Edetic Acid/metabolism ; Free Radicals ; Guanosine/*metabolism ; Guanosine Monophosphate/metabolism ; Iron/metabolism ; Iron Chelating Agents/metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Nucleic Acid Conformation ; Pentetic Acid/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Tetrahymena/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-12-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beratan, D N -- Onuchic, J N -- Winkler, J R -- Gray, H B -- New York, N.Y. -- Science. 1992 Dec 11;258(5089):1740-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Pittsburgh, PA 15260.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1334572" target="_blank"〉PubMed〈/a〉
    Keywords: Cytochrome c Group/*chemistry/metabolism ; Cytochrome-c Peroxidase/*chemistry/metabolism ; *Electron Transport ; Models, Molecular ; Photosynthesis ; Protein Conformation ; Proteins/*chemistry ; Saccharomyces cerevisiae/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1992-01-17
    Description: Binding of human growth hormone (hGH) to its receptor is required for regulation of normal human growth and development. Examination of the 2.8 angstrom crystal structure of the complex between the hormone and the extracellular domain of its receptor (hGHbp) showed that the complex consists of one molecule of growth hormone per two molecules of receptor. The hormone is a four-helix bundle with an unusual topology. The binding protein contains two distinct domains, similar in some respects to immunoglobulin domains. The relative orientation of these domains differs from that found between constant and variable domains in immunoglobulin Fab fragments. Both hGHbp domains contribute residues that participate in hGH binding. In the complex both receptors donate essentially the same residues to interact with the hormone, even though the two binding sites on hGH have no structural similarity. Generally, the hormone-receptor interfaces match those identified by previous mutational analyses. In addition to the hormone-receptor interfaces, there is also a substantial contact surface between the carboxyl-terminal domains of the receptors. The relative extents of the contact areas support a sequential mechanism for dimerization that may be crucial for signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Vos, A M -- Ultsch, M -- Kossiakoff, A A -- New York, N.Y. -- Science. 1992 Jan 17;255(5042):306-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1549776" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography ; Growth Hormone/*chemistry/metabolism ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Structure ; Mutation ; Receptors, Somatotropin/*chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-01-10
    Description: Six "cavity-creating" mutants, Leu46----Ala (L46A), L99A, L118A, L121A, L133A, and Phe153----Ala (F153A), were constructed within the hydrophobic core of phage T4 lysozyme. The substitutions decreased the stability of the protein at pH 3.0 by different amounts, ranging from 2.7 kilocalories per mole (kcal mol-1) for L46A and L121A to 5.0 kcal mol-1 for L99A. The double mutant L99A/F153A was also constructed and decreased in stability by 8.3 kcal mol-1. The x-ray structures of all of the variants were determined at high resolution. In every case, removal of the wild-type side chain allowed some of the surrounding atoms to move toward the vacated space but a cavity always remained, which ranged in volume from 24 cubic angstroms (A3) for L46A to 150 A3 for L99A. No solvent molecules were observed in any of these cavities. The destabilization of the mutant Leu----Ala proteins relative to wild type can be approximated by a constant term (approximately 2.0 kcal mol-1) plus a term that increases in proportion to the size of the cavity. The constant term is approximately equal to the transfer free energy of leucine relative to alanine as determined from partitioning between aqueous and organic solvents. The energy term that increases with the size of the cavity can be expressed either in terms of the cavity volume (24 to 33 cal mol-1 A-3) or in terms of the cavity surface area (20 cal mol-1 A-2). The results suggest how to reconcile a number of conflicting reports concerning the strength of the hydrophobic effect in proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eriksson, A E -- Baase, W A -- Zhang, X J -- Heinz, D W -- Blaber, M -- Baldwin, E P -- Matthews, B W -- GM12989/GM/NIGMS NIH HHS/ -- GM13709/GM/NIGMS NIH HHS/ -- GM21967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jan 10;255(5041):178-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, Howard Hughes Medical Institute, Eugene, OR.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1553543" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calorimetry ; Models, Molecular ; Molecular Sequence Data ; Muramidase/*chemistry/*genetics ; Mutagenesis, Site-Directed ; Protein Conformation ; Structure-Activity Relationship ; T-Phages/enzymology/genetics ; Thermodynamics ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1992-07-03
    Description: Aldose reductase, which catalyzes the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of a wide variety of aromatic and aliphatic carbonyl compounds, is implicated in the development of diabetic and galactosemic complications involving the lens, retina, nerves, and kidney. A 1.65 angstrom refined structure of a recombinant human placenta aldose reductase reveals that the enzyme contains a parallel beta 8/alpha 8-barrel motif and establishes a new motif for NADP-binding oxidoreductases. The substrate-binding site is located in a large, deep elliptical pocket at the COOH-terminal end of the beta barrel with a bound NADPH in an extended conformation. The highly hydrophobic nature of the active site pocket greatly favors aromatic and apolar substrates over highly polar monosaccharides. The structure should allow for the rational design of specific inhibitors that might provide molecular understanding of the catalytic mechanism, as well as possible therapeutic agents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, D K -- Bohren, K M -- Gabbay, K H -- Quiocho, F A -- DK-39,044/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 3;257(5066):81-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1621098" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Reductase/*chemistry/metabolism ; Amino Acid Sequence ; Binding Sites ; *Diabetes Complications ; Diabetes Mellitus/*enzymology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; X-Ray Diffraction/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1992-12-11
    Description: The crystal structure of a 1:1 complex between yeast cytochrome c peroxidase and yeast iso-1-cytochrome c was determined at 2.3 A resolution. This structure reveals a possible electron transfer pathway unlike any previously proposed for this extensively studied redox pair. The shortest straight line between the two hemes closely follows the peroxidase backbone chain of residues Ala194, Ala193, Gly192, and finally Trp191, the indole ring of which is perpendicular to, and in van der Waals contact with, the peroxidase heme. The crystal structure at 2.8 A of a complex between yeast cytochrome c peroxidase and horse heart cytochrome c was also determined. Although crystals of the two complexes (one with cytochrome c from yeast and the other with cytochrome c from horse) grew under very different conditions and belong to different space groups, the two complex structures are closely similar, suggesting that cytochrome c interacts with its redox partners in a highly specific manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pelletier, H -- Kraut, J -- DK07233/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1992 Dec 11;258(5089):1748-55.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, San Diego, La Jolla 92093-0317.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1334573" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cytochrome c Group/*chemistry/metabolism ; Cytochrome-c Peroxidase/*chemistry/metabolism ; *Electron Transport ; Heme/metabolism ; Horses ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Saccharomyces cerevisiae/metabolism ; X-Ray Diffraction/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1992-01-31
    Description: Comparisons of experimental and calculated interproton nuclear Overhauser effect (NOE) buildup curves for duplex d(CGCGAATTCGCG)2 have been made. The calculated NOEs are based on molecular dynamics simulations including counterions and water and on the single-structure canonical A, B, and crystal forms. The calculated NOE effects include consideration of the motions of individual interproton vectors and the anisotropic tumbling of the DNA. The effects due to inclusion of anisotropic tumbling are much larger than those due to the local motion, and both improve the agreement between calculated and experimental results. The predictions based on the dynamical models agree significantly better with experiment than those based on either of the canonical forms or the crystal structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Withka, J M -- Swaminathan, S -- Srinivasan, J -- Beveridge, D L -- Bolton, P H -- 1T32 GM-08271/GM/NIGMS NIH HHS/ -- GM-37909/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jan 31;255(5044):597-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chemistry Department, Wesleyan University, Middletown, CT 06459.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1736362" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA/*chemistry ; Magnetic Resonance Spectroscopy/methods ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/*chemistry ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1992-08-14
    Description: Class I major histocompatibility complex (MHC) molecules interact with self and foreign peptides of diverse amino acid sequences yet exhibit distinct allele-specific selectivity for peptide binding. The structures of the peptide-binding specificity pockets (subsites) in the groove of murine H-2Kb as well as human histocompatibility antigen class I molecules have been analyzed. Deep but highly conserved pockets at each end of the groove bind the amino and carboxyl termini of peptide through extensive hydrogen bonding and, hence, dictate the orientation of peptide binding. A deep polymorphic pocket in the middle of the groove provides the chemical and structural complementarity for one of the peptide's anchor residues, thereby playing a major role in allele-specific peptide binding. Although one or two shallow pockets in the groove may also interact with specific peptide side chains, their role in the selection of peptide is minor. Thus, usage of a limited number of both deep and shallow pockets in multiple combinations appears to allow the binding of a broad range of peptides. This binding occurs with high affinity, primarily because of extensive interactions with the peptide backbone and the conserved hydrogen bonding network at both termini of the peptide. Interactions between the anchor residue (or residues) and the corresponding allele-specific pocket provide sufficient extra binding affinity not only to enhance specificity but also to endure the presentation of the peptide at the cell surface for recognition by T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsumura, M -- Fremont, D H -- Peterson, P A -- Wilson, I A -- CA-09523/CA/NCI NIH HHS/ -- CA-97489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Aug 14;257(5072):927-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1323878" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens/chemistry/*metabolism ; Binding Sites ; H-2 Antigens/chemistry/*metabolism ; HLA-A2 Antigen/chemistry ; Histocompatibility Antigens Class I/chemistry/*metabolism ; Hydrogen Bonding ; Mice ; Models, Molecular ; Molecular Sequence Data ; Ovalbumin/chemistry/metabolism ; Peptide Fragments/chemistry/metabolism ; Peptides/chemistry/*metabolism ; Protein Conformation ; Solvents ; Vesicular stomatitis Indiana virus/metabolism ; Viral Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1992-03-20
    Description: The highly symmetric pyruvate dehydrogenase multienzyme complexes have molecular masses ranging from 5 to 10 million daltons. They consist of numerous copies of three different enzymes: pyruvate dehydrogenase, dihydrolipoyl transacetylase, and lipoamide dehydrogenase. The three-dimensional crystal structure of the catalytic domain of Azotobacter vinelandii dihydrolipoyl transacetylase has been determined at 2.6 angstrom (A) resolution. Eight trimers assemble as a hollow truncated cube with an edge of 125 A, forming the core of the multienzyme complex. Coenzyme A must enter the 29 A long active site channel from the inside of the cube, and lipoamide must enter from the outside. The trimer of the catalytic domain of dihydrolipoyl transacetylase has a topology identical to chloramphenicol acetyl transferase. The atomic structure of the 24-subunit cube core provides a framework for understanding all pyruvate dehydrogenase and related multienzyme complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mattevi, A -- Obmolova, G -- Schulze, E -- Kalk, K H -- Westphal, A H -- de Kok, A -- Hol, W G -- New York, N.Y. -- Science. 1992 Mar 20;255(5051):1544-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Groningen, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1549782" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Azotobacter vinelandii/enzymology ; Chloramphenicol O-Acetyltransferase/genetics ; Humans ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Pyruvate Dehydrogenase Complex/*chemistry/genetics ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1992-04-03
    Description: The conformation of the immunosuppressive drug cyclosporin A (CsA) in a complex with a Fab molecule has been established by crystallographic analysis to 2.65 angstrom resolution. This conformation of CsA is similar to that recently observed in the complex with the rotamase cyclophilin, its binding protein in vivo, and totally different from its conformation in an isolated form as determined from x-ray and nuclear magnetic resonance analysis. Because the surfaces of CsA interacting with cyclophilin or with the Fab are not identical, these results suggest that the conformation of CsA observed in the bound form preexists in aqueous solution and is not produced by interaction with the proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Altschuh, D -- Vix, O -- Rees, B -- Thierry, J C -- New York, N.Y. -- Science. 1992 Apr 3;256(5053):92-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1566062" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/chemistry/metabolism ; Amino Acid Sequence ; Carrier Proteins/chemistry/metabolism ; Cyclosporine/*chemistry/immunology/metabolism ; Immunoglobulin Fab Fragments/*chemistry/metabolism ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Peptidylprolyl Isomerase ; Protein Binding ; Protein Conformation ; Solutions ; X-Ray Diffraction/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1992-06-26
    Description: A 3.5 angstrom resolution electron density map of the HIV-1 reverse transcriptase heterodimer complexed with nevirapine, a drug with potential for treatment of AIDS, reveals an asymmetric dimer. The polymerase (pol) domain of the 66-kilodalton subunit has a large cleft analogous to that of the Klenow fragment of Escherichia coli DNA polymerase I. However, the 51-kilodalton subunit of identical sequence has no such cleft because the four subdomains of the pol domain occupy completely different relative positions. Two of the four pol subdomains appear to be structurally related to subdomains of the Klenow fragment, including one containing the catalytic site. The subdomain that appears likely to bind the template strand at the pol active site has a different structure in the two polymerases. Duplex A-form RNA-DNA hybrid can be model-built into the cleft that runs between the ribonuclease H and pol active sites. Nevirapine is almost completely buried in a pocket near but not overlapping with the pol active site. Residues whose mutation results in drug resistance have been approximately located.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kohlstaedt, L A -- Wang, J -- Friedman, J M -- Rice, P A -- Steitz, T A -- GM 39546/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jun 26;256(5065):1783-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1377403" target="_blank"〉PubMed〈/a〉
    Keywords: Azepines/pharmacology ; Binding Sites ; Crystallography ; DNA Polymerase I/chemistry ; Escherichia coli/genetics ; HIV-1/*enzymology ; Models, Molecular ; Molecular Structure ; Nevirapine ; Protein Conformation ; Pyridines/pharmacology ; RNA-Directed DNA Polymerase/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-03-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, S H -- New York, N.Y. -- Science. 1992 Mar 6;255(5049):1217-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1546321" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; DNA/*chemistry/metabolism ; Models, Molecular ; Molecular Structure ; *Nucleic Acid Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1992-08-14
    Description: The strengths of electrostatic interactions in biological molecules are difficult to calculate or predict because they occur in complicated, inhomogeneous environments. The electric field at the amino terminus of an alpha helix in water has been determined by measuring the shift in the absorption band for a covalently attached, neutral probe molecule with an electric dipole moment difference between the ground and excited electronic states (an internal Stark effect). The field at the interface between the helix and the solvent is found to be an order of magnitude stronger than expected from the dielectric properties of bulk water. Furthermore, although the total electric dipole moment of the helix increases with length, the electric field at the amino terminus does not.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lockhart, D J -- Kim, P S -- New York, N.Y. -- Science. 1992 Aug 14;257(5072):947-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1502559" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*chemistry ; Electrochemistry ; Models, Molecular ; Molecular Sequence Data ; Peptides/*chemistry ; *Protein Conformation ; Proteins/*chemistry ; Spectrophotometry, Ultraviolet ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1992-04-10
    Description: Backbone-engineered HIV-1 protease was prepared by a total chemical synthesis approach that combines the act of joining two peptides with the generation of an analog structure. Unprotected synthetic peptide segments corresponding to the two halves of the HIV-1 protease monomer polypeptide chain were joined cleanly and in high yield through unique mutually reactive functional groups, one on each segment. Ligation was performed in 6 molar guanidine hydrochloride, thus circumventing limited solubility of protected peptide segments, the principal problem of the classical approach to the chemical synthesis of proteins. The resulting fully active HIV-1 protease analog contained a thioester replacement for the natural peptide bond between Gly51-Gly52 in each of the two active site flaps, a region known to be highly sensitive to mutational changes of amino acid side chains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnolzer, M -- Kent, S B -- New York, N.Y. -- Science. 1992 Apr 10;256(5054):221-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1566069" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Guanidine ; Guanidines ; HIV Protease/*chemical synthesis/metabolism ; HIV-1/*enzymology ; Indicators and Reagents ; Mass Spectrometry ; Models, Molecular ; Molecular Sequence Data ; Peptides/*chemical synthesis ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1992-08-14
    Description: Joint refinement of macromolecules against crystallographic and nuclear magnetic resonance (NMR) observations is presented as a way of combining experimental information from the two methods. The model of interleukin-1 beta derived by the joint x-ray and NMR refinement is shown to be consistent with the experimental observations of both methods and to have crystallographic R value and geometrical parameters that are of the same quality as or better than those of models obtained by conventional crystallographic studies. The few NMR observations that are violated by the model serve as an indicator for genuine differences between the crystal and solution structures. The joint x-ray-NMR refinement can resolve structural ambiguities encountered in studies of multidomain proteins, in which low- to medium-resolution diffraction data can be complemented by higher resolution NMR data obtained for the individual domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaanan, B -- Gronenborn, A M -- Cohen, G H -- Gilliland, G L -- Veerapandian, B -- Davies, D R -- Clore, G M -- New York, N.Y. -- Science. 1992 Aug 14;257(5072):961-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laborator of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1502561" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Interleukin-1/*chemistry ; Magnetic Resonance Spectroscopy/*methods ; Models, Molecular ; *Protein Conformation ; Proteins/*chemistry ; X-Ray Diffraction/*methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-01-03
    Description: Although tetrameric hemoglobin has been studied extensively as a prototype for understanding mechanisms of allosteric regulation, the functional and structural properties of its eight intermediate ligation forms have remained elusive. Recent experiments on the energetics of cooperativity of these intermediates, along with assignments of their quaternary structures, have revealed that the allosteric mechanism is controlled by a previously unrecognized symmetry feature: quaternary switching from form T to form R occurs whenever heme-site binding creates a tetramer with at least one ligated subunit on each dimeric half-molecule. This "symmetry rule" translates the configurational isomers of heme-site ligation into six observed switchpoints of quaternary transition. Cooperativity arises from both "concerted" quaternary switching and "sequential" modulation of binding within each quaternary form, T and R. Binding affinity is regulated through a hierarchical code of tertiary-quaternary coupling that includes the classical allosteric models as limiting cases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ackers, G K -- Doyle, M L -- Myers, D -- Daugherty, M A -- P01-HL40453/HL/NHLBI NIH HHS/ -- R37-GM24486/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jan 3;255(5040):54-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1553532" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Calorimetry ; Circular Dichroism ; Hemoglobins/*chemistry/genetics/metabolism ; Kinetics ; Ligands ; Macromolecular Substances ; Models, Molecular ; Mutation ; Oxyhemoglobins/chemistry/metabolism ; Protein Conformation ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1992-10-02
    Description: The smooth muscle myosin light chain kinase (smMLCK) catalytic core was modeled by using the crystallographic coordinates of the cyclic AMP-dependent protein kinase catalytic subunit (cAPK) and a bound pseudosubstrate inhibitor peptide, PKI(5-24). Despite only 30% identity in amino acid sequence, the MLCK sequence can be readily accommodated in this structure. With the exception of the short B-helix, all major elements of secondary structure in the core are very likely conserved. The active site of the modeled MLCK complements the known requirements for peptide substrate recognition. MLCK contains a pseudosubstrate sequence that overlaps the calmodulin binding domain and has been proposed to act as an intrasteric inhibitor and occupy the substrate binding site in the absence of Ca(2+)-calmodulin. The pseudosubstrate sequence can be modeled easily into the entire backbone of PKI(5-24). The results demonstrate that the intrasteric model for regulation of MLCK by intramolecular competitive inhibition is structurally plausible.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knighton, D R -- Pearson, R B -- Sowadski, J M -- Means, A R -- Ten Eyck, L F -- Taylor, S S -- Kemp, B E -- T32CA09523/CA/NCI NIH HHS/ -- T32DK07233/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1992 Oct 2;258(5079):130-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California San Diego, La Jolla 92093-0654.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1439761" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Chromosome Mapping ; Crystallography ; *Gene Expression Regulation, Enzymologic ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Myosin-Light-Chain Kinase/*chemistry ; Oligopeptides/genetics/metabolism ; Peptide Fragments ; Peptides/genetics/metabolism ; Protein Binding/physiology ; Protein Kinases/chemistry ; Sequence Alignment ; Sequence Homology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1992-06-05
    Description: The D and L forms of the enzyme HIV-1 protease have been prepared by total chemical synthesis. The two proteins had identical covalent structures. However, the folded protein-enzyme enantiomers showed reciprocal chiral specificity on peptide substrates. That is, each enzyme enantiomer cut only the corresponding substrate enantiomer. Reciprocal chiral specificity was also evident in the effect of enantiomeric inhibitors. These data imply that the folded forms of the chemically synthesized D- and L-enzyme molecules are mirror images of one another in all elements of the three-dimensional structure. Enantiomeric proteins are expected to display reciprocal chiral specificity in all aspects of their biochemical interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milton, R C -- Milton, S C -- Kent, S B -- New York, N.Y. -- Science. 1992 Jun 5;256(5062):1445-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1604320" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Amino Acids ; HIV Protease/chemical synthesis/*chemistry/*metabolism ; Kinetics ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Oligopeptides/pharmacology ; Protein Conformation ; Stereoisomerism ; Substrate Specificity ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-07-03
    Description: The phylogenetic origin of eukaryotes has been unclear because eukaryotic nuclear genes have diverged substantially from prokaryotic ones. The genes coding for elongation factor EF-1 alpha were compared among various organisms. The EF-1 alpha sequences of eukaryotes contained an 11-amino acid segment that was also found in eocytes (extremely thermophilic, sulfur-metabolizing bacteria) but that was absent in all other bacteria. The related (paralogous) genes encoding elongation factor EF-2 and initiation factor IF-2 also lacked the 11-amino acid insert. These data imply that the eocytes are the closest surviving relatives (sister taxon) of the eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rivera, M C -- Lake, J A -- New York, N.Y. -- Science. 1992 Jul 3;257(5066):74-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1621096" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteria/*genetics ; Base Sequence ; *Biological Evolution ; DNA, Bacterial/genetics ; Humans ; Models, Molecular ; Molecular Sequence Data ; Peptide Elongation Factor 1 ; Peptide Elongation Factor G ; Peptide Elongation Factor Tu/chemistry/*genetics ; Peptide Elongation Factors/*genetics ; Peptide Initiation Factors/*genetics ; Phylogeny ; Plants/genetics ; Prokaryotic Initiation Factor-2 ; Protein Conformation ; Saccharomyces cerevisiae/genetics ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-04-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stone, R -- New York, N.Y. -- Science. 1992 Apr 24;256(5056):440-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1570506" target="_blank"〉PubMed〈/a〉
    Keywords: *Biology ; *Computers ; Drug Design ; Models, Molecular ; Proteins/chemistry ; Software ; Technology, Pharmaceutical
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1992-07-03
    Description: The messenger RNAs of human immunodeficiency virus-1 (HIV-1) have an RNA hairpin structure, TAR, at their 5' ends that contains a six-nucleotide loop and a three-nucleotide bulge. The conformations of TAR RNA and of TAR with an arginine analog specifically bound at the binding site for the viral protein, Tat, were characterized by nuclear magnetic resonance (NMR) spectroscopy. Upon arginine binding, the bulge changes conformation, and essential nucleotides for binding, U23 and A27.U38, form a base-triple interaction that stabilizes arginine hydrogen bonding to G26 and phosphates. Specificity in the arginine-TAR interaction appears to be derived largely from the structure of the RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Puglisi, J D -- Tan, R -- Calnan, B J -- Frankel, A D -- Williamson, J R -- AI29135/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 3;257(5066):76-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1621097" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/*metabolism ; Base Sequence ; Binding Sites ; Gene Products, tat/metabolism ; HIV-1/*genetics ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy/methods ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Messenger/*chemistry/metabolism ; RNA, Viral/*chemistry/metabolism ; RNA-Binding Proteins/*chemistry/metabolism ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1992-02-21
    Description: A class of regulators of eukaryotic gene expression contains a conserved amino acid sequence responsible for protein oligomerization and binding to DNA. This structure consists of an arginine- and lysine-rich basic region followed by a helix-loop-helix motif, which together mediate specific binding to DNA. Peptides were prepared that span this motif in the MyoD protein; in solution, they formed alpha-helical dimers and tetramers. They bound to DNA as dimers and their alpha-helical content increased on binding. Parallel and antiparallel four-helix models of the DNA-bound dimer were constructed. Peptides containing disulfide bonds were engineered to test the correctness of the two models. A disulfide that is compatible with the parallel model promotes specific interaction with DNA, whereas a disulfide compatible with the antiparallel model abolishes specific binding. Electron paramagnetic resonance (EPR) measurements of nitroxide-labeled peptides provided intersubunit distance measurements that also supported the parallel model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anthony-Cahill, S J -- Benfield, P A -- Fairman, R -- Wasserman, Z R -- Brenner, S L -- Stafford, W F 3rd -- Altenbach, C -- Hubbell, W L -- DeGrado, W F -- GM13731/GM/NIGMS NIH HHS/ -- GM14321/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Feb 21;255(5047):979-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnology Department, DuPont Merck Pharmaceutical Co., Wilmington, DE 19880-0328.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1312255" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Circular Dichroism ; DNA-Binding Proteins/*chemistry ; Disulfides ; Electron Spin Resonance Spectroscopy ; Enhancer Elements, Genetic ; Gene Expression Regulation ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Regulatory Sequences, Nucleic Acid ; Sequence Alignment ; Transcription Factors/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1992-02-21
    Description: The three-dimensional structure of a specific antibody (Fab 17/9) to a peptide immunogen from influenza virus hemagglutinin [HA1(75-110)] and two independent crystal complexes of this antibody with bound peptide (TyrP100-LeuP108) have been determined by x-ray crystallographic techniques at 2.0 A, 2.9 A, and 3.1 A resolution, respectively. The nonapeptide antigen assumes a type I beta turn in the antibody combining site and interacts primarily with the Fab hypervariable loops L3, H2, and H3. Comparison of the bound and unbound Fab structures shows that a major rearrangement in the H3 loop accompanies antigen binding. This conformational change results in the creation of a binding pocket for the beta turn of the peptide, allowing TyrP105 to be accommodated. The conformation of the peptide bound to the antibody shows similarity to its cognate sequence in the HA1, suggesting a possible mechanism for the cross-reactivity of this Fab with monomeric hemagglutinin. The structures of the free and antigen bound antibodies demonstrate the flexibility of the antibody combining site and provide an example of induced fit as a mechanism for antibody-antigen recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rini, J M -- Schulze-Gahmen, U -- Wilson, I A -- AI-23498/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1992 Feb 21;255(5047):959-65.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1546293" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/ultrastructure ; *Antigen-Antibody Reactions ; Hemagglutinins, Viral/*immunology ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/*ultrastructure ; Immunoglobulin G/ultrastructure ; In Vitro Techniques ; Influenza A virus/immunology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Motion ; Peptides/chemistry/immunology ; Protein Binding ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1992-08-28
    Description: The crystal structure of calcium-bound calmodulin (Ca(2+)-CaM) bound to a peptide analog of the CaM-binding region of chicken smooth muscle myosin light chain kinase has been determined and refined to a resolution of 2.4 angstroms (A). The structure is compact and has the shape of an ellipsoid (axial ratio approximately 2:1). The bound CaM forms a tunnel diagonal to its long axis that engulfs the helical peptide, with the hydrophobic regions of CaM melded into a single area that closely covers the hydrophobic side of the peptide. There is a remarkably high pseudo-twofold symmetry between the closely associated domains. The central helix of the native CaM is unwound and expanded into a bend between residues 73 and 77. About 185 contacts (less than 4 A) are formed between CaM and the peptide, with van der Waals contacts comprising approximately 80% of this total.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meador, W E -- Means, A R -- Quiocho, F A -- New York, N.Y. -- Science. 1992 Aug 28;257(5074):1251-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1519061" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calmodulin/*chemistry ; Crystallography ; Models, Molecular ; Molecular Sequence Data ; Myosin-Light-Chain Kinase/*metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1992-07-24
    Description: The elucidation of bioactive conformations of small peptide hormones remains an elusive goal to structural chemists because of the inherent flexibility of these molecules. Angiotensin II (AII), the major effector of the renin-angiotensin system, is an octapeptide hormone for which no clear structural models exist. Peptide hormones such as AII share the property that they bind to their receptors with high affinities, in spite of the fact that they must overcome an extremely large conformational entropy barrier to bind in one conformation. A "surrogate system" that consists of a high-affinity monoclonal antibody (MAb) and AII has been used to study a bound conformation of AII. The crystallographic structure of the complex reveals a structure of AII that is compatible with predicted bioactive conformations of AII derived from structure-activity studies and theoretical calculations. In the complex, the deeply bound hormone is folded into a compact structure in which two turns bring the amino and carboxyl termini close together. The antibody of this complex (MAb 131) has the unusual property that it was not generated against AII, but rather against an anti-idiotypic antibody reactive with a MAb to AII, which renders this antibody an anti-anti-idiotypic antibody. The high affinity for AII of the original MAb to AII was passed on to MAb 131 through a structural determinant on the anti-idiotypic antibody. Strikingly, the conformation of AII in this complex is highly similar to complementarity determining region loops of antibodies, possibly indicating that a true molecular mimic of bound AII was present on the anti-idiotypic antibody against which MAb 131 was elicited.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia, K C -- Ronco, P M -- Verroust, P J -- Brunger, A T -- Amzel, L M -- GM44692/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jul 24;257(5069):502-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1636085" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiotensin II/*chemistry/immunology/metabolism ; Animals ; Antibodies, Anti-Idiotypic/*chemistry/metabolism ; Antibodies, Monoclonal/*chemistry/metabolism ; Antigen-Antibody Complex ; Humans ; Immunoglobulin Fab Fragments/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1992-08-14
    Description: The x-ray structures of a murine MHC class I molecule (H-2Kb) were determined in complex with two different viral peptides, derived from the vesicular stomatitis virus nucleoprotein (52-59), VSV-8, and the Sendai virus nucleoprotein (324-332), SEV-9. The H-2Kb complexes were refined at 2.3 A for VSV-8 and 2.5 A for SEV-9. The structure of H-2Kb exhibits a high degree of similarity with human HLA class I, although the individual domains can have slightly altered dispositions. Both peptides bind in extended conformations with most of their surfaces buried in the H-2Kb binding groove. The nonamer peptide maintains the same amino- and carboxyl-terminal interactions as the octamer primarily by the insertion of a bulge in the center of an otherwise beta conformation. Most of the specific interactions are between side-chain atoms of H-2Kb and main-chain atoms of peptide. This binding scheme accounts in large part for the enormous diversity of peptide sequences that bind with high affinity to class I molecules. Small but significant conformational changes in H-2Kb are associated with peptide binding, and these synergistic movements may be an integral part of the T cell receptor recognition process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fremont, D H -- Matsumura, M -- Stura, E A -- Peterson, P A -- Wilson, I A -- CA-09523/CA/NCI NIH HHS/ -- CA-97489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Aug 14;257(5072):919-27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1323877" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; H-2 Antigens/*chemistry/metabolism ; Mice ; Models, Molecular ; Molecular Sequence Data ; Parainfluenza Virus 1, Human/metabolism ; Protein Binding ; Protein Conformation ; Solvents ; Vesicular stomatitis Indiana virus/metabolism ; Viral Proteins/*chemistry/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1992-10-16
    Description: The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains: a novel, sequence-continuous, six-helix domain (residues 22 to 132) and a Greek-key, four-helix domain formed by the amino-terminal and three carboxyl-terminal helices (residues 1 to 21 and 133 to 211) together with the [4Fe-4S] cluster. The cluster is bound entirely within the carboxyl-terminal loop with a ligation pattern (Cys-X6-Cys-X2-Cys-X5-Cys) distinct from all other known [4Fe-4S] proteins. Sequence conservation and the positive electrostatic potential of conserved regions identify a surface suitable for binding duplex B-DNA across the long axis of the enzyme, matching a 46 angstrom length of protected DNA. The primary role of the [4Fe-4S] cluster appears to involve positioning conserved basic residues for interaction with the DNA phosphate backbone. The crystallographically identified inhibitor binding region, which recognizes the damaged base thymine glycol, is a seven-residue beta-hairpin (residues 113 to 119). Location and side chain orientation at the base of the inhibitor binding site implicate Glu112 in the N-glycosylase mechanism and Lys120 in the beta-elimination mechanism. Overall, the structure reveals an unusual fold and a new biological function for [4Fe-4S] clusters and provides a structural basis for studying recognition of damaged DNA and the N-glycosylase and apurinic/apyrimidinic-lyase mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuo, C F -- McRee, D E -- Fisher, C L -- O'Handley, S F -- Cunningham, R P -- Tainer, J A -- GM 46312/GM/NIGMS NIH HHS/ -- HL07695/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1992 Oct 16;258(5081):434-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1411536" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/ultrastructure ; Base Sequence ; Crystallography ; Cysteine/chemistry ; *DNA Repair ; DNA-Binding Proteins/*ultrastructure ; Deoxyribonuclease (Pyrimidine Dimer) ; Endodeoxyribonucleases/*ultrastructure ; Iron-Sulfur Proteins/*ultrastructure ; Models, Molecular ; Molecular Sequence Data ; Oligodeoxyribonucleotides/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1992-08-14
    Description: The peptide binding cleft of the class I human histocompatibility antigen, HLA-A2, contains conserved amino acid residues clustered in the two ends of the cleft in pockets A and F as well as polymorphic residues. The function of two conserved tyrosines in the A pocket was investigated by mutating them to phenylalanines and of a conserved tyrosine and threonine in the F pocket by mutating them to phenylalanine and valine, respectively. Presentation of influenza virus peptides and of intact virus to cytolytic T lymphocytes (CTLs) was then examined. The magnitude of the reduction seen by the mutation of the two tyrosines in the A pocket suggests that hydrogen bonds involving them have a critical function in the binding of the NH2-terminal NH3+ of the peptide nonamer and possibly of all bound peptide nonamers. In contrast, the mutations in the F pocket had no effect on CTL recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Latron, F -- Pazmany, L -- Morrison, J -- Moots, R -- Saper, M A -- McMichael, A -- Strominger, J L -- AI 20182/AI/NIAID NIH HHS/ -- CA 47554/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Aug 14;257(5072):964-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1380181" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology ; Binding Sites ; Cell Line ; Cloning, Molecular ; Epitopes/immunology/metabolism ; HLA-A2 Antigen/chemistry/genetics/*metabolism ; Influenza A virus ; Kinetics ; Models, Molecular ; Mutagenesis, Site-Directed ; Oligopeptides/immunology/*metabolism ; Protein Conformation ; Recombinant Proteins/chemistry/metabolism ; T-Lymphocytes, Cytotoxic/*immunology ; Transfection ; Viral Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1992-11-06
    Description: Fibronectin type III domains are found in many different proteins including cell surface receptors and cell adhesion molecules. The crystal structure of one such domain from the extracellular matrix protein tenascin was determined. The structure was solved by multiwavelength anomalous diffraction (MAD) phasing of the selenomethionyl protein and has been refined to 1.8 angstrom resolution. The folding topology of this domain is identical to that of the extracellular domains of the human growth hormone receptor, the second domain of CD4, and PapD. Although distinct, this topology is similar to that of immunoglobulin constant domains. An Arg-Gly-Asp (RGD) sequence that can function for cell adhesion is found in a tight turn on an exposed loop.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leahy, D J -- Hendrickson, W A -- Aukhil, I -- Erickson, H P -- CA-47056/CA/NCI NIH HHS/ -- DE-07801/DE/NIDCR NIH HHS/ -- GM-34102/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Nov 6;258(5084):987-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1279805" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Adhesion Molecules, Neuronal/*chemistry ; Chickens ; Crystallization ; Escherichia coli/genetics ; Extracellular Matrix Proteins/*chemistry ; Fibronectins/*chemistry ; Humans ; Immunoglobulin Constant Regions/chemistry ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Protein Folding ; Protein Structure, Secondary ; Receptors, Somatotropin/chemistry ; Recombinant Proteins/chemistry ; Tenascin ; *X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1992-06-19
    Description: A hybrid receptor was constructed that contained the extracellular binding domain of the human growth hormone (hGH) receptor linked to the transmembrane and intracellular domains of the murine granulocyte colony-stimulating factor receptor. Addition of hGH to a myeloid leukemia cell line (FDC-P1) that expressed the hybrid receptor caused proliferation of these cells. The mechanism for signal transduction of the hybrid receptor required dimerization because monoclonal antibodies to the hGH receptor were agonists whereas their monovalent fragments were not. Receptor dimerization occurs sequentially--a receptor binds to site 1 on hGH, and then a second receptor molecule binds to site 2 on hGH. On the basis of this sequential mechanism, which may occur in many other cytokine receptors, inactive hGH analogs were designed that were potent antagonists to hGH-induced cell proliferation. Such antagonists could be useful for treating clinical conditions of hGH excess, such as acromegaly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fuh, G -- Cunningham, B C -- Fukunaga, R -- Nagata, S -- Goeddel, D V -- Wells, J A -- New York, N.Y. -- Science. 1992 Jun 19;256(5064):1677-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1535167" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal ; Cell Division/drug effects ; Cell Line ; DNA Replication/drug effects ; Dose-Response Relationship, Drug ; Growth Hormone/analysis/physiology ; Humans ; Models, Molecular ; Receptors, Granulocyte Colony-Stimulating Factor/physiology ; Receptors, Somatotropin/*physiology ; Signal Transduction/physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1992-07-24
    Description: Genetic and sequence information are reported for an angiotensin II-reactive antibody (Ab1, MAb 110) and an anti--anti-idiotypic antibody (Ab3, MAb 131) that have identical antigen binding properties and that are related by an anti-idiotypic antibody (Ab2-beta) that satisfies accepted biochemical criteria for an internal image-bearing antibody. The sequences of the variable regions of the Ab3 and of the Ab1 are nearly identical, even though the Ab1 is an antibody to a peptide and the Ab3 is an antibody to a globular protein. Significantly, amino acid residues that make critical contacts with antigen in the crystal structure of the Ab3-antigen complex are highly conserved in Ab1, suggesting that the epitopes of the Ab2-beta recognized by the Ab3 do indeed resemble the bound structure of the antigen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garcia, K C -- Desiderio, S V -- Ronco, P M -- Verroust, P J -- Amzel, L M -- 6M 44692/PHS HHS/ -- New York, N.Y. -- Science. 1992 Jul 24;257(5069):528-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, Johns Hopkins University Medical School, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1636087" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiotensin II/chemistry/*immunology ; Animals ; Antibodies, Anti-Idiotypic/chemistry/genetics/*immunology ; Antibodies, Monoclonal/chemistry/genetics/*immunology ; Antigen-Antibody Complex ; Base Sequence ; Cell Line ; Hybridomas/immunology ; Immunoglobulin Heavy Chains/genetics/immunology ; Immunoglobulin Light Chains/genetics/immunology ; Immunoglobulin Variable Region/chemistry/genetics/immunology ; Mice ; Mice, Inbred BALB C/immunology ; Models, Molecular ; Molecular Sequence Data ; Plasmacytoma ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-07-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffman, M -- New York, N.Y. -- Science. 1992 Jul 17;257(5068):332.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1631555" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography ; Humans ; Models, Molecular ; Molecular Structure ; Transforming Growth Factor beta/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1992-05-08
    Description: The hydrophobic faces of single crystals of a series of pairs of racemic and chiral-resolved hydrophobic alpha-amino acids were used as a substrate, onto which water vapor has been cooled to freezing. The morphologies and molecular packing arrangements within each crystal pair are similar but only one of each pair exhibits a polar axis, parallel to the hydrophobic face exposed to water. Those crystals that have a polar axis induce a freezing point higher by 4 degrees to 5 degrees C than the corresponding crystals that do not have a polar axis. The results are interpreted in terms of an electric field mechanism that helps align the water molecules into ice-like clusters en route to crystallization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gavish, M -- Wang, J L -- Eisenstein, M -- Lahav, M -- Leiserowitz, L -- New York, N.Y. -- Science. 1992 May 8;256(5058):815-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials and Inferfaces, Weizmann Institute of Science, Rehovot, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1589763" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*chemistry ; Animals ; Crystallization ; *Ice ; Isomerism ; Models, Molecular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1992-12-04
    Description: Phthalate dioxygenase reductase (PDR) is a prototypical iron-sulfur flavoprotein (36 kilodaltons) that utilizes flavin mononucleotide (FMN) to mediate electron transfer from the two-electron donor, reduced nicotinamide adenine nucleotide (NADH), to the one-electron acceptor, [2Fe-2S]. The crystal structure of oxidized PDR from Pseudomonas cepacia has been analyzed at 2.0 angstrom resolution resolution; reduced PDR and pyridine nucleotide complexes have been analyzed at 2.7 angstrom resolution. NADH, FMN, and the [2Fe-2S] cluster, bound to distinct domains, are brought together near a central cleft in the molecule, with only 4.9 angstroms separating the flavin 8-methyl and a cysteine sulfur ligated to iron. The domains that bind FMN and [2Fe-2S] are packed so that the flavin ring and the plane of the [2Fe-2S] core are approximately perpendicular. The [2Fe-2S] group is bound by four cysteines in a site resembling that in plant ferredoxins, but its redox potential (-174 millivolts at pH 7.0) is much higher than the potentials of plant ferredoxins. Structural and sequence similarities assign PDR to a distinct family of flavoprotein reductases, all related to ferredoxin NADP(+)-reductase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Correll, C C -- Batie, C J -- Ballou, D P -- Ludwig, M L -- GM 16429/GM/NIGMS NIH HHS/ -- GM 20877/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Dec 4;258(5088):1604-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Biophysics, University of Michigan, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1280857" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Burkholderia cepacia/enzymology ; Electron Transport ; Flavin Mononucleotide/*metabolism ; Iron-Sulfur Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; NAD/*metabolism ; Oxidoreductases/*chemistry/metabolism ; *Protein Conformation ; *Protein Structure, Secondary ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1992-09-18
    Description: The nitrogenase enzyme system catalyzes the ATP (adenosine triphosphate)-dependent reduction of dinitrogen to ammonia during the process of nitrogen fixation. Nitrogenase consists of two proteins: the iron (Fe)-protein, which couples hydrolysis of ATP to electron transfer, and the molybdenum-iron (MoFe)-protein, which contains the dinitrogen binding site. In order to address the role of ATP in nitrogen fixation, the crystal structure of the nitrogenase Fe-protein from Azotobacter vinelandii has been determined at 2.9 angstrom (A) resolution. Fe-protein is a dimer of two identical subunits that coordinate a single 4Fe:4S cluster. Each subunit folds as a single alpha/beta type domain, which together symmetrically ligate the surface exposed 4Fe:4S cluster through two cysteines from each subunit. A single bound ADP (adenosine diphosphate) molecule is located in the interface region between the two subunits. Because the phosphate groups of this nucleotide are approximately 20 A from the 4Fe:4S cluster, it is unlikely that ATP hydrolysis and electron transfer are directly coupled. Instead, it appears that interactions between the nucleotide and cluster sites must be indirectly coupled by allosteric changes occurring at the subunit interface. The coupling between protein conformation and nucleotide hydrolysis in Fe-protein exhibits general similarities to the H-Ras p21 and recA proteins that have been recently characterized structurally. The Fe-protein structure may be relevant to the functioning of other biochemical energy-transducing systems containing two nucleotide-binding sites, including membrane transport proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Georgiadis, M M -- Komiya, H -- Chakrabarti, P -- Woo, D -- Kornuc, J J -- Rees, D C -- GM45162/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Sep 18;257(5077):1653-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1529353" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism/pharmacology ; Amino Acid Sequence ; Azotobacter vinelandii/*enzymology ; Binding Sites ; Chemistry, Physical ; Crystallization ; Electron Transport ; Hydrolysis ; Iron-Sulfur Proteins/*chemistry ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Molybdoferredoxin/chemistry ; Nitrogenase/*chemistry/metabolism ; Physicochemical Phenomena ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-08-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1992 Aug 14;257(5072):880-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1502554" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Histocompatibility Antigens Class I/*chemistry/metabolism ; Humans ; Hydrogen Bonding ; Major Histocompatibility Complex ; Models, Molecular ; Protein Binding ; Protein Conformation ; Proteins/chemistry/metabolism ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-04-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Creighton, T E -- New York, N.Y. -- Science. 1992 Apr 3;256(5053):111-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1373519" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aprotinin/*chemistry ; Cattle ; *Cysteine ; *Disulfides ; Kinetics ; Models, Molecular ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1992-09-11
    Description: A nuclear magnetic resonance (NMR) structure determination is reported for the polypeptide chain of a globular protein in strongly denaturing solution. Nuclear Overhauser effect (NOE) measurements with a 7 molar urea solution of the amino-terminal 63-residue domain of the 434-repressor and distance geometry calculations showed that the polypeptide segment 54 to 59 forms a hydrophobic cluster containing the side chains of Val54, Val56, Trp58, and Leu59. This residual structure in the urea-unfolded protein is related to the corresponding region of the native, folded protein by simple rearrangements of the residues 58 to 60. Based on these observations a model for the early phase of refolding of the 434-repressor(1-63) is proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neri, D -- Billeter, M -- Wider, G -- Wuthrich, K -- New York, N.Y. -- Science. 1992 Sep 11;257(5076):1559-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Molekularbiologie und Biophysik, ETH-Honggerberg, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1523410" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Magnetic Resonance Spectroscopy/methods ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Denaturation ; Repressor Proteins/*chemistry/pharmacology ; Urea/*pharmacology ; Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-07-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bazan, J F -- New York, N.Y. -- Science. 1992 Jul 17;257(5068):410-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1631562" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cattle ; Crystallography ; Humans ; Interleukin-2/*chemistry/genetics ; Mice ; Models, Molecular ; Molecular Conformation ; Molecular Sequence Data ; Molecular Structure ; Rats ; Sequence Alignment ; Sheep ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1992-05-01
    Description: The three-dimensional solution structure of the complex between calcium-bound calmodulin (Ca(2+)-CaM) and a 26-residue synthetic peptide comprising the CaM binding domain (residues 577 to 602) of skeletal muscle myosin light chain kinase, has been determined using multidimensional heteronuclear filtered and separated nuclear magnetic resonance spectroscopy. The two domains of CaM (residues 6 to 73 and 83 to 146) remain essentially unchanged upon complexation. The long central helix (residues 65 to 93), however, which connects the two domains in the crystal structure of Ca(2+)-CaM, is disrupted into two helices connected by a long flexible loop (residues 74 to 82), thereby enabling the two domains to clamp residues 3 to 21 of the bound peptide, which adopt a helical conformation. The overall structure of the complex is globular, approximating an ellipsoid of dimensions 47 by 32 by 30 angstroms. The helical peptide is located in a hydrophobic channel that passes through the center of the ellipsoid at an angle of approximately 45 degrees with its long axis. The complex is mainly stabilized by hydrophobic interactions which, from the CaM side, involve an unusually large number of methionines. Key residues of the peptide are Trp4 and Phe17, which serve to anchor the amino- and carboxyl-terminal halves of the peptide to the carboxyl- and amino-terminal domains of CaM, respectively. Sequence comparisons indicate that a number of peptides that bind CaM with high affinity share this common feature containing either aromatic residues or long-chain hydrophobic ones separated by a stretch of 12 residues, suggesting that they interact with CaM in a similar manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ikura, M -- Clore, G M -- Gronenborn, A M -- Zhu, G -- Klee, C B -- Bax, A -- New York, N.Y. -- Science. 1992 May 1;256(5057):632-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1585175" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Calcium/metabolism ; Calmodulin/*chemistry/metabolism ; Drosophila melanogaster ; Hydrogen Bonding ; *Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Muscles/enzymology ; Myosin-Light-Chain Kinase/chemistry/metabolism ; Peptide Fragments/*chemistry/metabolism ; Protein Conformation ; Rabbits
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...