ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,081)
  • Aircraft Design, Testing and Performance  (614)
  • Aircraft Propulsion and Power
  • Cell & Developmental Biology
  • GENERAL
  • General Chemistry
  • Numerical Methods and Modeling
  • 1995-1999  (779)
  • 1945-1949  (302)
Collection
Source
Years
Year
  • 1
    Publication Date: 2009-11-17
    Description: Airplane design studies have developed configuration concepts that may produce lower sonic boom annoyance levels. Since lower noise designs differ significantly from other HSCT designs, it is necessary to accurately assess their potential before HSCT final configuration decisions are made. Flight tests to demonstrate lower noise design capability by modifying an existing airframe have been proposed for the Mach 3 SR-71 reconnaissance airplane. To support the modified SR-71 proposal, baseline in-flight measurements were made of the unmodified aircraft. These measurements of SR-71 near-field sonic boom signatures were obtained by an F-16XL probe airplane at flightpath separation distances ranging from approximately 740 to 40 ft. This paper discusses the methods used to gather and analyze the flight data, and makes comparisons of these flight data with CFD results from Douglas Aircraft Corporation and NASA Langley Research Center. The CFD solutions were obtained for the near-field flow about the SR-71, and then propagated to the flight test measurement location using the program MDBOOM.
    Keywords: Aircraft Design, Testing and Performance
    Type: High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing; 171-197; NASA/CP-1999-209699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: This paper is a discussion of the supersonic nonlinear point design optimization efforts at McDonnell Douglas Aerospace under the High-Speed Research (HSR) program. The baseline for these optimization efforts has been the M2.4-7A configuration which represents an arrow-wing technology for the High-Speed Civil Transport (HSCT). Optimization work on this configuration began in early 1994 and continued into 1996. Initial work focused on optimization of the wing camber and twist on a wing/body configuration and reductions of 3.5 drag counts (Euler) were realized. The next phase of the optimization effort included fuselage camber along with the wing and a drag reduction of 5.0 counts was achieved. Including the effects of the nacelles and diverters into the optimization problem became the next focus where a reduction of 6.6 counts (Euler W/B/N/D) was eventually realized. The final two phases of the effort included a large set of constraints designed to make the final optimized configuration more realistic and they were successful albeit with a loss of performance.
    Keywords: Aircraft Design, Testing and Performance
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1009-1040; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: Digital Particle Imaging Velocimetry (DPIV) is a powerful measurement technique, which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. The instantaneous planar velocity measurements obtained with PIV make it an attractive technique for use in the study of the complex flow fields encountered in turbomachinery. Many of the same issues encountered in the application of LDV to rotating machinery apply in the application of PIV. Techniques for optical access, light sheet delivery, CCD camera technology and particulate seeding are discussed. Results from the successful application of the PIV technique to both the blade passage region of a transonic axial compressor and the diffuser region of a high speed centrifugal compressor are presented. Both instantaneous and time-averaged flow fields were obtained. The 95% confidence intervals for the time-averaged velocity estimates were also determined. Results from the use of PIV to study surge in a centrifugal compressor are discussed. In addition, combined correlation/particle tracking results yielding super-resolution velocity measurements are presented.
    Keywords: Aircraft Propulsion and Power
    Type: Planar Optical Measurement Methods for Gas Turbine Components; 2-1 - 2-33; RTO-EN-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: One of the problems facing the aircraft community is landing gear dynamics, especially shimmy and brake-induced vibration. Although neither shimmy nor brake-induced vibrations are usually catastrophic, they can lead to accidents due to excessive wear and shortened life of gear parts and contribute to pilot and passenger discomfort. Recently, NASA has initiated an effort to increase the safety of air travel by reducing the number of accidents by a factor of five in ten years. This safety initiative has spurred an increased interest in improving landing gear design to minimize shimmy and brake-induced vibration that are still largely misunderstood phenomena. In order to increase the understanding of these problems, a literature survey was performed. The major focus of the paper is to summarize work documented from the last ten years to highlight the latest efforts in solving these vibration problems. Older publications are included to understand the longevity of the problem and the findings from earlier researchers. The literature survey revealed a variety of analyses, testing, modeling, and simulation of aircraft landing gear. Experimental validation and characterization of shimmy and brake-induced vibration of aircraft landing gear are also reported. This paper presents an overview of the problem documented in the references together with a history of landing gear dynamic problems and solutions. Based on the assessment of this survey, recommendations of the most critically needed enhancements to the state of the art are given.
    Keywords: Aircraft Design, Testing and Performance
    Type: CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999; Pt. 2; 649-664; NASA/CP-1999-209136/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: This paper presents the work done to date by the authors on developing an efficient approach to multipoint design and applying it to the design of the HSR TCA (High Speed Research Technology Concept Aircraft) configuration. While the title indicates that this exploratory study has been performed using the TLNS3DMB flow solver and the CDISC (Constrained Direct Iterative Surface Curvature) design method, the CDISC method could have been used with any flow solver, and the multipoint design approach does not require the use of CDISC. The goal of the study was to develop a multipoint design method that could achieve a design in about the same time as 10 analysis runs.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 561-586; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: The goal in this effort is to analyze the baseline TCA concept at transonic and supersonic cruise, then apply the natural flow wing design concept to obtain multipoint performance improvements. Analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between the overset grids.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 544-560; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: The M2.4-7A Arrow Wing HSCT configuration was optimized for straight and level cruise at a Mach number of 2.4 and a lift coefficient of 0.10. A quasi-Newton optimization scheme maximized the lift-to-drag ratio (by minimizing drag-to-lift) using Euler solutions from FL067 to estimate the lift and drag forces. A 1.675% wind-tunnel model of the Opt5 HSCT configuration was built to validate the design methodology. Experimental data gathered at the NASA Langley Unitary Plan Wind Tunnel (UPWT) section #2 facility verified CFL3D Euler and Navier-Stokes predictions of the Opt5 performance at the design point. In turn, CFL3D confirmed the improvement in the lift-to-drag ratio obtained during the optimization, thus validating the design procedure. A data base at off-design conditions was obtained during three wind-tunnel tests. The entry into NASA Langley UPWT section #2 obtained data at a free stream Mach number, M(sub infinity), of 2.55 as well as the design Mach number, M(sub infinity)=2.4. Data from a Mach number range of 1.8 to 2.4 was taken at UPWT section #1. Transonic and low supersonic Mach numbers, M(sub infinity)=0.6 to 1.2, was gathered at the NASA Langley 16 ft. Transonic Wind Tunnel (TWT). In addition to good agreement between CFD and experimental data, highlights from the wind-tunnel tests include a trip dot study suggesting a linear relationship between trip dot drag and Mach number, an aeroelastic study that measured the outboard wing deflection and twist, and a flap scheduling study that identifies the possibility of only one leading-edge and trailing-edge flap setting for transonic cruise and another for low supersonic acceleration.
    Keywords: Aircraft Design, Testing and Performance
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1041-1071; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: Two supersonic transport configurations designed by use of non-linear aerodynamic optimization methods are compared with a linearly designed baseline configuration. One optimized configuration, designated Ames 7-04, was designed at NASA Ames Research Center using an Euler flow solver, and the other, designated Boeing W27, was designed at Boeing using a full-potential method. The two optimized configurations and the baseline were tested in the NASA Langley Unitary Plan Supersonic Wind Tunnel to evaluate the non-linear design optimization methodologies. In addition, the experimental results are compared with computational predictions for each of the three configurations from the Enter flow solver, AIRPLANE. The computational and experimental results both indicate moderate to substantial performance gains for the optimized configurations over the baseline configuration. The computed performance changes with and without diverters and nacelles were in excellent agreement with experiment for all three models. Comparisons of the computational and experimental cruise drag increments for the optimized configurations relative to the baseline show excellent agreement for the model designed by the Euler method, but poorer comparisons were found for the configuration designed by the full-potential code.
    Keywords: Aircraft Design, Testing and Performance
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 845-967; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: Thermal analysis in both simple and complex models can require calculating the propagation of radiant energy to and from multiple surfaces. This can be accomplished through simple estimation techniques or complex computationally intense computer modeling simulations. Currently there are a variety of computer analysis techniques used to simulate the propagation of radiant energy, each having advantages and disadvantages. The major objective of this effort was to compare two ray tracing radiation propagation analysis programs (NEVADA and TSS) Net Energy Verification and Determination Analyzer and Thermal Synthesizer System with experimental data. Results from a non-flowing, electrically heated test rig was used to verify the calculated radiant energy propagation from a nozzle geometry that represents an aircraft propulsion nozzle system. In general the programs produced comparable overall results, and results slightly higher then the experimental data. Upon inspection of individual radiation interchange factors, differences were evident and would have been magnified if a more radical model temperature profile was analyzed. Bidirectional reflectivity data (BRDF) was not used do to modeling limitations in TSS. For code comparison purposes, this nozzle geometry represents only one case for one set of analysis conditions. Since each computer code has advantages and disadvantages bases on scope, requirements, and desired accuracy, the usefulness of this single case study may be limiting.
    Keywords: Aircraft Propulsion and Power
    Type: Ninth Thermal and Fluids Analysis Workshop Proceedings; 49-67; NASA/CP-1999-208695
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: This paper presents an overview of recent developments in an effort to predict transient aeroelastic rotor response during shipboard engage and disengage sequences. The blade is modeled as an elastic beam undergoing in flap, lag, extension and torsion. The blade equations of motion are formulated using Hamilton's principle and they are spatially discretized using the finite element method. The discretized blade equations of motion are integrated for a specified rotor speed run-up or run-down profile. Blade element theory is used to calculate quasi-steady or unsteady aerodynamic loads in linear and nonlinear regimes. The analysis is capable of simulating both articulated, hingeless, and gimballed rotor systems. Validation of the rotor code is discussed, including correlation with droop stop impact tests and wind tunnel experiments. Predictions of safe engagement and disengagement envelopes, limited by excessive blade tip deflections or hub moments, are presented. Future directions of study are also discussed.
    Keywords: Aircraft Design, Testing and Performance
    Type: Fluid Dynamics Problems of Vehicles Operating Near or in the Air-Sea Interface; 1-1 - 1-18; RTO-MP-15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. This portion of the report is comprised of overviews of each NASA Center's contribution to the program during the period 1 Apr. 1998 - 31 Mar. 1999.
    Keywords: Aircraft Design, Testing and Performance
    Type: X-33 Flight Operations Center
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-12-03
    Description: Through the NASA/Industry Cooperative Effort (NICE) agreement, NASA Lewis and industry partners are developing a new engine simulation, called the National Cycle Program (NCP), which is the initial framework of NPSS. NCP is the first phase toward achieving the goal of NPSS. This new software supports the aerothermodynamic system simulation process for the full life cycle of an engine. The National Cycle Program (NCP) was written following the Object Oriented Paradigm (C++, CORBA). The software development process used was also based on the Object Oriented paradigm. Software reviews, configuration management, test plans, requirements, design were all apart of the process used in developing NCP. Due to the many contributors to NCP, the stated software process was mandatory for building a common tool intended for use by so many organizations. The U.S. aircraft and airframe companies recognize NCP as the future industry standard for propulsion system modeling.
    Keywords: Aircraft Propulsion and Power
    Type: HPCCP/CAS Workshop Proceedings 1998; 177-181; NASA/CP-1999-208757
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-12-03
    Description: This presentation describes the general objectives of the project, followed by background information which led to the initiation of the study, and the approach taken to meet the objectives. Next, experimental studies in the LaRC Unitary Plan Wind Tunnel, the NMA Polysonic Wind Tunnel, and the National Transonic Facility will be discussed. Concluding remarks will close the presentation.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 477-508; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-03
    Description: This paper presents the work done to date by the authors on developing an efficient approach to multipoint design and applying it to the design of the HSR TCA configuration. While the title indicates that this exploratory study has been performed using the TLNS3DMB flow solver and the CDISC design method, the CDISC method could have been used with any flow solver, and the multipoint design approach does not require the use of CDISC. The goal of the study was to develop a multipoint design method that could achieve a design in about the same time as 10 analysis runs.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 561-587; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-12-03
    Description: The Natural Flow Wing design philosophy was developed for improving performance characteristics of highly-swept fighter aircraft at cruise and maneuvering conditions across the Mach number range (from Subsonic through Supersonic). The basic philosophy recognizes the flow characteristics that develop on highly swept wings and contours the surface to take advantage of those flow characteristics (e.g., forward facing surfaces in low pressure regions and aft facing surfaces in higher pressure regions for low drag). Because the wing leading edge and trailing edge have multiple sweep angles and because of shocks generated on nacelles and diverters, a viscous code was required to accurately define the surface pressure distributions on the wing. A method of generating the surface geometry to take advantage of those surface pressures (as well as not violating any structural constraints) was developed and the resulting geometries were analyzed and compared to a baseline configuration. This paper will include discussions of the basic Natural Flow Wing design philosophy, the application of the philosophy to an HSCT vehicle, and preliminary wind-tunnel assessment of the NFW HSCT vehicle.
    Keywords: Aircraft Design, Testing and Performance
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Pt. 2; 597-639; NASA/CP-1999-209690/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-12-03
    Description: A flight program using the SR-71 airplane to validate sonic boom technologies for High-Speed Commercial Transport (HSCT) operation and potentially for low- or softened-boom design configurations is described. This program employs a shaped signature modification to the SR-71 airplane which is designed to demonstrate computational fluid dynamics (CFD) design technology at a full-scale HSCT operating condition of Mach 1.8 at 48,000 feet altitude. Test plans call for measurements in the near-field, at intermediate propagation altitudes, and through the more turbulent boundary layer near the Earth surface. The shaped signature modification to the airplane is comprised of added cross-section areas on the underside of the airplane forward of the wing and engine nacelles. Because the flight demonstration does not approach maximum SR-71 altitude or Mach number, the airplane provides more than adequate performance and maneuver margins for safe operation of the modified airplane. Probe airplane measurements in the near-field will use fast response pressure sensors. Far-field and ground-based boom measurements will use high response microphones or conventional sonic boom field recorders. Scope of the planned demonstration flights also includes ground level measurements during conditions which cause minimal signature distortion and conditions which cause high distortion of the signature.
    Keywords: Aircraft Design, Testing and Performance
    Type: High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing; 237-248; NASA/CP-1999-209699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-12-03
    Description: A performance assessment of eight low-boom high speed civil transport (HSCT) configurations and a reference HSCT configuration has been performed. Although each of the configurations was designed with different engine concepts, for consistency, a year 2005 technology, 0.4 bypass ratio mixed-flow turbofan (MFTF) engine was used for all of the performance assessments. Therefore, all original configuration nacelles were replaced by a year 2005 MFRF nacelle design which corresponds to the engine deck utilized. The engine thrust level was optimized to minimize vehicle takeoff gross weight. To preserve the configuration's sonic-boom shaping, wing area was not optimized or altered from its original design value. Performance sizings were completed when possible for takeoff balanced field lengths of 11,000 ft and 12,000 ft, not considering FAR Part 36 Stage III noise compliance. Additionally, an arbitrary sizing with thrust-to-weight ratio equal to 0.25 was performed, enabling performance levels to be compared independent of takeoff characteristics. The low-boom configurations analyzed included designs from the Boeing Commercial Airplane Group, Douglas Aircraft Company, Ames Research Center, and Langley Research Center. This paper discusses the technology level assumptions, mission profile, analysis methodologies, and the results of the assessment. The results include maximum lift-to-drag ratios, total fuel consumption, number of passengers, optimum engine sizing plots, takeoff performance, mission block time, and takeoff gross weight for all configurations. Results from the low-boom configurations are also compared with a non-low-boom reference configuration. Configuration dependent advantages or deficiencies are discussed as warranted.
    Keywords: Aircraft Design, Testing and Performance
    Type: High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing; 149-170; NASA/CP-1999-209699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-12-03
    Description: Two additional low-boom F-functions have been described for use in designing low-boom, shaped-pressure-signature, supersonic-cruise aircraft. Based on the minimization studies of Seebass and George, the drag-nose shock strength trade-off modification of Darden, and the practical modification of Haglund, their use can aid in the design of conceptual low-boom aircraft, provide additional flexibility in the shaping of the low-boom aircraft nose section, and extend the applicability of shaped-pressure-signature methodology.
    Keywords: Aircraft Design, Testing and Performance
    Type: High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing; 1-12; NASA/CP-1999-209699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-12-03
    Description: The crack propagation life of tested specimens has been repeatedly shown to strongly depend on the loading history. Overloads and extended stress holds at temperature can either retard or accelerate the crack growth rate. Therefore, to accurately predict the crack propagation life of an actual component, it is essential to approximate the true loading history. In military rotorcraft engine applications, the loading profile (stress amplitudes, temperature, and number of excursions) can vary significantly depending on the type of mission flown. To accurately assess the durability of a fleet of engines, the crack propagation life distribution of a specific component should account for the variability in the missions performed (proportion of missions flown and sequence). In this report, analytical and experimental studies are described that calibrate/validate the crack propagation prediction capability for a disk alloy under variable amplitude loading. A crack closure based model was adopted to analytically predict the load interaction effects. Furthermore, a methodology has been developed to realistically simulate the actual mission mix loading on a fleet of engines over their lifetime. A sequence of missions is randomly selected and the number of repeats of each mission in the sequence is determined assuming a Poisson distributed random variable with a given mean occurrence rate. Multiple realizations of random mission histories are generated in this manner and are used to produce stress, temperature, and time points for fracture mechanics calculations. The result is a cumulative distribution of crack propagation lives for a given, life limiting, component location. This information can be used to determine a safe retirement life or inspection interval for the given location.
    Keywords: Aircraft Propulsion and Power
    Type: Design Principles and Methods for Aircraft Gas Turbine Engines; 38-1 - 38-8; RTO-MP-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-12-03
    Description: Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.
    Keywords: Aircraft Design, Testing and Performance
    Type: CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999; Pt. 2; 665-678; NASA/CP-1999-209136/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-12-03
    Description: The design process for developing the natural flow wing design on the HSR arrow wing configuration utilized several design tools and analysis methods. Initial fuselage/wing designs were generated with inviscid analysis and optimization methods in conjunction with the natural flow wing design philosophy. A number of designs were generated, satisfying different system constraints. Of the three natural flow wing designs developed, the NFWAc2 configuration is the design which satisfies the constraints utilized by McDonnell Douglas Aerospace (MDA) in developing a series of optimized configurations; a wind tunnel model of the MDA designed OPT5 configuration was constructed and tested. The present paper is concerned with the viscous analysis and inverse design of the arrow wing configurations, including the effects of the installed diverters/nacelles. Analyses were conducted with OVERFLOW, a Navier-Stokes flow solver for overset grids. Inverse designs were conducted with OVERDISC, which couples OVERFLOW with the CDISC inverse design method. An initial system of overset grids was generated for the OPT5 configuration with installed diverters/nacelles. An automated regridding process was then developed to use the OPT5 component grids to create grids for the natural flow wing designs. The inverse design process was initiated using the NFWAc2 configuration as a starting point, eventually culminating in the NFWAc4 design-for which a wind tunnel model was constructed. Due to the time constraints on the design effort, initial analyses and designs were conducted with a fairly coarse grid; subsequent analyses have been conducted on a refined system of grids. Comparisons of the computational results to experiment are provided at the end of this paper.
    Keywords: Aircraft Design, Testing and Performance
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Pt. 2; 641-664; NASA/CP-1999-209690/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-12-03
    Description: The goal in this effort is to analyze the baseline TCA concept at transonic and supersonic cruise, then apply the natural flow wing design concept to obtain multipoint performance improvements. Analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between the overset grids.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 544-560; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-12-03
    Description: Unsteady blade row interactions in turbomachines generate discrete-frequency tones at blade pass frequency and its harmonics. Specific circumferential acoustic modes are generated. However, only certain of these modes propagate upstream and downstream to the far field, with these the discrete frequency noise received by an observer. This paper is directed at experimentally demonstrating the viability of active noise control utilizing active airfoils to generate propagating spatial modes that interact with and simultaneously cancel the upstream and downstream propagating acoustic modes. This is accomplished by means of fundamental experiments performed in the Purdue Annular Cascade Research Facility configured with 16 rotor blades and 18 stator vanes. At blade pass frequency, only the k(sub 0) = -2 spatial mode propagates. Significant simultaneous noise reductions are achieved for these upstream and downstream propagating spatial modes over a wide range of operating conditions.
    Keywords: Aircraft Propulsion and Power
    Type: Design Principles and Methods for Aircraft Gas Turbine Engines; 15-1 - 15-11; RTO-MP-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-12-03
    Description: A comprehensive assessment is made of the predictive capability of the average passage flow model as applied to multi-stage axial flow compressors. The average passage flow model describes the time average flow field within a typical passage of a blade row embedded in a multi-stage configuration. In this work data taken within a four and one-half stage large low speed compressor will be used to assess the weakness and strengths of the predictive capabilities of the average passage flow model. The low speed compressor blading is of modern design and employs stators with end-bends. Measurements were made with slow and high response instrumentation. The high response measurements revealed the velocity components of both the rotor and stator wakes. Based on the measured wake profiles it will be argued that blade boundary layer transition is playing an important role in setting compressor performance. A model which mimics the effects of blade boundary layer transition within the frame work of the average passage model will be presented. Simulations which incorporated this model showed a dramatic improvement in agreement with data.
    Keywords: Aircraft Propulsion and Power
    Type: Design Principles and Methods for Aircraft Gas Turbine Engines; 21-1 - 21-25; RTO-MP-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-12-03
    Description: Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance in next generation turbine engines. Advanced seals have been identified as critical in meeting engine goals for specific fuel consumption, thrust-to-weight, emissions, durability and operating costs. NASA and the industry are identifying and developing engine and sealing technologies that will result in dramatic improvements and address the goals for engines entering service in the 2005-2007 time frame. This paper provides an overview of advanced seal technology requirements and highlights the results of a preliminary design effort to implement advanced seals into a regional aircraft turbine engine. This study examines in great detail the benefits of applying advanced seals in the high pressure turbine region of the engine. Low leakage film-riding seals can cut in half the estimated 4% cycle air currently used to purge the high pressure turbine cavities. These savings can be applied in one of several ways. Holding rotor inlet temperature (RIT) constant the engine specific fuel consumption can be reduced 0.9%, or thrust could be increased 2.5%, or mission fuel burn could be reduced 1.3%. Alternatively, RIT could be lowered 20 'F resulting in a 50% increase in turbine blade life reducing overall regional aircraft maintenance and fuel bum direct operating costs by nearly 1%. Thermal, structural, secondary-air systems, safety (seal failure and effect), and emissions analyses have shown the proposed design is feasible.
    Keywords: Aircraft Propulsion and Power
    Type: Design Principles and Methods for Aircraft Gas Turbine Engines; 11-1 - 11-13; RTO-MP-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-12-03
    Description: This paper presents a coupled analysis of the interaction between mainpath and secondary flowpaths in gas turbines using transient simulations. Some of the topics include: 1) Need for Coupled Analysis; 2) Primary-Secondary Coupling Schematic; 3) Secondary Flow Requirement; 4) Objectives of Present Methodology; 5) Current Methodologies Recap; 6) Proposed Coupled Code Methodology; 7) Description of SCISEAL Code; 8) Description of Turbo Code; 9) Code Coupling/Interface Issues; and 10) Current Interface Strategy. This paper is presented in viewgraph form.
    Keywords: Aircraft Propulsion and Power
    Type: 1998 NASA Seal/Secondary Air System Workshop; Volume 1; 309-343; NASA/CP-1999-208916/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: NASA's General Aviation Propulsion (GAP) program is a cooperative program between government and industry. NASA's strategic direction is described by the "Three Pillars" and their Objectives as set forth by NASA Administrator Daniel S. Goldin. NASA's Three Pillars are: 1) Global Civil Aviation, 2) Revolutionary Technology Leaps, and 3) Access To Space.
    Keywords: Aircraft Propulsion and Power
    Type: 1998 NASA Seal/Secondary Air System Workshop; Volume 1; 55-77; NASA/CP-1999-208916/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-12-03
    Description: A formal method is described to quantify structural damage tolerance and reliability in the presence of multitude of uncertainties in turbine engine components. The method is based at the materials behaviour level where primitive variables with their respective scatters are used to describe the behavior. Computational simulation is then used to propagate those uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from these methods demonstrate that the methods are mature and that they can be used for future strategic projections and planning to assure better, cheaper, faster, products for competitive advantages in world markets. These results also indicate that the methods are suitable for predicting remaining life in aging or deteriorating structures.
    Keywords: Aircraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2004-12-03
    Description: A general overview and summary of recent advances in experiment design for high performance aircraft is presented, along with results from flight tests. General theoretical background is included, with some discussion of various approaches to maneuver design. Flight test examples from the F-18 High Alpha Research Vehicle (HARV) are used to illustrate applications of the theory. Input forms are compared using Cramer-Rao bounds for the standard errors of estimated model parameters. Directions for future research in experiment design for high performance aircraft are identified.
    Keywords: Aircraft Design, Testing and Performance
    Type: System Identification for Integrated Aircraft Development and Flight Testing; 8-1 - 8-17; RTO-MP-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-12-03
    Description: This paper describes a flight test demonstration of a system for identification of the stability and handling qualities parameters of a helicopter-slung load configuration simultaneously with flight testing, and the results obtained. Tests were conducted with a UH-60A Black Hawk at speeds from hover to 80 kts. The principal test load was an instrumented 8 x 6 x 6 ft cargo container. The identification used frequency domain analysis in the frequency range to 2 Hz, and focussed on the longitudinal and lateral control axes since these are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities. Results were computed for stability margins, handling qualities parameters and load pendulum stability. The computations took an average of 4 minutes before clearing the aircraft to the next test point. Important reductions in handling qualities were computed in some cases, depending on control axis and load-sling combinations. A database, including load dynamics measurements, was accumulated for subsequent simulation development and validation.
    Keywords: Aircraft Design, Testing and Performance
    Type: System Identification for Integrated Aircraft Development and Flight Testing; 10-1 - 10-18; RTO-MP-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: This activity is part of the Wind Tunnel Database and Wind Tunnel Data Corrections Programs. The main purpose of this test was to evaluate the aerodynamic performance of the TCA Baseline configuration around the supersonic cruise point.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 2; 1461-1503; NASA/CP-1999-209692/VOL1/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-06-07
    Description: This paper describes the video model deformation technique (VMD) used at five NASA facilities and the projection moire interferometry (PMI) technique used at two NASA facilities. Comparisons between the two techniques for model deformation measurements are provided. Facilities at NASA-Ames and NASA-Langley where deformation measurements have been made are presented. Examples of HSR model deformation measurements from the Langley Unitary Wind Tunnel, Langley 16-foot Transonic Wind Tunnel, and the Ames 12-foot Pressure Tunnel are presented. A study to improve and develop new targeting schemes at the National Transonic Facility is also described. The consideration of milled targets for future HSR models is recommended when deformation measurements are expected to be required. Finally, future development work for VMD and PMI is addressed.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 2; 1569-1588; NASA/CP-1999-209692/VOL1/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-06-07
    Description: This presentation highlights the activities that researchers at the NASA Lewis Research Center (LeRC) have been and will be involved in to assess integrated nozzle performance. Three different test activities are discussed. First, the results of the Propulsion Airframe Integration for High Speed Research 1 (PAIHSR1) study are presented. The PAIHSR1 experiment was conducted in the LeRC 9 ft x l5 ft wind tunnel from December 1991 to January 1992. Second, an overview of the proposed Mixer/ejector Inlet Distortion Study (MIDIS-E) is presented. The objective of MIDIS-E is to assess the effects of applying discrete disturbances to the ejector inlet flow on the acoustic and aero-performance of a mixer/ejector nozzle. Finally, an overview of the High-Lift Engine Aero-acoustic Technology (HEAT) test is presented. The HEAT test is a cooperative effort between the propulsion system and high-lift device research communities to assess wing/nozzle integration effects. The experiment is scheduled for FY94 in the NASA Ames Research Center (ARC) 40 ft x 80 ft Low Speed Wind Tunnel (LSWT).
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 33-1 - 33-19; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-06-07
    Description: Interest in developing a new generation supersonic transport has increased in the past several years. Current projections indicate this aircraft would cruise at approximately Mach 2.4, have a range of 5000 nautical miles and carry at least 250 passengers. A large market for such an aircraft will exist in the next century due to a predicted doubling of the demand for long range air transportation by the end of the century and the growing influence of the Pacific Rim nations. Such a proposed aircraft could more than halve the flying time from Los Angeles to Tokyo. However, before a new economically feasible supersonic transport can be built, many key technologies must be developed. Among these technologies is noise suppression. Propulsion systems for a supersonic transport using current technology would exceed acceptable noise levels. All new aircraft must satisfy FAR 36 Stage III noise regulations. The largest area of concern is the noise generated during takeoff. A concerted effort under NASA's High Speed Research (HSR) program has begun to address the problem of noise suppression. One of the most promising concepts being studied in the area of noise suppression is the mixer/ejector nozzle. This study analyzes a typical noise suppressing mixer ejector nozzle at take off conditions, using a Full Navier-Stokes (FNS) computational fluid dynamics (CFD) code.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 16-1 - 16-32; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-06-07
    Description: Outline of presentation are: (1) Review of experimental apparatus. (2) Effect of natural screech of jet mixing; converging nozzle, underexpanded jet and converging-diverging nozzle, design pressure.(3) Effect of induced screech on jet mixing: produced by paddles in shear layers, similar to edge tones, and converging-diverging nozzle, design pressure. (4) Effect of paddles on near-field jet noise. and (5) Concluding remarks.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 9-1 - 9-15; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-06-07
    Description: This paper discusses the development of a process to generate a CFD database for the non-linear loads process capability for critical loads evaluation at Boeing Long Beach. The CFD simulations were performed for wing/body configurations at high angles of attack and Reynolds numbers with transonic and elastic deflection effects. Convergence criteria had to be tailored for loads applications rather than the usual drag performance. The time-accurate approach was subsequently adopted in order to improve convergence and model possible unsteadiness in the flowfield. In addition, uncertainty issues relating to the turbulence model and grid resolution in areas of high vortical flows were addressed and investigated for one of the cases.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 2; 1817-1871; NASA/CP-1999-209692/VOL1/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-06-07
    Description: The motivation of the testing was to reduce noise generated by eddy Mach wave emission via enhanced mixing in the jet plume. This was to be accomplished through the use of an ejector shroud, which would bring in cooler ambient fluid to mix with the hotter jet flow. In addition, the contour of the mixer, with its chutes and lobes, would accentuate the merging of the outer and inner flows. The objective of the focused schlieren work was to characterize the mixing performance inside of the ejector. Using flow visualization allowed this to be accomplished in a non-intrusive manner.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 15-1 - 15-14; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Only recently has computational fluid dynamics (CFD) been relied upon to predict the flow details of advanced nozzle concepts. Computer hardware technology and flow solving techniques are advancing rapidly and CFD is now being used to analyze such complex flows. Validation studies are needed to assess the accuracy, reliability, and cost of such CFD analyses. At NASA Lewis, the PARC2D/3D full Navier-Stokes (FNS) codes are being applied to HSR-type nozzles. This report presents the results of two such PARC FNS analyses. The first is an analysis of the Pratt and Whitney 2D mixer-ejector nozzle, conducted by Dr. Yunho Choi (formerly of Sverdrup Technology-NASA Lewis Group). The second is an analysis of NASA-Langley's axisymmetric single flow plug nozzle, conducted by the author.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 18-1 - 18-21; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-06-07
    Description: The investigation includes carry out fundamental experiments studying mechanisms of effect: (1) experiments on subsonic and supersonic jets to assess influence of compressibility, (2) parametric study on tab geometry to optimize effect for given flow blockage (this effort led to "delta-tab"), (3) quantify mixing enhancement in the jet, and (4) analyze mechanism of streamwise vorticity generation.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 10-1 - 10-19; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-06-07
    Description: The theory of mixer-ejectors for noise suppression is illustrated in this cartoon. Since jet noise SPL scales as velocity to the eighth power and diameter squared, increasing the jet diameter while lowering its velocity and keeping thrust constant decreases the noise. However, in supersonic craft, the drag penalty for increasing diameter at supersonic cruise makes this option very expensive. One would like to have a large engine during takeoff which could be shrunk during cruise. The retractable ejector is such an expandable engine. If the mixer flow can be expanded to the size of the ejector exit, the noise generated downstream of the ejector will be much less than the small diameter mixer nozzle alone. Of course, this also requires that the noise created in expanding the flow to fill the ejector be absorbed by a liner in the ejector walls so that none of this noise is heard. Since this mixing of internal hot gas and external cold air must take place in as short a distance as possible, the mixer must be very effective and therefore probably much noisier than a simple nozzle.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 7-1 - 7-21; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-08-29
    Description: Established analyses of conventional ramjet/scramjet performance characteristics indicate that a considerable decrease in efficiency can be expected at off-design flight conditions. This can be explained, in large part, by the deterioration of intake mass flow and limited inlet compression at low flight speeds and by the onset of thrust degradation effects associated with increased burner entry temperature at high flight speeds. In combination, these effects tend to impose lower and upper Mach number limits for practical flight. It has been noted, however, that Magnetohydrodynamic (MHD) energy management techniques represent a possible means for extending the flight Mach number envelope of conventional engines. By transferring enthalpy between different stages of the engine cycle, it appears that the onset of thrust degradation may be delayed to higher flight speeds. Obviously, the introduction of additional process inefficiencies is inevitable with this approach, but it is believed that these losses are more than compensated through optimization of the combustion process. The fundamental idea is to use MHD energy conversion processes to extract and bypass a portion of the intake kinetic energy around the burner. We refer to this general class of propulsion system as an MHD-bypass engine. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass airbreathing hypersonic engines using ideal gasdynamics and fundamental thermodynamic principles.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-08-29
    Description: Experimental data have shown that combustor temperature non-uniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location (clocking) of the hot streak relative to the first-stage vane airfoils can be used to minimize the adverse effects of the hot streak. The effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have also been evaluated. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a single-stage high-pressure turbine operating in high subsonic flow. In addition to a simulation of the baseline turbine, simulations have been performed for circular and elliptical hot streaks of varying sizes in an effort to represent different combustor designs. The predicted results for the baseline simulation show good agreement with the available experimental data. The results of the hot streak simulations indicate: that a) elliptical hot streaks mix more rapidly than circular hot streaks, b) for small hot streak surface area the average rotor temperature is not a strong function of hot streak temperature ratio or shape, and c) hot streaks with larger surface area interact with the secondary flows at the rotor hub endwall, generating an additional high temperature region.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-08-29
    Description: This paper reports on the development of a compact radiation monitor/dosimeter, the LIULIN-3M, and on extended measurements conducted on the ground and on commercial aircraft on domestic and international flights.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-06-07
    Description: A 1/6-scale F-18 wind-tunnel model was tested in the Transonic Dynamics Tunnel at the NASA Langley Research Center as part of the Actively Controlled Response Of Buffet-Affected Tails (ACROBAT) program to assess the use of active controls in reducing vertical tail buffeting. The starboard vertical tail was equipped with an active rudder and other aerodynamic devices, and the port vertical tail was equipped with piezoelectric actuators. The tunnel conditions were atmospheric air at a dynamic pressure of 14 psf. By using single-input-single-output control laws at gains well below the physical limits of the control effectors, the power spectral density of the root strains at the frequency of the first bending mode of the vertical tail was reduced by as much as 60 percent up to angles of attack of 37 degrees. Root mean square (RMS) values of root strain were reduced by as much as 19 percent. Stability margins indicate that a constant gain setting in the control law may be used throughout the range of angle of attack tested.
    Keywords: Aircraft Design, Testing and Performance
    Type: The Second Joint NASA/FAA/DoD Conference on Aging Aircraft; Pt. 2; 821-830; NASA/CP-1999-208982/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Although several viable concepts have been investigated during recent years, time constraints do not allow for a detailed discussion of each. Therefore, only a small segment of these concepts will be discussed during this workshop. Emphasis will be placed on canards, forebody chimes and wing fins. The majority of the data presented were obtained using a 0.01542 scale representation of the HSR Reference-H model. This model was similar in planform, and incorporated fullspan leading-edge flaps and segmented trailing-edge flaps. The high-lift configuration of leading-edges at 30 degrees, and trailing-edges at 10 degrees are shown. The wing had no twist or camber. The forebody and fuselage were simple bodies of revolution. A detachable aft fuselage, complete with empennage, was incorporated during the chine study, and removed during the canard tests. The overall length (including aft fuselage) was approximately 58 inches; and the span was 24 inches.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 2; 2385-2407; NASA/CP-1999-209691/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: An Aftbody Closure Test Program is necessary in order to provide aftbody drag increments that can be added to the drag polars produced by testing the performance models (models 2a and 2b). These models had a truncated fuselage, thus, drag was measured for an incomplete configuration. In addition, trim characteristics cannot be determined with a model with a truncated fuselage. The stability and control tests were conducted with a model (model 20) having a flared aftbody. This type aftbody was needed in order to provide additional clearance between the base of the model and the sting. This was necessary because the high loads imposed on the model for stability and control tests result in large model deflections. For this case, the aftbody model will be used to validate stability and control performance.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 2; 1545-1568; NASA/CP-1999-209692/VOL1/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-06-07
    Description: The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.
    Keywords: Aircraft Design, Testing and Performance
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 2; 1043-1069; NASA/CP-1999-209692/VOL1/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-06-07
    Description: The United States has embarked on a national effort to develop the technology necessary to produce a Mach 2.4 High Speed Civil Transport (HSCT) for entry into service by the year 2005. The viability of this aircraft is contingent upon its meeting both economic and environmental requirements. Two engine components have been identified as critical to the environmental acceptability of the HSCT. These include a combustor with significantly lower emissions than are feasible with current technology, and a lightweight exhaust nozzle that meets community noise standards. The Enabling Propulsion Materials (EPM) program will develop the advanced structural materials, materials fabrication processes, structural analysis and life prediction tools for the HSCT combustor and low noise exhaust nozzle. This is being accomplished through the coordinated efforts of the NASA Lewis Research Center, General Electric Aircraft Engines and Pratt & Whitney. The mission of the EPM Exhaust Nozzle Team is to develop and demonstrate this technology by the year 1999 to enable its timely incorporation into HSCT propulsion systems.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 35-1 - 35-21; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-06-07
    Description: This paper describes work currently in progress at Langley on liner concepts that employ structures that may be suitable for broadband exhaust noise attenuation in high speed flow environments and at elevated temperatures characteristic of HSCT applications. Because such liners will need to provide about 10 dB suppression over a 2 to 3 octave frequency range, conventional single-degree-of-freedom resonant structures will not suffice. Bulk absorbers have the needed broadband absorption characteristic; however, at lower frequencies they tend to be inefficient.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 34-1 - 34-17; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-06-07
    Description: Based on extensive work performed by Dr. Thomas H. Sobota (Advanced Projects Research Incorporated (APRI)) on swirling flows in circular-to-rectangular transition sections, a model assembly was designed and fabricated in support of a Phase 1 Small Business Innovation Research Contract between the NASA-Langley Research Center and APRI. This assembly was acoustically tested as part of this Phase 1 effort, the goal being to determine whether the controlled introduction of axial vorticity could affect the various noise generation mechanisms present in an underexpanded supersonic rectangular jet.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 14-1 - 14-15; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-06-07
    Description: This paper discusses a test that was conducted jointly by Pratt & Whitney Aircraft Engines and NASA Lewis Research Center. The test was conducted in NASA's 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT). The test setup, methods, and aerodynamic results of this test are discussed. Acoustical results are discussed in a separate paper by J. Bridges and J. Marino.
    Keywords: Aircraft Propulsion and Power
    Type: First NASA/Industry High Speed Research Program Nozzle Symposium; 6-1 - 6-19; NASA/CP-1999-209423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: NASA has licensed technology to a Washington state company for improving the performance, stability and control of helicopters. Under the agreement, Boundary Layer Research, Inc., Everett, Wash., will commercially market an aerodynamic device called "tailboom strakes." The license will allow the company to market the NASA-patented device to civil and military operators of single rotor helicopters. For the past year Boundary Layer Research has been working with NASA Langley Research Center, Hampton, Va., to explore the viability of helicopter strake technology developed by a NASA-Army team of researchers. The technology is applicable to all single rotor helicopters and is patented by NASA as a "Low Speed Anti-Torque System." The company has applied for Federal Aviation Administration certification to make the technology available to civil operators and owners.
    Keywords: Aircraft Design, Testing and Performance
    Type: Spinoff 1999; 51; NASA/NP-1999-10-254-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-05
    Description: The NASA Lewis Research Center is capitalizing on breakthroughs in foil air bearing performance, tribological coatings, and computer analyses to formulate the Oil-free Turbomachinery Program. The program s long-term goal is to develop an innovative, yet practical, oil-free aeropropulsion gas turbine engine that floats on advanced air bearings. This type of engine would operate at higher speeds and temperatures with lower weight and friction than conventional oil-lubricated engines. During startup and shutdown, solid lubricant coatings are required to prevent wear in such engines before the self-generating air-lubrication film develops. NASA s Tribology Branch has created PS304, a chrome-oxide-based plasma spray coating specifically tailored for shafts run against foil bearings. PS304 contains silver and barium fluoride/calcium fluoride eutectic (BaF2/CaF2) lubricant additives that, together, provide lubrication from cold start temperatures to over 650 C, the maximum use temperature for foil bearings. Recent lab tests show that bearings lubricated with PS304 survive over 100 000 start-stop cycles without experiencing any degradation in performance due to wear. The accompanying photograph shows a test bearing after it was run at 650 C. The rubbing process created a "polished" surface that enhances bearing load capacity.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-05
    Description: NASA Lewis Research Center's CometBoards Test Bed was used to create regression and neural network models for a High-Speed Civil Transport (HSCT) aircraft. Both approximation models that replaced the actual analysis tool predicted the aircraft response in a trivial computational effort. The models allow engineers to quickly study the effects of design variables on constraint and objective values for a given aircraft configuration. For example, an engineer can change the engine size by 1000 pounds of thrust and quickly see how this change affects all the output values without rerunning the entire simulation. In addition, an engineer can change a constraint and use the approximation models to quickly reoptimize the configuration. Generating the neural network and the regression models is a time-consuming process, but this exercise has to be carried out only once. Furthermore, an automated process can reduce calculations substantially.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-05
    Description: The Mach 10 Hyper-X ground test program is described, in which experimental flowpath parametric testing is being done in the HYPULSE facility. This facility has been upgraded for this effort by adding a reflected-shock-tunnel operating mode to access test conditions at Mach 10 and below. A large test section and hypersonic nozzle have been installed to provide full-scale engine test capability and the instrumentation systems have been expanded. A model of the Hyper-X engine flowpath has been built for freejet testing in the shock tunnel at both Mach 7 and 10 flight conditions. The model has over 180 instrumentation ports, a pitot rake mountable at the engine inlet or exit, and optical windows for visualization of the isolator, combustor, and nozzle. Testing in HYPULSE has been completed at Mach 7 conditions to provide a link between pulse facility data and the large Hyper-X performance database that is being accumulated in long-duration facilities. Comparisons of Mach 7 data with computational predictions and with data recently acquired for an identical flowpath being tested in the NASA 8-foot High Temperature Tunnel are presented.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-05
    Description: Field measurement of noise radiated from flight vehicles is an important element of aircraft noise research programs. At NASA Langley, a dedicated effort that spans over two decades was devoted to the development of acoustic measurement systems to support the NASA noise research programs. The new challenge for vehicle operational noise reduction through varying glide slope and flight path require noise measurement to be made over a very large area under the vehicle flight path. Such a challenge can be met through the digital remote system currently under final development at NASA Langley.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-05
    Description: Aircraft icing occurs when a plane flies through a cloud of supercooled water droplets. When the droplets impinge on aircraft components, ice starts to form and accumulate. This accumulation of ice severely increases the drag and lift of the aircraft, and can ultimately lead to catastrophic failures and even loss of life. Knowledge of the air pressures on the surfaces of ice and models in wind tunnels allows researchers to better predict the effects that different icing conditions will have on the performance of real aircraft. The use of pressure-sensitive paint (PSP) has provided valuable information on similar problems in conventional wind tunnel testing. In NASA Lewis Research Center Icing Research Tunnel, Lewis researchers recently demonstrated the world s first application of PSP on actual ice formed on a wind tunnel model. This proof-of-concept test showed that a new paint formulation developed under a grant by the University of Washington adheres to both the ice shapes and cold aluminum models, provides a uniform coating that preserves the detailed ice shape structure, and responds to simulated pressure changes.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-05
    Description: Internal gas temperature is one of the most fundamental parameters related to engine efficiency and emissions production. The most common methods for measuring gas temperature are physical probes, such as thermocouples and thermistors, and optical methods, such as Coherent Anti Stokes Raman Spectroscopy (CARS) or Rayleigh scattering. Probes are relatively easy to use, but they are intrusive, their output must be corrected for errors due to radiation and conduction, and their upper use temperature is limited. Optical methods are nonintrusive, and they measure some intrinsic property of the gas that is directly related to its temperature (e.g., lifetime or the ratio of line strengths). However, optical methods are usually difficult to use, and optical access is not always available. Lately, acoustic techniques have been receiving some interest as a way to overcome these limitations.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-05
    Description: The spread of a flame over solid fuel is not only a fundamental textbook combustion phenomenon, but also the central element of destructive fires that cause tragic loss of life and property each year. Throughout history, practical measures to prevent and fight fires have been developed, but these have often been based on lessons learned in a costly fire. Since the 1960 s, scientists and engineers have employed powerful tools of scientific research to understand the details of flame spread and how a material can be rendered nonflammable. High-speed computers have enabled complex flame simulations, whereasand lasers have provided measurements of the chemical composition, temperature, and air velocities inside flames. The microgravity environment has emerged as the third great tool for these studies. Spreading flames are complex combinations of chemical reactions and several physical processes including the transport of oxygen and fuel vapor to the flame and the transfer of heat from the flame to fresh fuel and to the surroundings. Depending on its speed, air motion in the vicinity of the flame can affect the flame in substantially different ways. For example, consider the difference between blowing on a campfire and blowing out a match. On Earth, gravity induces air motion because of buoyancy (the familiar rising hot gases); this process cannot be controlled experimentally. For theoreticians, buoyant air motion complicates the problem modeling of flame spread beyond the capacity of modern computers to simulate. The microgravity environment provides experimental control of air motion near spreading flames, with results that can be compared with detailed theory. The Solid Surface Combustion Experiment (SSCE) was designed to obtain benchmark flame spreading data in quiescent test atmospheres--the limiting case of flames spreading. Professor Robert Altenkirch, Vice President for Research at Mississippi State University, proposed the experiment concept, and the NASA Lewis Research Center designed, built, and tested the SSCE hardware. It was the first microgravity science experiment built by Lewis for the space shuttle and the first combustion science experiment flown in space.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-05
    Description: With the advent of new, more stringent noise regulations in the next century, aircraft engine manufacturers are investigating new technologies to make the current generation of aircraft engines as well as the next generation of advanced engines quieter without sacrificing operating performance. A current NASA initiative called the Advanced Subsonic Technology (AST) Program has set as a goal a 6-EPNdB (effective perceived noise) reduction in aircraft engine noise relative to 1992 technology levels by the year 2000. As part of this noise program, and in cooperation with the Allison Engine Company, an advanced, low-noise, high-bypass-ratio fan stage design and several advanced technology stator vane designs were recently tested in NASA Lewis Research Center's 9- by 15-Foot Low-Speed Wind Tunnel (an anechoic facility). The project was called the NASA/Allison Low Noise Fan.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-05
    Description: A Two-Dimensional Bifurcated (2DB) Inlet was successfully tested in NASA Lewis Research Center s 10- by 10-Foot Supersonic Wind Tunnel. These tests were the culmination of a collaborative effort between the Boeing Company, General Electric, Pratt & Whitney, and Lewis. Extensive support in-house at Lewis contributed significantly to the progress and accomplishment of this test. The results, which met or exceeded many of the High-Speed Research (HSR) Program goals, were used to revise system studies within the HSR Program. The HSR Program is focused on developing low-noise, low-polluting, high-efficiency supersonic commercial aircraft. A supersonic inlet is an important component of an efficient, low-noise vehicle.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-05
    Description: NASA s Advanced Subsonic Technology (AST) Program seeks to develop new technologies to increase the fuel efficiency of commercial aircraft engines, improve the safety of engine operation, and reduce emissions and engine noise. For new designs of ducted fans, compressors, and turbines to achieve these goals, a basic aeroelastic requirement is that there should be no flutter or high resonant blade stresses in the operating regime. For verifying the aeroelastic soundness of the design, an accurate prediction/analysis code is required. Such a three-dimensional viscous propulsion aeroelastic code, named TURBO-AE, is being developed at the NASA Lewis Research Center. The development and verification of the flutter version of the TURBO-AE code (version 4) has been completed. Validation of the code is partially complete.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-05
    Description: The NASA Lewis Research Center is developing an environment for analyzing and designing aircraft engines-the Numerical Propulsion System Simulation (NPSS). NPSS will integrate multiple disciplines, such as aerodynamics, structure, and heat transfer, and will make use of numerical "zooming" on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS uses the latest computing and communication technologies to capture complex physical processes in a timely, cost-effective manner. The vision of NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Through the NASA/Industry Cooperative Effort agreement, NASA Lewis and industry partners are developing a new engine simulation called the National Cycle Program (NCP). NCP, which is the first step toward NPSS and is its initial framework, supports the aerothermodynamic system simulation process for the full life cycle of an engine. U.S. aircraft and airframe companies recognize NCP as the future industry standard common analysis tool for aeropropulsion system modeling. The estimated potential payoff for NCP is a $50 million/yr savings to industry through improved engineering productivity.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-02
    Description: Future launch vehicles must be lightweight, fully reusable and easily maintained if low-cost access to space is to be achieved. The goal of achieving an economically viable Single-Stage-to-Orbit (SSTO) Reusable Launch Vehicle (RLV) is not easily achieved and success will depend to a large extent on having an integrated and optimized total system. A series of trade studies were performed to meet three objectives. First, to provide structural weights and parametric weight equations as inputs to configuration-level trade studies. Second, to identify, assess and quantify major weight drivers for the RLV airframe. Third, using information on major weight drivers, and considering the RLV as an integrated thermal structure (composed of thrust structures, tanks, thermal protection system, insulation and control surfaces), identify and assess new and innovative approaches or concepts that have the potential for either reducing airframe weight, improving operability, and/or reducing cost.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-02
    Description: An extensive numerical and experimental study of airframe noise mechanisms associated with a subsonic high-lift system has been performed at NASA Langley Research Center (LaRC). Investigations involving both steady and unsteady computations and experiments on small-scale models with part-span flaps and full-span flaps are presented. Both surface (steady and unsteady pressure measurements, hot films, oil flows, pressure sensitive paint) and off-surface (5 holeprobe, particle-imaged velocimetry, laser velocimetry, laser light sheet measurements) were taken in the LaRC Quiet Flow Facility (QFF) and several hard-wall tunnels. Experiments in the Low Turbulence Pressure Tunnel (LTPT) included Reynolds number variations up to flight conditions. Successful microphone array measurements were also taken providing both acoustic source maps on the model, and quantitative spectra. Critical directivity measurements were obtained in the QFF. NASA Langley unstructured and structured Reynolds-Averaged Navier-Stokes codes modeled the steady aspects of the flows. Excellent comparisons with surface and off-surface experimental data were obtained. Subsequently, these meanflow calculations were utilized in both linear stability and direct numerical simulations of the flow fields to calculate unsteady surface pressures and farfield acoustic spectra. Accurate calculations were critical in obtaining not only noise source characteristics, but shear layer correction data as well. Techniques utilized in these investigations as well as brief overviews of the results are given.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-02
    Description: Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth fracture was predicted from the crackgrowth simulation for an initial crack in the tooth fillet region. This was the desired failure mode for an ultrasafe design. Lastly, tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. This effect needs to be considered in the design of a split-tooth configuration. This work was done in-house at Lewis in support of the National Rotorcraft Technology Center project, Ultra-Safe Gear Design, with the Boeing Defense and Space Group. The crack-propagation package was developed by the Cornell Fracture Group at Cornell University. The reported results, which are the initial findings of Lewis gear-crackpropagation research for the Rotorcraft Base Program, will be further investigated to develop generalized gear design guidelines.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-02
    Description: Efforts to improve the performance of modern gas turbine engines have imposed increasing service temperature demands on structural materials. Through active cooling, the useful temperature range of nickel-base superalloys in current gas turbine engines has been extended, but the margin for further improvement appears modest. Because of their low density, high-temperature strength, and high thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, high processing costs have proven to be a major obstacle to their widespread application. Advanced rapid prototyping technology, which is developing rapidly, offers the possibility of an affordable manufacturing approach.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-02
    Description: Experimental and analysis results for a curved, stiffened aluminum fuselage panel tested in a combined loads test machine with combined internal pressure, axial compression, and torsional shear loads are described. The experimental and analytical strain results for the panel with and without discrete source damage are presented. The effect of notch tip geometry on crack growth predictions is addressed. The crack growth trajectory predictions for the panel are presented for the applied loading conditions at failure.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-02
    Description: An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: The objective of this task was to create and validate a three-dimensional model of the GE90 turbofan engine (General Electric) using the APNASA (average passage) flow code. This was a joint effort between GE Aircraft Engines and the NASA Lewis Research Center. The goal was to perform an aerodynamic analysis of the engine primary flow path, in under 24 hours of CPU time, on a parallel distributed workstation system. Enhancements were made to the APNASA Navier-Stokes code to make it faster and more robust and to allow for the analysis of more arbitrary geometry. The resulting simulation exploited the use of parallel computations by using two levels of parallelism, with extremely high efficiency.The primary flow path of the GE90 turbofan consists of a nacelle and inlet, 49 blade rows of turbomachinery, and an exhaust nozzle. Secondary flows entering and exiting the primary flow path-such as bleed, purge, and cooling flows-were modeled macroscopically as source terms to accurately simulate the engine. The information on these source terms came from detailed descriptions of the cooling flow and from thermodynamic cycle system simulations. These provided boundary condition data to the three-dimensional analysis. A simplified combustor was used to feed boundary conditions to the turbomachinery. Flow simulations of the fan, high-pressure compressor, and high- and low-pressure turbines were completed with the APNASA code.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-06
    Description: The AHS technical committee for Test and Evaluation is comprised of representatives from industry and government rotorcraft technology development centers. The committee considers many aspects of rotorcraft and VTOL testing, including the evaluation of components and subsystems. In addition, the committee seeks to evaluate the effectiveness of new procedures and operational solutions to problems that are encountered in the low-speed flight regime for both land and ship-based environments. This article presents the test and evaluation committee highlights for 98-99. Though by no means comprehensive, the article includes significant efforts related to test and evaluation contributed by the committee members for their respective organizations.
    Keywords: Aircraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-05
    Description: Turbofan engine-face flow distortion is one of the most troublesome and least understood problems for designers of modern engine inlet systems. One concern is that there are numerous sources of flow-field distortion that are ingested by the inlet or generated within the inlet duct itself. Among these are: (1) flow separation at the cowl lip during in-flight maneuvering, (2) flow separation on the compression surfaces due to shock-wave/boundary layer interactions, (3) spillage of the fuselage boundary layer into the inlet duct, (4) ingestion of aircraft vortices and wakes emanating from upstream disturbances, and (5) strong secondary flow gradients and flow separation induced by wall curvature within the inlet duct itself. Most developing aircraft (including the B70, F-111, F-14, Mig-25, Tornado, and Airbus A300) have experienced one or more of these types of problems, particularly at high Mach numbers and/or extreme maneuver conditions when flow distortion at the engine face exceeded the allowable limits of the engine.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-05
    Description: The Low Cost Booster Technology Program is an initiative to minimize the cost of future liquid engines by using advanced materials and innovative designs, and by reducing engine complexity. NASA Marshall Space Flight Center s 60K FASTRAC Engine is one example where these design philosophies have been put into practice. This engine burns a liquid kerosene/oxygen mixture. It uses a one-piece, polymer composite thrust chamber/nozzle that is constructed of a tape-wrapped silica phenolic liner, a metallic injector interface ring, and a filament-wound epoxy overwrap. A cooperative effort between NASA Lewis Research Center s Structures Division and Marshall is underway to perform a finite element analysis of the FASTRAC chamber/nozzle under all the loading and environmental conditions that it will experience during its lifetime. The chamber/nozzle is a complex composite structure. Of its three different materials, the two composite components have distinctly different fiber architectures and, consequently, require separate material model descriptions. Since the liner is tape wrapped, it is orthotropic in the nozzle global coordinates; and since the overwrap is filament wound, it is treated as a monoclinic material. Furthermore, the wind angle on the overwrap varies continuously along the length of the chamber/nozzle.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-05
    Description: Future aircraft turbine engines, both commercial and military, will have to be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. Advanced tactical aircraft are likely to use thrust vectoring for enhanced aircraft maneuverability. As a result, the engines will see more extreme distortion levels than currently encountered with present-day aircraft. Also, the mixed-compression inlets needed for the High-Speed Civil Transport (HSCT) will likely encounter disturbances similar to those seen by tactical aircraft, in addition to planar pulse, inlet buzz, and high distortion levels at low flight speed and off-design operation. The current approach of incorporating sufficient component design stall margin to tolerate these expected levels of distortion would result in significant performance penalties. The objectives of NASA's High Stability Engine Control (HISTEC) program, which has reached a highly successful conclusion, were to design, develop, and flight demonstrate an advanced, high-stability, integrated engine control system that uses measurement-based real-time estimates of distortion to enhance engine stability. The resulting distortion tolerant control adjusts the stall margin requirement online in real time. This reduces the design stall margin requirement, with a corresponding increase in performance and decrease in fuel burn.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-17
    Description: The characterization of the aeroshape selected for the X-38 [Crew Return Vehicle (CRV) demonstrator] is presently being performed as a cooperative endeavour between NASA, DLR (through its TETRA Program), and European Space Agency (ESA) with Dassault Aviation integrating the aerodynamic and aerothermodynamic activities. The methodologies selected for characterizing the aerodynamic and aerothermodynamic environment of the X-38 are presented. Also, the implications for related disciplines such as Guidance Navigation and Control (GN&C) with its corresponding Flight Control System (FCS), Structural, and Thermal Protection System (TPS) design are discussed. An attempt is made at defining the additional activities required to support the design of a derived operational CRV.
    Keywords: Aircraft Design, Testing and Performance
    Type: Atmospheric Reentry Vehicles and Systems; Mar 16, 1999 - Mar 18, 1999; Arachon,; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This paper provides an overview of stage separation activities for NASA's Hyper-X program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an account of the development of the current stage separation concept, highlights of wind tunnel experiments and computational fluid dynamics investigations being conducted to define the separation event, results from ground tests of separation hardware, schedule and status. Substantial work has been completed toward reducing the risk associated with stage separation.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-4818 , 9th International Space Planes and Hypersonic Systems and Technologies Conference; Nov 01, 1999 - Nov 05, 1999; Norfolk, VA; United States|3rd Weakly Ionized Gases Workshop; Nov 01, 1999 - Nov 05, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: The control of shock noise or screech from a jet near a flexible structure is discussed. The pressure from the supersonic jet consists of a shock with spiral and flapping nonaxisymmetric modes superimposed on broadband response. This shock induces a nonlinear-nonstationary loading problem associated with acoustic wave generation and propagation coupled with structural vibration. Control of the shock is achieved by placing a ring at the nozzle lip oscillating at the shock fundamental frequency. The ring prevents the shock characteristics originating in the column of the shear layer from sustaining connection with the out-of-phase surface vibration. Shock-free flow is maintained over a large pressure ratio. The peak power pressure level is reduced by 40 dB.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-1975 , 5th AIAA/CEAS Aeroacoustics Conference; May 10, 1999 - May 12, 1999; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: An aeroacoustic wind tunnel test was conducted using a scaled isolated tiltrotor model. Acoustic data were acquired using an in-flow microphone wing traversed beneath the model to map the directivity of the near-field acoustic radiation of the rotor for a parametric variation of rotor angle-of-attack, tunnel speed, and rotor thrust. Acoustic metric data were examined to show trends of impulsive noise for the parametric variations. BVISPL maximum noise levels were found to increase with alpha for constant mu and C(sub T), although the maximum BVI levels were found at much higher a than for a typical helicopter. BVISPL levels were found to increase with mu for constant alpha and C(sub T. BVISPL was found to decrease with increasing CT for constant a and m, although BVISPL increased with thrust for a constant wake geometry. Metric data were also scaled for M(sub up) to evaluate how well simple power law scaling could be used to correct metric data for M(sub up) effects.
    Keywords: Aircraft Design, Testing and Performance
    Type: American Helicopter Society 55th Annual Forum; May 25, 1999 - May 27, 1999; Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: Acoustic data have been acquired for the XV-15 tiltrotor aircraft performing approach operations for a variety of different approach profile configurations. This flight test program was conducted jointly by NASA, the U.S. Army, and Bell Helicopter Textron, Inc. (BHTI) in June 1997. The XV-15 was flown over a large area microphone array, which was deployed to directly measure the noise footprint produced during actual approach operations. The XV-15 flew realistic approach profiles that culminated in IGE hover over a landing pad. Aircraft tracking and pilot guidance was provided by a Differential Global Positioning System (DGPS) and a flight director system developed at BHTI. Approach profile designs emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. A discussion of the approach profile design philosophy is provided. Five different approach profiles are discussed in detail -- 3 deg., 6 deg., and 9 deg. approaches, and two very different 3 deg. to 9 deg. segmented approaches. The approach profile characteristics are discussed in detail, followed by the noise footprints and handling qualities. Sound exposure levels are also presented on an averaged basis and as a function of the sideline distance for a number of up-range distances from the landing point. A comparison of the noise contour areas is also provided. The results document the variation in tiltrotor noise due to changes in operating condition, and indicate the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt.
    Keywords: Aircraft Propulsion and Power
    Type: American Helicopter Society 55th Annual Forum; May 25, 1999 - May 27, 1999; Montreal, Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: NASA's Hyper-X Research Vehicle will provide a unique opportunity to obtain data on an operational airframe integrated scramjet propulsion system at true flight conditions. The airframe integrated nature of the scramjet engine with the Hyper-X vehicle results in a strong coupling effect between the propulsion system operation and the airframe s basic aerodynamic characteristics. Comments on general airframe integrated scramjet propulsion system effects on vehicle aerodynamic performance, stability, and control are provided, followed by examples specific to the Hyper-X research vehicle. An overview is provided of the current activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts. A brief summary of the Hyper-X aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics.
    Keywords: Aircraft Design, Testing and Performance
    Type: ISOABE-99-7215 , XIV ISOABE; Sep 05, 1999 - Sep 10, 1999; Florence; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: A prediction sensitivity assessment to inputs and blade modeling is presented for the TiltRotor Aeroacoustic Code (TRAC). For this study, the non-CFD prediction system option in TRAC is used. Here, the comprehensive rotorcraft code, CAMRAD.Mod1, coupled with the high-resolution sectional loads code HIRES, predicts unsteady blade loads to be used in the noise prediction code WOPWOP. The sensitivity of the predicted blade motions, blade airloads, wake geometry, and acoustics is examined with respect to rotor rpm, blade twist and chord, and to blade dynamic modeling. To accomplish this assessment, an interim input-deck for the TRAM test model and an input-deck for a reference test model are utilized in both rigid and elastic modes. Both of these test models are regarded as near scale models of the V-22 proprotor (tiltrotor). With basic TRAC sensitivities established, initial TRAC predictions are compared to results of an extensive test of an isolated model proprotor. The test was that of the TiltRotor Aeroacoustic Model (TRAM) conducted in the Duits-Nederlandse Windtunnel (DNW). Predictions are compared to measured noise for the proprotor operating over an extensive range of conditions. The variation of predictions demonstrates the great care that must be taken in defining the blade motion. However, even with this variability, the predictions using the different blade modeling successfully capture (bracket) the levels and trends of the noise for conditions ranging from descent to ascent.
    Keywords: Aircraft Propulsion and Power
    Type: 25th European Rotorcraft Forum; Sep 14, 1999 - Sep 16, 1999; Rome; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper explores dynamic inversion application to an advanced highly flexible aircraft. An initial application has been made to a large flexible supersonic aircraft. In the course of controller design for this advanced vehicle, modifications were made to the standard dynamic inversion methodology. The results of this application were deemed rather promising. An analytical study has been undertaken to better understand the nature of the made modifications and to determine its general applicability. This paper presents the results of this initial analytical look at the modifications to dynamic inversion to control large flexible aircraft.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-3998 , AIAA Guidance, Navigation and Control Conference; Aug 09, 1999 - Aug 11, 1999; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: Transport aircraft performance is strongly influenced by the effectiveness of high-lift systems. Developing wakes generated by the airfoil elements are subjected to strong pressure gradients and can thicken very rapidly, limiting maximum lift. This paper focuses on the effects of various pressure gradients on developing symmetric wakes and on the ability of a linear eddy viscosity model and a non-linear explicit algebraic stress model to accurately predict their downstream evolution. In order to reduce the uncertainties arising from numerical issues when assessing the performance of turbulence models, three different numerical codes with the same turbulence models are used. Results are compared to available experimental data to assess the accuracy of the computational results.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-3781 , 30th AIAA Fluid Dynamics Conference; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: A supersonic coaxial jet facility has been designed to provide experimental data suitable for the validation of CFD codes used to analyze high-speed propulsion flows. The center jet is of a light gas and the coflow jet is of air, and the mixing layer between them is compressible. Various methods have been employed in characterizing the jet flow field, including schlieren visualization, pitot, total temperature and gas sampling probe surveying, and RELIEF velocimetry. A Navier-Stokes code has been used to calculate the nozzle flow field and the results compared to the experiment.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-3588 , 30th AIAA Fluid Dynamics Conference; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: Active Flow Control Programs at NASA, the U.S. Air Force, and DARPA have been initiated with the goals of obtaining revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. These programs envision the use of actuators, sensors, and controllers on applications such as aircraft wings/tails, engine nacelles, internal ducts, nozzles, projectiles, weapons bays, and hydrodynamic vehicles. Anticipated benefits of flow control include reduced weight, part count, and operating cost and reduced fuel burn (and emissions), noise and enhanced safety if the sensors serve a dual role of flow control and health monitoring. To get from the bench-top or laboratory test to adaptive distributed control systems on realistic applications, reliable validated design tools are needed in addition to sub- and large-scale wind-tunnel and flight experiments. This paper will focus on the development of tools for active flow control applications.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-3575 , 30th AIAA Fluid Dynamics Conference; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: The goal of the NASA Reusable Launch Vehicle (RLV) technology program is to mature and demonstrate essential, cost effective technologies for next generation launch systems. The X-33 flight vehicle presently being developed by Lockheed Martin is an experimental Single Stage to Orbit (SSTO) demonstrator that seeks to validate critical technologies and insure applicability to a full scale RLV. As with the design of any hypersonic vehicle, the aeroheating environment is an important issue and one of the key technologies being demonstrated on X-33 is an advanced metallic Thermal Protection System (TPS). As part of the development of this TPS system, the X-33 aeroheating environment is being defined through conceptual analysis, ground based testing, and computational fluid dynamics. This report provides an overview of the hypersonic aeroheating wind tunnel program conducted at the NASA Langley Research Center in support of the ground based testing activities. Global surface heat transfer images, surface streamline patterns, and shock shapes were measured on 0.013 scale (10-in.) ceramic models of the proposed X-33 configuration in Mach 6 air. The test parametrics include angles of attack from -5 to 40 degs, unit Reynolds numbers from 1x106 to 8x106/ft, and body flap deflections of 0, 10, and 20 deg. Experimental and computational results indicate the presence of shock/shock interactions that produced localized heating on the deflected flaps and boundary layer transition on the canted fins. Comparisons of the experimental data to laminar and turbulent predictions were performed. Laminar windward heating data from the wind tunnel was extrapolated to flight surface temperatures and generally compared to within 50 deg F of flight prediction along the centerline. When coupled with the phosphor technique, this rapid extrapolation method would serve as an invaluable TPS design tool.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-3558 , 33rd Thermophysics Conference; Jun 28, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: A gas-act,uated penetration device has been developed for high-energy impact testing of structures. The high-energy impact. t,estiiig is for experimental simulation of uncontained engine failures. The non-linear transient finite element, code LS-DYNA3D has been used in the numerical simula.tions of a titanium rectangular blade with a.n aluminum target, plate. Threshold velocities for different combinations of pitch and yaw angles of the impactor were obtained for the impactor-target, t8est configuration in the numerica.1 simulations. Complet,e penet,ration of the target plate was also simulat,ed numerically. Finally, limited comparison of analytical and experimental results is presented for complete penetration of the target by the impactor.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-1385 , AIAA/ASME/ASCE/AHS/ASC 40th Structures, Structural Dynamics, and Materials Conference; Apr 12, 2004 - Apr 15, 2004; Saint Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: Noise shielding benefits associated with an advanced unconventional subsonic transport concept, the Blended-Wing-Body, were studied using a 4- percent scale, 3-engine nacelle model. The study was conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. A high- frequency, wideband point source was placed inside the nacelles of the center engine and one of the side engines in order to simulate broadband engine noise. The sound field of the model was measured with a rotating microphone array that was moved to various stations along the model axis and with a fixed array of microphones that was erected behind the model. Ten rotating microphones were traversed a total of 22 degrees in 2-degree increments. Seven fixed microphones covered an arc that extended from a point in the exhaust exit plane of the center engine (and directly below its centerline) to a point 30 degrees above the jet centerline. While no attempt was made to simulate the noise emission characteristics of an aircraft engine, the model source was intended to radiate sound in a frequency range encompassing 1, 2, and 3 times the blade passage of a typical full-scale engine. In this study, the Blended-Wing-Body model was found to provide significant shielding of inlet noise. In particular, noise radiated downward into the forward sector was reduced by 20 to 25 dB overall in the full-scale frequencies from 2000 to 4000 Hz, decreasing to 10 dB or less at the lower frequencies. Also, it was observed that noise associated with the exhaust radiates into the sector directly below the model downstream to reduce shielding efficiency.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 99-1937 , 5th AIAA/CEAS Aeroacoustics Conference; May 10, 1999 - May 12, 1999; Greater Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: A study was conducted to examine the effects of overall size of directional (or phased) arrays on the measurement of aeroacoustic components. An airframe model was mounted in the potential core of an open-jet windtunnel, with the directional arrays located outside the flow in an anechoic environment. Two array systems were used; one with a solid measurement angle that encompasses 31.6 deg.of source directivity and a smaller one that encompasses 7.2 deg. The arrays, and sub-arrays of various sizes, measured noise from a calibrator source and flap edge model setups. In these cases, noise was emitted from relatively small, but finite size source regions, with intense levels compared to other sources. Although the larger arrays revealed much more source region detail, the measured source levels were substantially reduced due to finer resolution compared to that of the smaller arrays. To better understand the measurements quantitatively, an analytical model was used to define the basic relationships between array to source region sizes and measured output level. Also, the effect of noise scattering by shear layer turbulence was examined using the present data and those of previous studies. Taken together, the two effects were sufficient to explain spectral level differences between arrays of different sizes. An important result of this study is that total (integrated) noise source levels are retrievable and the levels are independent of the array size as long as certain experimental and processing criteria are met. The criteria for both open and closed tunnels are discussed. The success of special purpose diagonal-removal processing in obtaining integrated results is apparently dependent in part on source distribution. Also discussed is the fact that extended sources are subject to substantial measurement error, especially for large arrays.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-1958 , Fifth AIAA/CEAS Aeroacoustics Conference; May 10, 1999 - May 12, 1999; Bellevue, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: Adjoint sensitivity calculation of stress, buckling and displacement constraints may be much less expensive than direct sensitivity calculation when the number of load cases is large. Adjoint stress and displacement sensitivities are available in the literature. Expressions for local buckling sensitivity of isotropic plate elements are derived in this study. Computational efficiency of the adjoint method is sensitive to the number of constraints and, therefore, the method benefits from constraint lumping. A continuum version of the Kreisselmeier-Steinhauser (KS) function is chosen to lump constraints. The adjoint and direct methods are compared for three examples: a truss structure, a simple HSCT wing model, and a large HSCT model. These sensitivity derivatives are then used in optimization.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-1314 , 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 12, 1999 - Apr 15, 1999; Saint Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: Three model problems were examined to assess the difficulties involved in using a hybrid scheme coupling flow computation with the the Ffowcs Williams and Hawkings equation to predict noise generated by vortices passing over a sharp edge. The results indicate that the Ffowcs Williams and Hawkings equation correctly propagates the acoustic signals when provided with accurate flow information on the integration surface. The most difficult of the model problems investigated inviscid flow over a two-dimensional thin NACA airfoil with a blunt-body vortex generator positioned at 98 percent chord. Vortices rolled up downstream of the blunt body. The shed vortices possessed similarities to large coherent eddies in boundary layers. They interacted and occasionally paired as they convected past the sharp trailing edge of the airfoil. The calculations showed acoustic waves emanating from the airfoil trailing edge. Acoustic directivity and Mach number scaling are shown.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 99-0231 , Aerospace Sciences Meeting and Exhibit; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: The incompressible subsonic aerodynamics of four entry-vehicle shapes with variable c.g. locations are examined in the Langley 20-Foot Vertical Spin Tunnel. The shapes examined are spherically-blunted cones with half-cone angles of 30, 45, and 60 deg. The nose bluntness varies between 0.25 and 0.5 times the base diameter. The Reynolds number based on model diameter for these tests is near 500,000. Quantitative data on attitude and location are collected using a video-based data acquisition system and reduced with a six deg-of-freedom inverse method. All of the shapes examined suffered from strong dynamic instabilities which could produced limit cycles with sufficient amplitudes to overcome static stability of the configuration. Increasing cone half-angle or nose bluntness increases drag but decreases static and dynamic stability.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-1020 , 37th Aerospace Sciences Meeting and Exhibit; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: An experimental investigation, aimed at delaying flow separation due to the occurrence of a shock-wave-boundary-layer interaction, is reported. The experiment was performed using a NACA 0012 airfoil and a NACA 0015 airfoil at high Reynolds number incompressible and compressible flow conditions. The effects of Mach and Reynolds numbers were identified, using the capabilities of the cryogenic-pressurized facility to maintain one parameter fixed and change the other. Significant Reynolds number effects were identified in the baseline compressible flow conditions even at Reynolds number of 10 and 20 million. The main objectives of the experiment were to study the effects of periodic excitation on airfoil drag-divergence and to alleviate the severe unsteadiness associated with shock-induced separation (known as "buffeting"). Zero-mass-flux oscillatory blowing was introduced through a downstream directed slot located at 10% chord on the upper surface of the NACA 0015 airfoil. The effective frequencies generated 2-4 vortices over the separated region, regardless of the Mach number. Even though the excitation was introduced upstream of the shock-wave, due to experimental limitations, it had pronounced effects downstream of it. Wake deficit (associated with drag) and unsteadiness (associated with buffeting) were significantly reduced. The spectral content of the wake pressure fluctuations indicates of steadier flow throughout the frequency range when excitation was applied. This is especially important at low frequencies which are more likely to interact with the airframe.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-0925 , 37th AIAA Aerospace Sciences Meeting and Exhibit; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: Dry weights for a SSTO vehicle which incorporates nontangent, developed contour bulkheads are estimated and compared to a baseline vehicle with 1.41 4 aspect ratio ellipsoidal bulkheads, Weights, volumes and heights of optimized bulkhead designs are computed using a preliminary design bulkhead analysis code. The dry weight of a vehicle which incorporates the optimized bulkheads is predicted using a vehicle weights and sizing code. Two optimization approaches are employed. A structural-level method, where the vehicle s three major bulkhead regions are optimized separately and then incorporated into a model for computation of the vehicle dry weight, predicts a reduction of 4365 Ib (2.2 percent) from the 200,679 Ib baseline vehicle dry weight. In the second, vehicle-level, approach, the vehicle dry weight is the objective function for the optimization. During the vehicle- level analysis, modified bulkhead designs are first analyzed, then incorporated into the weights model for computation of a dry weight. The optimizer simultaneously manipulates design variables for all three bulkheads to reduce the dry weight. The vehicle-level analysis predicts a dry weight reduction of 5129 Ib, a 2.6 percent reduction from the baseline value. These results suggest that nontangent, developed contour bulkheads may provide substantial weight savings for SSTO vehicles.
    Keywords: Aircraft Design, Testing and Performance
    Type: AIAA Paper 99-0835 , 37th AIAA Aerospace Sciences Meeting and Exhibit; Jan 11, 1999 - Jan 14, 1999; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Aeroelastic modeling procedures used in the design of a piezoelectric controllable twist helicopter rotor wind tunnel model are described. Two aeroelastic analysis methods developed for active twist rotor studies, and used in the design of the model blade, are described in this paper. The first procedure uses a simple flap-torsion dynamic representation of the active twist blade, and is intended for rapid and efficient control law and design optimization studies. The second technique employs a commercially available comprehensive rotor analysis package, and is used for more detailed analytical studies. Analytical predictions of hovering flight twist actuation frequency responses are presented for both techniques. Forward flight fixed system nP vibration suppression capabilities of the model active twist rotor system are also presented. Frequency responses predicted using both analytical procedures agree qualitatively for all design cases considered, with best correlation for cases where uniform blade properties are assumed.
    Keywords: Aircraft Design, Testing and Performance
    Type: American Helicopter Society 55th Annual Forum; May 25, 1999 - May 27, 1999; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: The paper presents a multi-body analysis of the 1/5 scale wind tunnel model of the V-22 tiltrotor, the Wing and Rotor Aeroelastic Testing System (WRATS), currently tested at NASA Langley Research Center. An original multi-body formulation has been developed at the Dipartimento di Ingegneria Aerospaziale of the Politecnico di Milano, Italy. It is based on the direct writing of the equilibrium equations of independent rigid bodies, connected by kinematic constraints that result in the addition of algebraic constraint equations, and by dynamic constraints, that directly contribute to the equilibrium equations. The formulation has been extended to the simultaneous solution of interdisciplinary problems by modeling electric and hydraulic networks, for aeroservoelastic problems. The code has been tailored to the modeling of rotorcrafts while preserving a complete generality. A family of aerodynamic elements has been introduced to model high aspect aerodynamic surfaces, based on the strip theory, with quasi-steady aerodynamic coefficients, compressibility, post-stall interpolation of experimental data, dynamic stall modeling, and radial flow drag. Different models for the induced velocity of the rotor can be used, from uniform velocity to dynamic in flow. A complete dynamic and aeroelastic analysis of the model of the V-22 tiltrotor has been performed, to assess the validity of the formulation and to exploit the unique features of multi-body analysis with respect to conventional comprehensive rotorcraft codes; These are the ability to model the exact kinematics of mechanical systems, and the possibility to simulate unusual maneuvers and unusual flight conditions, that are particular to the tiltrotor, e.g. the conversion maneuver. A complete modal validation of the analytical model has been performed, to assess the ability to reproduce the correct dynamics of the system with a relatively coarse beam model of the semispan wing, pylon and rotor. Particular care has been used to model the kinematics of the gimbal joint, that characterizes the rotor hub, and of the control system, consisting in the entire swashplate mechanism. The kinematics of the fixed and the rotating plates have been modeled, with variable length control links used to input the controls, the rotating flexible links, the pitch horns and the pitch bearings. The investigations took advantage of concurring wind tunnel test runs, that were performed in August 1998, and allowed the acquisition of data specific to the multi-body analysis.
    Keywords: Aircraft Design, Testing and Performance
    Type: American Helicopter Society 55th Annual FOrum; May 25, 1999 - May 27, 1999; Montreal, Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: The Short-Haul-Civil-tiltrotor (SHCT) component of the NASA Aviation System Capacity Program is an effort to develop the technologies needed for a potential 40-passenger civil tiltrotor. The variable diameter tiltrotor (VDTR) is a Sikorsky concept aimed at improving tiltrotor hover and cruise performance currently limited by disk loading that is much higher in hover than conventional helicopter, and much lower in cruise than turbo-prop systems. This paper describes the technical merits of using a VDTR on a SHCT aircraft. The focus will be the rotor design.
    Keywords: Aircraft Design, Testing and Performance
    Type: 55th Annual Forum of the American Helicopter Society; May 25, 1999 - May 27, 1999; Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: This paper presents an overview of results from the wind tunnel test of a 1/4-scale V-22 proprotor in the Duits-Nederlandse Windtunnel (DNW) in The Netherlands. The small-scale proprotor was tested on the isolated rotor configuration of the Tilt Rotor Aeroacoustic Model (TRAM). The test was conducted by a joint team from NASA Ames, NASA Langley, U.S. Army Aeroflightdynamics Directorate, and The Boeing Company. The objective of the test was to acquire a benchmark database for validating aeroacoustic analyses. Representative examples of airloads, acoustics, structural loads, and performance data are provided and discussed.
    Keywords: Aircraft Design, Testing and Performance
    Type: American Helicopter Society 55th Annual Forum; May 25, 1999 - May 27, 1999; Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: In ducted fan engine noise research, there is a need for defining a simple and easy to use acoustic energy conservation law to help in quantification of noise control techniques. There is a well known conservation law relating acoustic energy and acoustic energy flux in the case of an isentropic irrotational flow. Several different approaches have been taken to generalize this conservation law. For example, Morfey finds an identity by separating out the irrotational part of the perturbed flow. Myers is able to find a series of indentities by observing an algebraic relationship between the basic conservation of energy equation for a background flow and the underlying equations of motion. In an approximate sense, this algebraic relationship is preserved under perturbation. A third approach which seems to have not been pursued in the literature is a result known as Noether's theorem. There is a Lagrangian formulation for the Euler equation of fluid mechanics. Noether's theorem says that any group action that leaves the Lagrangian action invariant leads to a conserved quantity. This presentation will include a survey of current results regarding acoustic energy and preliminary results on the symmetries of the Lagrangian.
    Keywords: Aircraft Propulsion and Power
    Type: Joint ASA/EAA/DAGA Meeting; Mar 14, 1999 - Mar 19, 1999; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: We discuss criteria by which one can classify, analyze, and evaluate approaches to solving multidisciplinary design optimization (MDO) problems. Central to our discussion is the often overlooked distinction between questions of formulating MDO problems and solving the resulting computational problem. We illustrate our general remarks by comparing several approaches to MDO that have been proposed.
    Keywords: Aircraft Design, Testing and Performance
    Type: First ASMO UK/ISSMO CONFERENCE on Engineering Design Optimization; Jul 08, 1999 - Jul 09, 1999; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...