ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and computational fluid dynamics 12 (1998), S. 233-253 
    ISSN: 1432-2250
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract. The Lighthill acoustic analogy combined with Reynolds-averaged Navier–Stokes flow computations are used to investigate the ability of existing technology to predict the tonal noise generated by vortex shedding from a circular cylinder for a range of Reynolds numbers (100 〈 Re 〈 5 million). Computed mean drag, mean coefficient of pressure, Strouhal number, and fluctuating lift are compared with experiment. Two-dimensional calculations produce a Reynolds number trend similar to experiment but incorrectly predict many of the flow quantities. Different turbulence models give inconsistent results in the critical Reynolds number range (Re≈ 100000). The computed flow field is used as input for noise prediction. Two-dimensional inputs overpredict both noise amplitude and frequency; however, if an appropriate correlation length is used, predicted noise amplitudes agree with experiment. Noise levels and frequency content agree much better with experiment when three-dimensional flow computations are used as input data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and computational fluid dynamics 10 (1998), S. 155-170 
    ISSN: 1432-2250
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract: The acoustic analogy was introduced into acoustics by Lighthill in 1952 to understand and predict the noise generated by the jet of an aircraft turbojet engine. The idea behind the acoustic analogy is simple but powerful. The entire noise generation process is mathematically reduced to the study of wave propagation in a quiescent medium with the effect of flow replaced by quadrupole sources. In jet noise theory, Lighthill was able to obtain significant and useful qualitative results from the acoustic analogy. The acoustic analogy has influenced the theoretical and experimental research on jet noise since the early 1950s. This paper, however, focuses on another area in which the acoustic analogy has had a significant impact, namely, the prediction of the noise of rotating machinery. The governing equation for this problem was derived by Ffowcs Williams and Hawkings in 1969. This equation is a wave equation for perturbation density with three source terms, which have become known as thickness, loading, and the quadrupole source terms, respectively. The Ffowcs Williams–Hawkings (FW–H) equation has been used for the successful prediction of the noise of helicopter rotors, propellers, and fans. Several reasons account for the success and popularity of the acoustic analogy. First, the problems of acoustics and aerodynamics are separated. Second, because the FW–H equation is linear, powerful analytical methods from linear operator theory can be used to obtain closed-form solutions. Third, advances in digital computers and computational fluid dynamics algorithms have resulted in high-resolution near-field aerodynamic calculations that are suitable for noise prediction. We present some of the mathematical results for noise prediction based on the FW–H equation, including examples for helicopter rotors. In particular, we discuss the prediction of blade-vortex interaction noise and high-speed impulsive noise of helicopter rotors. For high-speed propellers, we briefly discuss the derivation of a singularity-free solution of the FW–H equation for a supersonic panel on a blade.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-02-01
    Print ISSN: 0376-0421
    Electronic ISSN: 1873-1724
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-01-01
    Print ISSN: 0022-460X
    Electronic ISSN: 1095-8568
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-12-01
    Print ISSN: 0935-4964
    Electronic ISSN: 1432-2250
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-01-01
    Print ISSN: 0935-4964
    Electronic ISSN: 1432-2250
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1993-09-01
    Description: The propagation of acoustic energy from a sound source to the far field is a fundamental problem of acoustics. In this paper the use of computational fluid dynamics (CFD) to directly calculate the acoustic field is investigated. The two-dimensional, compressible, inviscid flow about an accelerating circular cylinder is used as a model problem. The time evolution of the energy transfer from the cylinder surface to the fluid, as the cylinder is moved from rest to some non-negligible velocity, is shown. Energy is the quantity of interest in the calculations since various components of energy have physical meaning. By examining the temporal and spatial characteristics of the numerical solution, a distinction can be made between the propagating acoustic energy, the convecting energy associated with the entropy change in the fluid, and the energy following the body. In the calculations, entropy generation is due to a combination of physical mechanisms and numerical error. In the case of propagating acoustic waves, entropy generation seems to be a measure of numerical damping associated with the discrete flow solver. © 1993, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: Rotor noise prediction codes predict the thickness and loading noise produced by a helicopter rotor, given the blade motion, rotor operating conditions, and fluctuating force distribution over the blade surface. However, the criticality of these various inputs, and their respective effects on the predicted acoustic field, have never been fully addressed. This paper examines the importance of these inputs, and the sensitivity of the acoustic predicitions to a variation of each parameter. The effects of collective and cyclic pitch, as well as coning and cyclic flapping, are presented. Blade loading inputs are examined to determine the necessary spatial and temporal resolution, as well as the importance of the chordwise distribution. The acoustic predictions show regions in the acoustic field where significant errors occur when simplified blade motions or blade loadings are used. An assessment of the variation in the predicted acoustic field is balanced by a consideration of Central Processing Unit (CPU) time necessary for the various approximations.
    Keywords: AERODYNAMICS
    Type: American Helicopter Society, Journal (ISSN 0002-8711); 39; 3; p. 43-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The noise prediction code WOPWOP predicts the thickness and loading noise produced by a helicopter rotor, given the blade motion, rotor operating conditions, and fluctuating force distribution over the blade surface. However, the criticality of these various inputs, and their respective effects on the predicted acoustic field, have never been fully addressed. This paper examines the importance of these inputs, and the sensitivity of the acoustic predictions to a variation of each parameter. The effects of collective and cyclic pitch, as well as coning and flapping, are presented. Blade loading inputs are examined to determine the necessary spatial and temporal resolution, as well as the importance of the cordwise distribution. The acoustic predictions show regions in the acoustic field where significant errors occur when simplified blade motions or blade loadings are used. An assessment of the variation in the predicted acoustic field is balanced by a consideration of CPU time necessary for the various approximations.
    Keywords: ACOUSTICS
    Type: In: AHS and Royal Aeronautical Society, Technical Specialists' Meeting on Rotorcraft Acoustics(Fluid Dynamics, Philadelphia, PA, Oct. 15-17, 1991, Proceedings (A93-29401 10-71); 11 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This paper is concerned with the application of unsteady finite volume methods to the numerical calculation of aeroacoustic problems. Some discussion is made of how the acoustic analogy of Lighthill has led to a separation between the calculation of acoustic source, or flow, and the subsequent sound field. It is pointed out that for transonic flow this separation is not necessarily useful. The example problem of an impulsively started cylinder is given for speed of Mach .1 and .5. In the Mach .5 case a strong shock is followed as it develops. A further example of the cylinder stopping impulsively is given as well. MacCormack's explicit predictor-corrector method is used for all the examples.
    Keywords: ACOUSTICS
    Type: ; : Micro(
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...