ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Flow, turbulence and combustion 51 (1993), S. 687-711 
    ISSN: 1573-1987
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This paper reports on the numerical study of the linear stability of laminar premixed flames under zero gravity. The study specifically addresses the dependence of stability on finite rate chemistry with low activation energy and variable thermodynamic and transport properties. The calculations show that activation energy and details of chemistry play a minor role in altering the linear neutral stability results from asymptotic analysis. Variable specific heat makes a marginal change to the stability. Variable transport properties on the other hand tend to substantially enhance the stability from critical wave number of about 0.5 to 0.20. Also, it appears that the effects of variable properties tend to nullify the effects of non-unity Lewis number. When the Lewis number of a single species is different from unity, as will happen in a hydrogen-air premixed flame, the stability results remain close to that of unity Lewis number.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Flow, turbulence and combustion 50 (1993), S. 43-68 
    ISSN: 1573-1987
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The two-dimensional time dependent Navier-Stokes equations are used to investigate supersonic flows undergoing finite rate chemical reaction and radiation interaction for a hydrogen-air system. The explicit multi-stage finite volume technique of Jameson is used to advance the governing equations in time until convergence is achieved. The chemistry source term in the species equation is treated implicitly to alleviate the stiffness associated with fast reactions. The multidimensional radiative transfer equations for a nongray model are provided for general configuration, and then reduced for a planar geometry. Both pseudo-gray and nongray models are used to represent the absorption-emission characteristics of the participating species. The supersonic inviscid and viscous, nonreacting flows are solved by employing the finite volume technique of Jameson and the unsplit finite difference scheme of MacCormack to determine a convenient numerical procedure for the present study. The specific problem considered is of the flow in a channel with a 10° compression-expansion ramp. The calculated results are compared with the results of an upwind scheme and no significant differences are noted. The problem of chemically reacting and radiating flows are solved for the flow of premixed hydrogen-air through a channel with parallel boundaries, and a channel with a compression corner. Results obtained for specific conditions indicate that the radiative interaction can have a significant influence on the entire flowfield.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-01-01
    Print ISSN: 1386-6184
    Electronic ISSN: 1573-1987
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-12-01
    Print ISSN: 1386-6184
    Electronic ISSN: 1573-1987
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1955-07-01
    Print ISSN: 0021-8847
    Electronic ISSN: 2056-5232
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: Propulsion systems planned for use late in this century and beyond will require appropriate physical models for describing supersonic combustion and numerical techniques for solving the model governing equations. A computer program to study these flows is reported which considers the multicomponent diffusion and convection of important chemical species, the finite-rate reaction of these species, and the resulting interaction of the field mechanics and the chemistry. The application of the program to a spatially developing and reacting mixing layer, which serves an an excellent physical model for the mixing and reaction processes that take place in a scramjet combustor, is reported. Several techniques to enhance the fuel-air mixing and growth of that layer and improve its overall combustion efficiency are considered.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-19
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 24; 1461-146
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-17
    Description: The phase-change coating technique presents itself as a valuable tool in determining the heat transfer rate over the surface of small complex wind tunnel models. A numerical technique is described which shows that an effective thermophysical property - the square root of the product of thermal conductivity, density, and specific heat - may significantly improve the accuracy of the phase-change coating technique with allowance for model inhomogeneity and temperature dependency in a transient environment. Results of the measured steady-state variation of the effective thermophysical property with temperature and the effect of surface heating rate on the effective thermophysical property are plotted for a representative homogeneous model material and for an extreme nonhomogeneous model material. The use of an effective thermophysical property to reduce phase-change paint data is recommended. The analysis also confirms that the apparatus described by Corwin and Kramer (1975) can be used to measure directly this effective thermophysical property for use in wind tunnel model heat-transfer measurements.
    Keywords: NONMETALLIC MATERIALS
    Type: AIAA Journal; 14; Oct. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Two computer programs have been developed to numerically calculate complex, two-dimensional flow fields in scramjets. The first program is written for inlet analysis whereas the second program is written primarily for combustor analysis. Both programs solve the full two-dimensional Navier-Stokes equations by a well-known explicit, predictor-corrector technique. Turbulence is modeled by an algebraic eddy-viscosity model. The combustor program also includes one or more species conservation equations to calculate mixing and reacting flows. The hydrogen/air chemistry in this program is modeled by a complete reaction model. The combustor program has been recently modified to analyze axisymmetric ramjet dump combustor flow field. Results from these computer programs are presented that predict the flow in several scramjet inlet configurations, two model scramjet engine configurations, and in a dump combustor simulator. Computed results are also compared with available experimental data to allow assessment of the programs.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: APL Computational Methods for Ramjets; p 9-24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-17
    Description: This note discusses a computer program being developed to study the flow field near opposing perpendicular fuel injectors in scramjets. The MacCormack time-split, finite difference relaxation technique was used to solve the full two-dimensional compressible Navier-Stokes equations along with energy and species equations. By using this technique, a program was developed to consider the turbulent nonreacting flow of hydrogen and air in a rectangular duct. A damping term, proportional to the second derivative of pressure and temperature, was used to produce a stable solution behind the hydrogen jet in the neighborhood of the recompression shock. A case using actual conditions encountered in current scramjet design was analyzed, with results agreeing qualitatively with experimental observations.
    Keywords: AERODYNAMICS
    Type: AIAA Journal; 17; May 1979
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...