ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-12-01
    Print ISSN: 0257-8972
    Electronic ISSN: 1879-3347
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-03-01
    Print ISSN: 1059-9630
    Electronic ISSN: 1544-1016
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-17
    Print ISSN: 1343-8875
    Electronic ISSN: 1875-8975
    Topics: Computer Science
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-10-01
    Print ISSN: 0002-7820
    Electronic ISSN: 1551-2916
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Wiley on behalf of American Ceramic Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: Highly scattering plasma-sprayed thermal barrier coatings (TBCs) present a challenge for optical diagnostic methods to monitor TBC delamination because scattering attenuates light transmitted through the TBC and usually degrades contrast between attached and delaminated regions of the TBC. This paper presents a new approach where reflectance-enhanced luminescence from a luminescent sublayer incorporated along the bottom of the TBC is used to identify regions of TBC delamination. Because of the higher survival rate of luminescence reflecting off the back surface of a delaminated TBC, the strong scattering exhibited by plasma-sprayed TBCs actually accentuates contrast between attached and delaminated regions by making it more likely that multiple reflections of luminescence off the back surface occur before exiting the top surface of the TBC. A freestanding coating containing sections designed to model an attached or delaminated TBC was prepared by depositing a luminescent Eu-doped or Er-doped yttria-stabilized zirconia (YSZ) luminescent layer below a plasma-sprayed undoped YSZ layer and utilizing a NiCr backing layer to represent an attached substrate. For specimens with a Eu-doped YSZ luminescent sublayer, luminescence intensity maps showed excellent contrast between unbacked and NiCr-backed sections even at a plasma-sprayed overlayer thickness of 300 m. Discernable contrast between unbacked and NiCr-backed sections was not observed for specimens with a Er-doped YSZ luminescent sublayer because luminescence from Er impurities in the undoped YSZ layer overwhelmed luminescence originating form the Er-doped YSZ sublayer.
    Keywords: Composite Materials
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-05
    Description: NASA Lewis Research Center is a leader in the application of temperature- and pressuresensitive paints (TSP and PSP) in rotating environments. Tests were recently completed on several scale model, high-bypass-ratio turbofans in Lewis' 9- by 15-Foot Low-Speed Wind Tunnel. Two of the test objectives were to determine the aerodynamic and acoustic performance of the fan designs. Using TSP and PSP, researchers successfully achieved fullfield aerodynamic loading profiles. The visualized loading profiles may help researchers identify factors contributing to the fans' performance and to the acoustic characteristics associated with the flow physics on the surface of the blades.
    Keywords: Research and Support Facilities (Air)
    Type: Research and Technology 1997; NASA/TM-20050019500
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-05
    Description: The luminescent paint measurement technique utilizes a coating that is applied to a test article, allowing the air pressure or temperature of a surface to be measured. These coatings are commonly referred to as pressure- or temperature-sensitive paints. These paints are excited with short wavelength light and emit light at a longer wavelength. By measuring the change of intensity of the emitted light from a known reference condition, researchers can determine the pressure or temperature. The technique of measuring full-field surface pressure and temperatures using luminescent coatings has required a direct line-of-sight from the camera to the surface under study. In most experiments that have used pressure-or temperature-sensitive paints, the test surfaces are mounted so it is straightforward to position the camera and excitation source. In other cases, the luxury of having optical access through a window is not available or even possible. We developed a borescope imaging system to gain optical access in these confined areas. The commercially available 10-mm-diameter rigid borescope contains relay optics to transmit the detected light to a charge-coupled device (CCD) camera as well as an internal fiber-optic light guide to provide the excitation source for the luminescent coatings. The coupled light source can be continuous for the intensity method but also can be pulsed or have a variable intensity for a newer method of acquisition that measures the decay or phase lag of the emitted light. This type of borescope focuses the image directly on the CCD chip without using a fiber-optic relay, eliminating unwanted honeycomb patterns that are typical of fiber-optic type borescopes. This produces images of much higher clarity and uniformity, which are critical for acquiring accurate measurements from the luminescent coatings.
    Keywords: Optics
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-05
    Description: Aircraft icing occurs when a plane flies through a cloud of supercooled water droplets. When the droplets impinge on aircraft components, ice starts to form and accumulate. This accumulation of ice severely increases the drag and lift of the aircraft, and can ultimately lead to catastrophic failures and even loss of life. Knowledge of the air pressures on the surfaces of ice and models in wind tunnels allows researchers to better predict the effects that different icing conditions will have on the performance of real aircraft. The use of pressure-sensitive paint (PSP) has provided valuable information on similar problems in conventional wind tunnel testing. In NASA Lewis Research Center Icing Research Tunnel, Lewis researchers recently demonstrated the world s first application of PSP on actual ice formed on a wind tunnel model. This proof-of-concept test showed that a new paint formulation developed under a grant by the University of Washington adheres to both the ice shapes and cold aluminum models, provides a uniform coating that preserves the detailed ice shape structure, and responds to simulated pressure changes.
    Keywords: Aircraft Design, Testing and Performance
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-02
    Description: Pressure-sensitive paint (PSP) has become a useful tool to augment conventional pressure taps in measuring the surface pressure distribution of aerodynamic components in wind tunnel testing. Although PSP offers the advantage of nonintrusive global mapping of the surface pressure, one prominent drawback to the accuracy of this technique is the inherent temperature sensitivity of PSP's luminescent intensity. Typical aerodynamic surface PSP tests rely on the coated surface to be both spatially and temporally isothermal, along with conventional instrumentation, to yield the highest accuracy pressure mappings. In some tests, however, spatial and temporal thermal gradients are generated by the nature of the test, as in a blowing jet impinging on a surface. In these cases, high accuracy and reliable data cannot be obtained unless the temperature variations on the painted surface are accounted for. A new temperature-correction technique was developed at the NASA Glenn Research Center at Lewis Field to collapse a "family" of PSP calibration curves to a single curve of intensity ratio versus pressure. This correction allows a streamlined procedure to be followed whether or not temperature information is used in the data reduction of the PSP.
    Keywords: Nonmetallic Materials
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-02
    Description: The insulating properties of thermal barrier coatings (TBCs) provide highly beneficial thermal protection to turbine engine components by reducing the temperature sustained by those components. Therefore, measuring the temperature beneath the TBC is critical for determining whether the TBC is performing its insulating function. Currently, noncontact temperature measurements are performed by infrared pyrometry, which unfortunately measures the TBC surface temperature rather than the temperature of the underlying component. To remedy this problem, the NASA Glenn Research Center, under the Information Rich Test Instrumentation Project, developed a technique to measure the temperature beneath the TBC by incorporating a thin phosphor layer beneath the TBC. By performing fluorescence decay-time measurements on light emission from this phosphor layer, Glenn successfully measured temperatures from the phosphor layer up to 1100 C. This is the first successful demonstration of temperature measurements that penetrate beneath the TBC. Thermographic phosphors have a history of providing noncontact surface temperature measurements. Conventionally, a thermographic phosphor is applied to the material surface and temperature measurements are performed by exciting the phosphor with ultraviolet light and then measuring the temperature-dependent decay time of the phosphor emission at a longer wavelength. The innovative feature of the new approach is to take advantage of the relative transparency of the TBC (composed of yttria-stabilized zirconia) in order to excite and measure the phosphor emission beneath the TBC. The primary obstacle to achieving depth-penetrating temperature measurements is that the TBCs are completely opaque to the ultraviolet light usually employed to excite the phosphor. The strategy that Glenn pursued was to select a thermographic phosphor that could be excited and emit at wavelengths that could be transmitted through the TBC. The phosphor that was selected was yttria doped with europia (Y2O3:Eu), which has a minor excitation peak at 532 nm (green) and an emission peak at 611 nm (red)--both are wavelengths that exhibit significant transmission through the TBC. The measurements were performed on specimens consisting of a 25- m-thick phosphor layer beneath a 100- m-thick TBC. The 532-nm (green) excitation light was provided by a frequency-doubled YAG:Nd (yttrium-aluminum-garnet:neodymium) laser, and the fluorescence decay time measurements were acquired with a modified Raman microscope. The preceding graph compares the intensity of the phosphor emission of the phosphor layer above the TBC versus that of the phosphor layer beneath the TBC. Although there was considerable attenuation of the phosphor signal (a factor of 30), the phosphor emission at the reduced intensity was more than sufficient to perform fluorescence decay time measurements. The following graph shows the fluorescence lifetime temperature dependency for the Y2O3:Eu phosphor layers both above and below the TBC. These curves show an excellent match and indicate that, despite the attenuation due to the overlying TBC, the phosphor layer beneath the TBC still functions as an effective temperature indicator.
    Keywords: Mechanical Engineering
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...