ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (50)
  • Models, Biological  (50)
  • 2010-2014  (50)
  • 1985-1989
  • 1950-1954
  • 1945-1949
  • 2010  (50)
  • Science. 327(5961): 46-50. doi: 10.1126/science.1174621.  (1)
  • Science. 327(5965): 542-5. doi: 10.1126/science.1180794.  (1)
  • Science. 327(5966): 653-4. doi: 10.1126/science.1186121.  (1)
  • Science. 327(5966): 685-9. doi: 10.1126/science.1182105.  (1)
  • Science. 327(5967): 787-8. doi: 10.1126/science.1187160.  (1)
  • Science. 327(5969): 1098-102. doi: 10.1126/science.1178334.  (1)
  • Science. 327(5971): 1335-6. doi: 10.1126/science.1187865.  (1)
  • Science. 327(5971): 1389-91. doi: 10.1126/science.1183372.  (1)
  • Science. 327(5972): 1509-11. doi: 10.1126/science.1184961.  (1)
  • Science. 327(5972): 1522-6. doi: 10.1126/science.1181759.  (1)
  • Science. 327(5973): 1574-5. doi: 10.1126/science.327.5973.1574.  (1)
  • Science. 327(5973): 1644-8. doi: 10.1126/science.1184008.  (1)
  • Science. 328(5974): 62-7. doi: 10.1126/science.1182868.  (1)
  • Science. 328(5975): 216-20. doi: 10.1126/science.1181044.  (1)
  • Science. 328(5977): 498-501. doi: 10.1126/science.1185757.  (1)
  • Science. 328(5979): 757-60. doi: 10.1126/science.1186743.  (1)
  • Science. 328(5980): 894-9. doi: 10.1126/science.1184695.  (1)
  • Science. 328(5980): 910-2. doi: 10.1126/science.1188191.  (1)
  • Science. 328(5981): 1021-5. doi: 10.1126/science.1183415.  (1)
  • Science. 328(5981): 1025-9. doi: 10.1126/science.1190049.  (1)
  • 25
Collection
  • Articles  (50)
Years
  • 2010-2014  (50)
  • 1985-1989
  • 1950-1954
  • 1945-1949
Year
Journal
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bascompte, Jordi -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):765-6. doi: 10.1126/science.1194255.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Integrative Ecology Group, Estacion Biologica de Donana, Consejo Superior de Investigaciones Cientificas, Americo Vespucio s/n, E-41092 Sevilla, Spain. bascompte@ebd.csic.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705836" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; Food Chain ; Insects/*physiology ; Models, Biological ; *Plant Physiological Phenomena ; Pollination ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-05-08
    Description: Dicer is a central enzyme in microRNA (miRNA) processing. We identified a Dicer-independent miRNA biogenesis pathway that uses Argonaute2 (Ago2) slicer catalytic activity. In contrast to other miRNAs, miR-451 levels were refractory to dicer loss of function but were reduced in MZago2 (maternal-zygotic) mutants. We found that pre-miR-451 processing requires Ago2 catalytic activity in vivo. MZago2 mutants showed delayed erythropoiesis that could be rescued by wild-type Ago2 or miR-451-duplex but not by catalytically dead Ago2. Changing the secondary structure of Dicer-dependent miRNAs to mimic that of pre-miR-451 restored miRNA function and rescued developmental defects in MZdicer mutants, indicating that the pre-miRNA secondary structure determines the processing pathway in vivo. We propose that Ago2-mediated cleavage of pre-miRNAs, followed by uridylation and trimming, generates functional miRNAs independently of Dicer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093307/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093307/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cifuentes, Daniel -- Xue, Huiling -- Taylor, David W -- Patnode, Heather -- Mishima, Yuichiro -- Cheloufi, Sihem -- Ma, Enbo -- Mane, Shrikant -- Hannon, Gregory J -- Lawson, Nathan D -- Wolfe, Scot A -- Giraldez, Antonio J -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-38/CA/NCI NIH HHS/ -- R01 GM081602/GM/NIGMS NIH HHS/ -- R01 GM081602-01/GM/NIGMS NIH HHS/ -- R01 GM081602-02/GM/NIGMS NIH HHS/ -- R01 GM081602-03/GM/NIGMS NIH HHS/ -- R01 GM081602-03S1/GM/NIGMS NIH HHS/ -- R01 GM081602-04/GM/NIGMS NIH HHS/ -- R01 GM101108/GM/NIGMS NIH HHS/ -- R01 HL093766/HL/NHLBI NIH HHS/ -- R01 HL093766-04/HL/NHLBI NIH HHS/ -- R01GM081602-03/03S1/GM/NIGMS NIH HHS/ -- R01HL093766/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1694-8. doi: 10.1126/science.1190809. Epub 2010 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448148" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; Biocatalysis ; Embryo, Nonmammalian/metabolism ; Embryonic Development ; Erythropoiesis ; Eukaryotic Initiation Factor-2/genetics/*metabolism ; Humans ; MicroRNAs/*chemistry/*metabolism ; Models, Biological ; Morphogenesis ; Nucleic Acid Conformation ; RNA Precursors/metabolism ; RNA Processing, Post-Transcriptional ; Recombinant Proteins/metabolism ; Ribonuclease III/metabolism ; Zebrafish/embryology/genetics/*metabolism ; Zebrafish Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-05-22
    Description: Cell surface receptors convert extracellular cues into receptor activation, thereby triggering intracellular signaling networks and controlling cellular decisions. A major unresolved issue is the identification of receptor properties that critically determine processing of ligand-encoded information. We show by mathematical modeling of quantitative data and experimental validation that rapid ligand depletion and replenishment of the cell surface receptor are characteristic features of the erythropoietin (Epo) receptor (EpoR). The amount of Epo-EpoR complexes and EpoR activation integrated over time corresponds linearly to ligand input; this process is carried out over a broad range of ligand concentrations. This relation depends solely on EpoR turnover independent of ligand binding, which suggests an essential role of large intracellular receptor pools. These receptor properties enable the system to cope with basal and acute demand in the hematopoietic system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becker, Verena -- Schilling, Marcel -- Bachmann, Julie -- Baumann, Ute -- Raue, Andreas -- Maiwald, Thomas -- Timmer, Jens -- Klingmuller, Ursula -- New York, N.Y. -- Science. 2010 Jun 11;328(5984):1404-8. doi: 10.1126/science.1184913. Epub 2010 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20488988" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/*metabolism ; Computer Simulation ; Endocytosis ; Epoetin Alfa ; Erythropoietin/metabolism/pharmacology ; Kinetics ; Ligands ; Mice ; Models, Biological ; Protein Binding ; Receptors, Erythropoietin/*metabolism ; Recombinant Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-05-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levy, Emmanuel D -- Landry, Christian R -- Michnick, Stephen W -- New York, N.Y. -- Science. 2010 May 21;328(5981):983-4. doi: 10.1126/science.1190993.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departement de Biochimie, Universite de Montreal, Montreal, Quebec, Canada H3T 1J4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20489011" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Mass Spectrometry ; Metabolic Networks and Pathways ; Models, Biological ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Protein Interaction Mapping ; Protein Kinases/*metabolism ; Saccharomyces cerevisiae/enzymology/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-16
    Description: The nucleus accumbens is a key mediator of cocaine reward, but the distinct roles of the two subpopulations of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, are poorly understood. We show that deletion of TrkB, the brain-derived neurotrophic factor (BDNF) receptor, selectively from D1+ or D2+ neurons oppositely affects cocaine reward. Because loss of TrkB in D2+ neurons increases their neuronal excitability, we next used optogenetic tools to control selectively the firing rate of D1+ and D2+ nucleus accumbens neurons and studied consequent effects on cocaine reward. Activation of D2+ neurons, mimicking the loss of TrkB, suppresses cocaine reward, with opposite effects induced by activation of D1+ neurons. These results provide insight into the molecular control of D1+ and D2+ neuronal activity as well as the circuit-level contribution of these cell types to cocaine reward.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3011229/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3011229/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lobo, Mary Kay -- Covington, Herbert E 3rd -- Chaudhury, Dipesh -- Friedman, Allyson K -- Sun, HaoSheng -- Damez-Werno, Diane -- Dietz, David M -- Zaman, Samir -- Koo, Ja Wook -- Kennedy, Pamela J -- Mouzon, Ezekiell -- Mogri, Murtaza -- Neve, Rachael L -- Deisseroth, Karl -- Han, Ming-Hu -- Nestler, Eric J -- P01 DA008227/DA/NIDA NIH HHS/ -- P01 DA008227-20/DA/NIDA NIH HHS/ -- R01 DA007359/DA/NIDA NIH HHS/ -- R01 DA007359-22/DA/NIDA NIH HHS/ -- R01 DA014133/DA/NIDA NIH HHS/ -- R01 DA014133-10/DA/NIDA NIH HHS/ -- R01 DA014133-11/DA/NIDA NIH HHS/ -- R01 DA014133-12/DA/NIDA NIH HHS/ -- R01 MH051399/MH/NIMH NIH HHS/ -- R01 MH051399-19/MH/NIMH NIH HHS/ -- R01 MH051399-20/MH/NIMH NIH HHS/ -- T32 DA007135-26A2/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):385-90. doi: 10.1126/science.1188472.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947769" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/drug effects ; Brain-Derived Neurotrophic Factor/*metabolism ; Cocaine/*pharmacology ; Cocaine-Related Disorders/*metabolism ; Conditioning (Psychology) ; Light ; Mice ; Mice, Transgenic ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3/metabolism ; Models, Biological ; Motor Activity/drug effects ; Neurons/*metabolism ; Nucleus Accumbens/cytology/*metabolism ; RNA, Messenger/genetics/metabolism ; Receptor, trkB/genetics/*metabolism ; Receptors, Dopamine D1/metabolism ; Receptors, Dopamine D2/metabolism ; *Reward ; Rhodopsin/genetics/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-11-26
    Description: In bacteria, the rate of cell proliferation and the level of gene expression are intimately intertwined. Elucidating these relations is important both for understanding the physiological functions of endogenous genetic circuits and for designing robust synthetic systems. We describe a phenomenological study that reveals intrinsic constraints governing the allocation of resources toward protein synthesis and other aspects of cell growth. A theory incorporating these constraints can accurately predict how cell proliferation and gene expression affect one another, quantitatively accounting for the effect of translation-inhibiting antibiotics on gene expression and the effect of gratuitous protein expression on cell growth. The use of such empirical relations, analogous to phenomenological laws, may facilitate our understanding and manipulation of complex biological systems before underlying regulatory circuits are elucidated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, Matthew -- Gunderson, Carl W -- Mateescu, Eduard M -- Zhang, Zhongge -- Hwa, Terence -- R01GM77298/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1099-102. doi: 10.1126/science.1192588.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Theoretical Biological Physics, Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21097934" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Proliferation ; Escherichia coli K12/*genetics/*growth & development ; Escherichia coli Proteins/genetics ; Gene Expression/*physiology ; Models, Biological ; Protein Biosynthesis ; RNA, Bacterial/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-08-07
    Description: Using optical trapping and fluorescence imaging techniques, we measured the step size and stiffness of single skeletal myosins interacting with actin filaments and arranged on myosin-rod cofilaments that approximate myosin mechanics during muscle contraction. Stiffness is dramatically lower for negatively compared to positively strained myosins, consistent with buckling of myosin's subfragment 2 rod domain. Low stiffness minimizes drag of negatively strained myosins during contraction at loaded conditions. Myosin's elastic portion is stretched during active force generation, reducing apparent step size with increasing load, even though the working stroke is approximately constant at about 8 nanometers. Taking account of the nonlinear nature of myosin elasticity is essential to relate myosin's internal structural changes to physiological force generation and filament sliding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaya, Motoshi -- Higuchi, Hideo -- New York, N.Y. -- Science. 2010 Aug 6;329(5992):686-9. doi: 10.1126/science.1191484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo, 113-0033 Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20689017" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*physiology ; Actomyosin/chemistry/physiology ; Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Compliance ; Elasticity ; Models, Biological ; *Muscle Contraction ; Muscle Fibers, Skeletal/chemistry/physiology ; Muscle, Skeletal ; Myosin Subfragments/physiology ; Myosins/chemistry/*physiology ; Quantum Dots ; Rabbits
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-07-31
    Description: During embryonic development, many organs form by extensive branching of epithelia through the formation of clefts and buds. In cleft formation, buds are delineated by the conversion of epithelial cell-cell adhesions to cell-matrix adhesions, but the mechanisms of cleft formation are not clear. We have identified Btbd7 as a dynamic regulator of branching morphogenesis. Btbd7 provides a mechanistic link between the extracellular matrix and cleft propagation through its highly focal expression leading to local regulation of Snail2 (Slug), E-cadherin, and epithelial cell motility. Inhibition experiments show that Btbd7 is required for branching of embryonic mammalian salivary glands and lungs. Hence, Btbd7 is a regulatory gene that promotes epithelial tissue remodeling and formation of branched organs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412157/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412157/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Onodera, Tomohiro -- Sakai, Takayoshi -- Hsu, Jeff Chi-feng -- Matsumoto, Kazue -- Chiorini, John A -- Yamada, Kenneth M -- ZIA DE000525-20/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 30;329(5991):562-5. doi: 10.1126/science.1191880.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cadherins/metabolism ; Cell Adhesion ; Cell Line ; Cell Movement ; Dogs ; Epithelial Cells/*physiology ; Fibronectins/genetics/metabolism ; Genes, Regulator ; Lung/*embryology/metabolism ; Mice ; Mice, Inbred ICR ; Models, Biological ; Molecular Sequence Data ; *Morphogenesis ; Nuclear Proteins ; Organ Culture Techniques ; Proteins/chemistry/*genetics/*physiology ; RNA, Small Interfering ; Salivary Glands/*embryology/metabolism ; Submandibular Gland/embryology ; Transcription Factors/genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-06-05
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023166/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023166/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parvatiyar, Kislay -- Harhaj, Edward W -- R01 GM083143/GM/NIGMS NIH HHS/ -- R01 GM083143-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1244-5. doi: 10.1126/science.1192296.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522767" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Cell-Free System ; DEAD-box RNA Helicases/chemistry/*metabolism ; Humans ; Interferon Regulatory Factor-3/*metabolism ; Models, Biological ; Polyubiquitin/*metabolism ; Protein Binding ; RNA, Viral/*metabolism ; *Signal Transduction ; Transcription Factors/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination ; Virus Diseases/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-04-24
    Description: In the social amoebae Dictyostelium discoideum, periodic synthesis and release of extracellular cyclic adenosine 3',5'-monophosphate (cAMP) guide cell aggregation and commitment to form fruiting bodies. It is unclear whether these oscillations are an intrinsic property of individual cells or if they exist only as a population-level phenomenon. Here, we showed by live-cell imaging of intact cell populations that pulses originate from a discrete location despite constant exchange of cells to and from the region. In a perfusion chamber, both isolated single cells and cell populations switched from quiescence to rhythmic activity depending on the concentration of extracellular cAMP. A quantitative analysis showed that stochastic pulsing of individual cells below the threshold concentration of extracellular cAMP plays a critical role in the onset of collective behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120019/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120019/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gregor, Thomas -- Fujimoto, Koichi -- Masaki, Noritaka -- Sawai, Satoshi -- P50 GM071508/GM/NIGMS NIH HHS/ -- P50 GM071508-08/GM/NIGMS NIH HHS/ -- R01 GM098407/GM/NIGMS NIH HHS/ -- R01 GM098407-01A1/GM/NIGMS NIH HHS/ -- R01 GM098407-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 May 21;328(5981):1021-5. doi: 10.1126/science.1183415. Epub 2010 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20413456" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-AMP Phosphodiesterases/metabolism ; Adenylyl Cyclases/metabolism ; Cell Aggregation ; Cell Count ; Cyclic AMP/*metabolism/pharmacology ; Cyclic AMP-Dependent Protein Kinases/genetics/metabolism ; Cytosol/metabolism ; Dictyostelium/cytology/genetics/growth & development/*physiology ; Fluorescence Resonance Energy Transfer ; Models, Biological ; Periodicity ; Protozoan Proteins/genetics/metabolism ; Quorum Sensing ; Signal Transduction ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2010-11-27
    Description: The extinction of dinosaurs at the Cretaceous/Paleogene (K/Pg) boundary was the seminal event that opened the door for the subsequent diversification of terrestrial mammals. Our compilation of maximum body size at the ordinal level by sub-epoch shows a near-exponential increase after the K/Pg. On each continent, the maximum size of mammals leveled off after 40 million years ago and thereafter remained approximately constant. There was remarkable congruence in the rate, trajectory, and upper limit across continents, orders, and trophic guilds, despite differences in geological and climatic history, turnover of lineages, and ecological variation. Our analysis suggests that although the primary driver for the evolution of giant mammals was diversification to fill ecological niches, environmental temperature and land area may have ultimately constrained the maximum size achieved.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Felisa A -- Boyer, Alison G -- Brown, James H -- Costa, Daniel P -- Dayan, Tamar -- Ernest, S K Morgan -- Evans, Alistair R -- Fortelius, Mikael -- Gittleman, John L -- Hamilton, Marcus J -- Harding, Larisa E -- Lintulaakso, Kari -- Lyons, S Kathleen -- McCain, Christy -- Okie, Jordan G -- Saarinen, Juha J -- Sibly, Richard M -- Stephens, Patrick R -- Theodor, Jessica -- Uhen, Mark D -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1216-9. doi: 10.1126/science.1194830.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM 87131, USA. fasmith@unm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109666" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atmosphere ; *Biological Evolution ; *Body Size ; Ecosystem ; Environment ; Extinction, Biological ; Fossils ; Geography ; Mammals/*anatomy & histology/classification/growth & development ; Models, Biological ; Oxygen ; Phylogeny ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-03-13
    Description: In vivo variations in the concentrations of biomolecular species are inevitable. These variations in turn propagate along networks of chemical reactions and modify the concentrations of still other species, which influence biological activity. Because excessive variations in the amounts of certain active species might hamper cell function, regulation systems have evolved that act to maintain concentrations within tight bounds. We identify simple yet subtle structural attributes that impart concentration robustness to any mass-action network possessing them. We thereby describe a large class of robustness-inducing networks that already embraces two quite different biochemical modules for which concentration robustness has been observed experimentally: the Escherichia coli osmoregulation system EnvZ-OmpR and the glyoxylate bypass control system isocitrate dehydrogenase kinase-phosphatase-isocitrate dehydrogenase. The structural attributes identified here might confer robustness far more broadly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinar, Guy -- Feinberg, Martin -- 1R01GM086881-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Mar 12;327(5971):1389-91. doi: 10.1126/science.1183372.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20223989" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*metabolism ; Bacterial Proteins/*metabolism ; Escherichia coli/*metabolism ; Escherichia coli Proteins/*metabolism ; Glyoxylates/metabolism ; Isocitrate Dehydrogenase/*metabolism ; *Metabolic Networks and Pathways ; Models, Biological ; Models, Chemical ; Multienzyme Complexes/*metabolism ; Osmolar Concentration ; Phosphorylation ; Signal Transduction ; Trans-Activators/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-02-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hilser, Vincent J -- GM63747/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 5;327(5966):653-4. doi: 10.1126/science.1186121.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA. vjhilser@utmb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20133562" target="_blank"〉PubMed〈/a〉
    Keywords: *Allosteric Regulation ; Allosteric Site ; Ligands ; Models, Biological ; Models, Molecular ; Molecular Motor Proteins/chemistry/metabolism ; Protein Conformation ; Protein Subunits/*chemistry/*metabolism ; Proteins/*chemistry/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2010-03-13
    Description: Extracellular matrices in diverse biological systems are cross-linked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that a peroxidase, secreted by the Anopheles gambiae midgut, and dual oxidase form a dityrosine network that decreases gut permeability to immune elicitors. This network protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510679/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510679/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, Sanjeev -- Molina-Cruz, Alvaro -- Gupta, Lalita -- Rodrigues, Janneth -- Barillas-Mury, Carolina -- ZIA AI000947-08/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Mar 26;327(5973):1644-8. doi: 10.1126/science.1184008. Epub 2010 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20223948" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles gambiae/*enzymology/*immunology/microbiology/parasitology ; Anti-Bacterial Agents/pharmacology ; Bacteria/immunology ; Bacterial Physiological Phenomena ; Blood ; Digestive System/enzymology/immunology/microbiology/parasitology ; Enzyme Induction ; Epithelial Cells/immunology/microbiology/parasitology ; Extracellular Matrix/metabolism ; Female ; Gene Expression Regulation ; Insect Proteins/metabolism ; Models, Biological ; NADPH Oxidase/genetics/*metabolism ; Nitric Oxide Synthase/biosynthesis ; Permeability ; Peroxidase/genetics/*metabolism ; Plasmodium berghei/immunology/physiology ; Plasmodium falciparum/immunology/physiology ; RNA Interference ; Tyrosine/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2010-03-06
    Description: The extensible byssal threads of marine mussels are shielded from abrasion in wave-swept habitats by an outer cuticle that is largely proteinaceous and approximately fivefold harder than the thread core. Threads from several species exhibit granular cuticles containing a protein that is rich in the catecholic amino acid 3,4-dihydroxyphenylalanine (dopa) as well as inorganic ions, notably Fe3+. Granular cuticles exhibit a remarkable combination of high hardness and high extensibility. We explored byssus cuticle chemistry by means of in situ resonance Raman spectroscopy and demonstrated that the cuticle is a polymeric scaffold stabilized by catecholato-iron chelate complexes having an unusual clustered distribution. Consistent with byssal cuticle chemistry and mechanics, we present a model in which dense cross-linking in the granules provides hardness, whereas the less cross-linked matrix provides extensibility.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087814/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3087814/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harrington, Matthew J -- Masic, Admir -- Holten-Andersen, Niels -- Waite, J Herbert -- Fratzl, Peter -- R01 DE015415/DE/NIDCR NIH HHS/ -- R01 DE015415-04/DE/NIDCR NIH HHS/ -- R01 DE018468/DE/NIDCR NIH HHS/ -- R01 DE018468-01A1/DE/NIDCR NIH HHS/ -- R01 DE018468-02/DE/NIDCR NIH HHS/ -- R01 DE018468-03/DE/NIDCR NIH HHS/ -- R01 DE018468-04/DE/NIDCR NIH HHS/ -- R01DE018468/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):216-20. doi: 10.1126/science.1181044. Epub 2010 Mar 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomaterials, Max Planck Institute for Colloids and Interfaces, Potsdam 14424, Germany. Matt.Harrington@mpikg.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20203014" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Structures/chemistry ; Animals ; Biomechanical Phenomena ; Dihydroxyphenylalanine/*chemistry ; Ferric Compounds/*chemistry ; Hardness ; Iron/chemistry ; Models, Biological ; Mytilus/*chemistry/physiology ; Physicochemical Processes ; Proteins/*chemistry/metabolism ; Repetitive Sequences, Amino Acid ; Spectrum Analysis, Raman
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2010-10-28
    Description: Quantitative scenarios are coming of age as a tool for evaluating the impact of future socioeconomic development pathways on biodiversity and ecosystem services. We analyze global terrestrial, freshwater, and marine biodiversity scenarios using a range of measures including extinctions, changes in species abundance, habitat loss, and distribution shifts, as well as comparing model projections to observations. Scenarios consistently indicate that biodiversity will continue to decline over the 21st century. However, the range of projected changes is much broader than most studies suggest, partly because there are major opportunities to intervene through better policies, but also because of large uncertainties in projections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pereira, Henrique M -- Leadley, Paul W -- Proenca, Vania -- Alkemade, Rob -- Scharlemann, Jorn P W -- Fernandez-Manjarres, Juan F -- Araujo, Miguel B -- Balvanera, Patricia -- Biggs, Reinette -- Cheung, William W L -- Chini, Louise -- Cooper, H David -- Gilman, Eric L -- Guenette, Sylvie -- Hurtt, George C -- Huntington, Henry P -- Mace, Georgina M -- Oberdorff, Thierry -- Revenga, Carmen -- Rodrigues, Patricia -- Scholes, Robert J -- Sumaila, Ussif Rashid -- Walpole, Matt -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1496-501. doi: 10.1126/science.1196624. Epub 2010 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro de Biologia Ambiental, Faculdade de Ciencias da Universidade de Lisboa, 1749-016 Lisboa, Portugal. hpereira@fc.ul.pt〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20978282" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquatic Organisms ; *Biodiversity ; Conservation of Natural Resources ; *Ecosystem ; Extinction, Biological ; Forecasting ; Models, Biological ; Plants ; Policy ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-07-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Santo, James P -- R01 AR060723/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 2;329(5987):44-5. doi: 10.1126/science.1191664.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Innate Immunity Unit, Institut Pasteur, Paris F-75724, France. james.di-santo@pasteur.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20595605" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage ; Cells, Cultured ; Cytokines/metabolism ; Gene Deletion ; Gene Expression Regulation ; Interleukin-7/physiology ; Killer Cells, Natural/cytology/immunology/*physiology ; *Lymphopoiesis/genetics ; Mice ; Models, Biological ; Precursor Cells, T-Lymphoid/cytology/physiology ; Repressor Proteins/*genetics/*metabolism ; Signal Transduction ; T-Lymphocytes/cytology/immunology/*physiology ; Tumor Suppressor Proteins/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2010-06-19
    Description: In Drosophila, microRNAs (miRNAs) typically guide Argonaute1 to repress messenger RNA (mRNA), whereas small interfering RNAs (siRNAs) guide Argonaute2 to destroy viral and transposon RNA. Unlike siRNAs, miRNAs rarely form extensive numbers of base pairs to the mRNAs they regulate. We find that extensive complementarity between a target RNA and an Argonaute1-bound miRNA triggers miRNA tailing and 3'-to-5' trimming. In flies, Argonaute2-bound small RNAs--but not those bound to Argonaute1--bear a 2'-O-methyl group at their 3' ends. This modification blocks target-directed small RNA remodeling: In flies lacking Hen1, the enzyme that adds the 2'-O-methyl group, Argonaute2-associated siRNAs are tailed and trimmed. Target complementarity also affects small RNA stability in human cells. These results provide an explanation for the partial complementarity between animal miRNAs and their targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902985/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902985/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ameres, Stefan L -- Horwich, Michael D -- Hung, Jui-Hung -- Xu, Jia -- Ghildiyal, Megha -- Weng, Zhiping -- Zamore, Phillip D -- F30AG030283/AG/NIA NIH HHS/ -- GM62862/GM/NIGMS NIH HHS/ -- GM65236/GM/NIGMS NIH HHS/ -- J 2832/Austrian Science Fund FWF/Austria -- R01 GM065236/GM/NIGMS NIH HHS/ -- R01 GM065236-08/GM/NIGMS NIH HHS/ -- R37 GM062862/GM/NIGMS NIH HHS/ -- R37 GM062862-10/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jun 18;328(5985):1534-9. doi: 10.1126/science.1187058.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20558712" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; *Base Pairing ; Cell Line ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/embryology/genetics ; Eukaryotic Initiation Factors/metabolism ; Green Fluorescent Proteins/genetics ; Humans ; Methylation ; Methyltransferases/genetics/metabolism ; MicroRNAs/chemistry/genetics/*metabolism ; Models, Biological ; RNA Caps ; *RNA Stability ; RNA, Complementary ; RNA, Messenger/chemistry/genetics/*metabolism ; RNA, Small Interfering/chemistry/genetics/*metabolism ; RNA-Induced Silencing Complex/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-07-31
    Description: Barton et al. (Reports, 19 March 2010, p. 1509) argued that stable conditions enable neutral coexistence of many phytoplankton species in the tropical oceans, whereas seasonal variation causes low biodiversity in subpolar oceans. However, their model prediction is not robust. A minor deviation from the neutrality assumption favors coexistence in fluctuating rather than stable environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huisman, Jef -- New York, N.Y. -- Science. 2010 Jul 30;329(5991):512; author reply 512. doi: 10.1126/science.1189880.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Post Office Box 94248, 1090 GE Amsterdam, Netherlands. j.huisman@uva.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671171" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Ecosystem ; Environment ; Geography ; Models, Biological ; Oceans and Seas ; *Phytoplankton/growth & development/physiology ; Population Dynamics ; Seasons ; *Seawater
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-03-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2010 Mar 26;327(5973):1574-5. doi: 10.1126/science.327.5973.1574.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339047" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; California ; *Conservation of Natural Resources/economics/legislation & jurisprudence ; *Ecosystem ; Fisheries ; *Fishes ; Guidelines as Topic ; Models, Biological ; Models, Economic ; Pacific Ocean ; Politics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2010-03-20
    Description: Although major progress has been made in uncovering the machinery that underlies individual biological clocks, much less is known about how multiple clocks coordinate their oscillations. We simultaneously tracked cell division events and circadian phases of individual cells of the cyanobacterium Synechococcus elongatus and fit the data to a model to determine when cell cycle progression slows as a function of circadian and cell cycle phases. We infer that cell cycle progression in cyanobacteria slows during a specific circadian interval but is uniform across cell cycle phases. Our model is applicable to the quantification of the coupling between biological oscillators in other organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118046/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118046/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Qiong -- Pando, Bernardo F -- Dong, Guogang -- Golden, Susan S -- van Oudenaarden, Alexander -- R01 GM062419/GM/NIGMS NIH HHS/ -- R01 GM062419-05A2/GM/NIGMS NIH HHS/ -- R01 GM062419-06/GM/NIGMS NIH HHS/ -- R01 GM062419-07/GM/NIGMS NIH HHS/ -- R01 GM068957/GM/NIGMS NIH HHS/ -- R01 GM068957-07/GM/NIGMS NIH HHS/ -- R01 GM068957-08/GM/NIGMS NIH HHS/ -- R01-GM062419/GM/NIGMS NIH HHS/ -- R01-GM068957/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Mar 19;327(5972):1522-6. doi: 10.1126/science.1181759.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20299597" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics/metabolism ; *Biological Clocks ; *Cell Cycle ; *Circadian Rhythm ; Circadian Rhythm Signaling Peptides and Proteins/genetics/metabolism ; Computer Simulation ; Light ; Luminescent Proteins/metabolism ; Microscopy, Fluorescence ; Models, Biological ; Monte Carlo Method ; Synechococcus/*cytology/genetics/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2010-12-04
    Description: Although the proteins BAX and BAK are required for initiation of apoptosis at the mitochondria, how BAX and BAK are activated remains unsettled. We provide in vivo evidence demonstrating an essential role of the proteins BID, BIM, and PUMA in activating BAX and BAK. Bid, Bim, and Puma triple-knockout mice showed the same developmental defects that are associated with deficiency of Bax and Bak, including persistent interdigital webs and imperforate vaginas. Genetic deletion of Bid, Bim, and Puma prevented the homo-oligomerization of BAX and BAK, and thereby cytochrome c-mediated activation of caspases in response to diverse death signals in neurons and T lymphocytes, despite the presence of other BH3-only molecules. Thus, many forms of apoptosis require direct activation of BAX and BAK at the mitochondria by a member of the BID, BIM, or PUMA family of proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163443/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163443/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ren, Decheng -- Tu, Ho-Chou -- Kim, Hyungjin -- Wang, Gary X -- Bean, Gregory R -- Takeuchi, Osamu -- Jeffers, John R -- Zambetti, Gerard P -- Hsieh, James J-D -- Cheng, Emily H-Y -- P30CA21765/CA/NCI NIH HHS/ -- R01 CA125562/CA/NCI NIH HHS/ -- R01 CA125562-02/CA/NCI NIH HHS/ -- R01 CA125562-03/CA/NCI NIH HHS/ -- R01 CA125562-04/CA/NCI NIH HHS/ -- R01CA125562/CA/NCI NIH HHS/ -- R01GM083159/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1390-3. doi: 10.1126/science.1190217.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/deficiency/genetics/*metabolism ; BH3 Interacting Domain Death Agonist Protein/deficiency/genetics/*metabolism ; Caspases/metabolism ; Cells, Cultured ; Cerebellum/cytology ; Cytochromes c/metabolism ; Intracellular Membranes/metabolism ; Membrane Proteins/deficiency/genetics/*metabolism ; Mice ; Mice, Knockout ; Mitochondria/metabolism ; Models, Biological ; Neurons/*physiology ; Permeability ; Protein Multimerization ; Proto-Oncogene Proteins/deficiency/genetics/*metabolism ; Stress, Physiological ; T-Lymphocytes/physiology ; Tumor Suppressor Proteins/deficiency/genetics/*metabolism ; bcl-2 Homologous Antagonist-Killer Protein/chemistry/genetics/*metabolism ; bcl-2-Associated X Protein/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-09-04
    Description: The fossil record demonstrates that each major taxonomic group has a consistent net rate of diversification and a limit to its species richness. It has been thought that long-term changes in the dominance of major taxonomic groups can be predicted from these characteristics. However, new analyses show that diversity limits may rise or fall in response to adaptive radiations or extinctions. These changes are idiosyncratic and occur at different times in each taxa. For example, the end-Permian mass extinction permanently reduced the diversity of important, previously dominant groups such as brachiopods and crinoids. The current global crisis may therefore permanently alter the biosphere's taxonomic composition by changing the rules of evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alroy, J -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1191-4. doi: 10.1126/science.1189910.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Paleobiology Database, University of California, 735 State Street, Santa Barbara, CA 93101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813951" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; Animals ; Anthozoa ; *Biodiversity ; Biological Evolution ; Data Interpretation, Statistical ; *Databases, Factual ; Extinction, Biological ; *Fossils ; *Invertebrates ; Marine Biology ; Models, Biological ; *Mollusca ; Oceans and Seas ; Paleontology ; Population Dynamics ; Statistics as Topic ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2010-04-24
    Description: The multiprotein replisome complex that replicates DNA has been extensively characterized in vitro, but its composition and architecture in vivo is unknown. Using millisecond single-molecule fluorescence microscopy in living cells expressing fluorescent derivatives of replisome components, we have examined replisome stoichiometry and architecture. Active Escherichia coli replisomes contain three molecules of the replicative polymerase, rather than the historically accepted two. These are associated with three molecules of tau, a clamp loader component that trimerizes polymerase. Only two of the three sliding clamps are always associated with the core replisome. Single-strand binding protein has a broader spatial distribution than the core components, with 5 to 11 tetramers per replisome. This in vivo technique could provide single-molecule insight into other molecular machines.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859602/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859602/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reyes-Lamothe, Rodrigo -- Sherratt, David J -- Leake, Mark C -- 083469/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Apr 23;328(5977):498-501. doi: 10.1126/science.1185757.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20413500" target="_blank"〉PubMed〈/a〉
    Keywords: DNA Polymerase III/*analysis/metabolism ; *DNA Replication ; DNA, Bacterial/analysis/chemistry/*metabolism ; DNA-Binding Proteins/analysis/metabolism ; DNA-Directed DNA Polymerase/*analysis/metabolism ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/*analysis/metabolism ; Microscopy, Fluorescence ; Models, Biological ; Multienzyme Complexes/*analysis/metabolism ; Nucleic Acid Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2010-02-06
    Description: The bacterial flagellar switch that controls the direction of flagellar rotation during chemotaxis has a highly cooperative response. This has previously been understood in terms of the classic two-state, concerted model of allosteric regulation. Here, we used high-resolution optical microscopy to observe switching of single motors and uncover the stochastic multistate nature of the switch. Our observations are in detailed quantitative agreement with a recent general model of allosteric cooperativity that exhibits conformational spread--the stochastic growth and shrinkage of domains of adjacent subunits sharing a particular conformational state. We expect that conformational spread will be important in explaining cooperativity in other large signaling complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bai, Fan -- Branch, Richard W -- Nicolau, Dan V Jr -- Pilizota, Teuta -- Steel, Bradley C -- Maini, Philip K -- Berry, Richard M -- BB/E00458X/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H01991X/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Feb 5;327(5966):685-9. doi: 10.1126/science.1182105.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20133571" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Escherichia coli/metabolism ; Escherichia coli Proteins/*chemistry/*metabolism ; Flagella/*chemistry ; Membrane Proteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Molecular Motor Proteins/*chemistry/*metabolism ; Monte Carlo Method ; Protein Binding ; Protein Conformation ; Protein Subunits/*chemistry/*metabolism ; Signal Transduction ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2010-10-12
    Description: CLC proteins transport chloride (Cl(-)) ions across cell membranes to control the electrical potential of muscle cells, transfer electrolytes across epithelia, and control the pH and electrolyte composition of intracellular organelles. Some members of this protein family are Cl(-) ion channels, whereas others are secondary active transporters that exchange Cl(-) ions and protons (H(+)) with a 2:1 stoichiometry. We have determined the structure of a eukaryotic CLC transporter at 3.5 angstrom resolution. Cytoplasmic cystathionine beta-synthase (CBS) domains are strategically positioned to regulate the ion-transport pathway, and many disease-causing mutations in human CLCs reside on the CBS-transmembrane interface. Comparison with prokaryotic CLC shows that a gating glutamate residue changes conformation and suggests a basis for 2:1 Cl(-)/H(+) exchange and a simple mechanistic connection between CLC channels and transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079386/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079386/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Liang -- Campbell, Ernest B -- Hsiung, Yichun -- MacKinnon, Roderick -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- R01 GM043949-20/GM/NIGMS NIH HHS/ -- R01 GM043949-21/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):635-41. doi: 10.1126/science.1195230. Epub 2010 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929736" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/chemistry/metabolism ; Animals ; Antiporters/*chemistry/metabolism ; Binding Sites ; Cell Line ; Cell Membrane/chemistry ; Chloride Channels/*chemistry/metabolism ; Chlorides/*metabolism ; Crystallization ; Crystallography, X-Ray ; Cystathionine beta-Synthase/chemistry ; Cytoplasm/chemistry ; Glutamic Acid/metabolism ; Ion Channel Gating ; Ion Transport ; Models, Biological ; Models, Molecular ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Protons ; Rhodophyta/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2010-12-15
    Description: Formin homology proteins (formins) elongate actin filaments (F-actin) by continuously associating with filament tips, potentially harnessing actin-generated pushing forces. During this processive elongation, formins are predicted to rotate along the axis of the double helical F-actin structure (referred to here as helical rotation), although this has not yet been definitively shown. We demonstrated helical rotation of the formin mDia1 by single-molecule fluorescence polarization (FL(P)). FL(P) of labeled F-actin, both elongating and depolymerizing from immobilized mDia1, oscillated with a periodicity corresponding to that of the F-actin long-pitch helix, and this was not altered by actin-bound nucleotides or the actin-binding protein profilin. Thus, helical rotation is an intrinsic property of formins. To harness pushing forces from growing F-actin, formins must be anchored flexibly to cell structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mizuno, Hiroaki -- Higashida, Chiharu -- Yuan, Yunfeng -- Ishizaki, Toshimasa -- Narumiya, Shuh -- Watanabe, Naoki -- New York, N.Y. -- Science. 2011 Jan 7;331(6013):80-3. doi: 10.1126/science.1197692. Epub 2010 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, 6-3 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148346" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/chemistry/*metabolism/ultrastructure ; Actins/chemistry/*metabolism ; Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Carrier Proteins/chemistry/*metabolism ; Fluorescence Polarization ; Mice ; Models, Biological ; Profilins/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Rabbits ; Recombinant Fusion Proteins/chemistry/metabolism ; Rotation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-01-30
    Description: Adult stem cells are crucial for physiological tissue renewal and regeneration after injury. Prevailing models assume the existence of a single quiescent population of stem cells residing in a specialized niche of a given tissue. Emerging evidence indicates that both quiescent (out of cell cycle and in a lower metabolic state) and active (in cell cycle and not able to retain DNA labels) stem cell subpopulations may coexist in several tissues, in separate yet adjoining locations. Here, we summarize these findings and propose that quiescent and active stem cell populations have separate but cooperative functional roles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105182/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105182/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Linheng -- Clevers, Hans -- U01 DK085507/DK/NIDDK NIH HHS/ -- U01DK085507/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2010 Jan 29;327(5965):542-5. doi: 10.1126/science.1180794.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research (SIMR), Kansas City, MO 64110, USA. lil@stowers.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20110496" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/cytology/*physiology ; Animals ; *Cell Cycle ; Cell Differentiation ; Cell Lineage ; Hair Follicle/cytology ; Hematopoietic Stem Cells/cytology/physiology ; Humans ; Intestinal Mucosa/cytology ; Mammals/*physiology ; Models, Biological ; Stem Cell Niche
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2010-02-27
    Description: Spatial diversity gradients are a pervasive feature of life on Earth. We examined a global ocean circulation, biogeochemistry, and ecosystem model that indicated a decrease in phytoplankton diversity with increasing latitude, consistent with observations of many marine and terrestrial taxa. In the modeled subpolar oceans, seasonal variability of the environment led to competitive exclusion of phytoplankton with slower growth rates and lower diversity. The relatively weak seasonality of the stable subtropical and tropical oceans in the global model enabled long exclusion time scales and prolonged coexistence of multiple phytoplankton with comparable fitness. Superimposed on the decline in diversity seen from equator to pole were "hot spots" of enhanced diversity in some regions of energetic ocean circulation, which reflected lateral dispersal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barton, Andrew D -- Dutkiewicz, Stephanie -- Flierl, Glenn -- Bragg, Jason -- Follows, Michael J -- New York, N.Y. -- Science. 2010 Mar 19;327(5972):1509-11. doi: 10.1126/science.1184961. Epub 2010 Feb 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. adbarton@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20185684" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Biomass ; Climate ; *Ecosystem ; Environment ; Geography ; Models, Biological ; Oceans and Seas ; *Phytoplankton/growth & development/physiology ; Population Dynamics ; Seasons ; *Seawater
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-01-02
    Description: Cell membranes display a tremendous complexity of lipids and proteins designed to perform the functions cells require. To coordinate these functions, the membrane is able to laterally segregate its constituents. This capability is based on dynamic liquid-liquid immiscibility and underlies the raft concept of membrane subcompartmentalization. Lipid rafts are fluctuating nanoscale assemblies of sphingolipid, cholesterol, and proteins that can be stabilized to coalesce, forming platforms that function in membrane signaling and trafficking. Here we review the evidence for how this principle combines the potential for sphingolipid-cholesterol self-assembly with protein specificity to selectively focus membrane bioactivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lingwood, Daniel -- Simons, Kai -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044567" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Cell Membrane/chemistry/*physiology/ultrastructure ; Cholesterol/chemistry/metabolism ; Humans ; Lipid Bilayers/chemistry/metabolism ; Membrane Microdomains/*chemistry/*physiology/ultrastructure ; Membrane Proteins/chemistry/metabolism ; Models, Biological ; Signal Transduction ; Sphingolipids/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2010-05-08
    Description: Proper protein localization is essential for all cells. However, the precise mechanism by which high fidelity is achieved is not well understood for any protein-targeting pathway. To address this fundamental question, we investigated the signal recognition particle (SRP) pathway in Escherichia coli, which delivers proteins to the bacterial inner membrane through recognition of signal sequences on cargo proteins. Fidelity was thought to arise from the inability of SRP to bind strongly to incorrect cargos. Using biophysical assays, we found that incorrect cargos were also rejected through a series of checkpoints during subsequent steps of targeting. Thus, high fidelity of substrate selection is achieved through the cumulative effect of multiple checkpoints; this principle may be generally applicable to other pathways involving selective signal recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760334/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760334/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xin -- Rashid, Rumana -- Wang, Kai -- Shan, Shu-ou -- GM078024/GM/NIGMS NIH HHS/ -- R01 GM078024/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 May 7;328(5979):757-60. doi: 10.1126/science.1186743.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448185" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/metabolism ; Escherichia coli/*metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Fluorescence Resonance Energy Transfer ; Guanosine Triphosphate/metabolism ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Biological ; Protein Binding ; Protein Biosynthesis ; *Protein Sorting Signals ; *Protein Transport ; Ribosomes/metabolism ; Signal Recognition Particle/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2010-10-16
    Description: Granulosa cells of mammalian Graafian follicles maintain oocytes in meiotic arrest, which prevents their precocious maturation. We show that mouse mural granulosa cells, which line the follicle wall, express natriuretic peptide precursor type C (Nppc) messenger RNA (mRNA), whereas cumulus cells surrounding oocytes express mRNA of the NPPC receptor NPR2, a guanylyl cyclase. NPPC increased cGMP levels in cumulus cells and oocytes and inhibited meiotic resumption in vitro. Meiotic arrest was not sustained in most Graafian follicles of Nppc or Npr2 mutant mice, and meiosis resumed precociously. Oocyte-derived paracrine factors promoted cumulus cell expression of Npr2 mRNA. Therefore, the granulosa cell ligand NPPC and its receptor NPR2 in cumulus cells prevent precocious meiotic maturation, which is critical for maturation and ovulation synchrony and for normal female fertility.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056542/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056542/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Meijia -- Su, You-Qiang -- Sugiura, Koji -- Xia, Guoliang -- Eppig, John J -- HD21970/HD/NICHD NIH HHS/ -- HD23839/HD/NICHD NIH HHS/ -- R01 HD023839/HD/NICHD NIH HHS/ -- R01 HD023839-22/HD/NICHD NIH HHS/ -- R37 HD021970/HD/NICHD NIH HHS/ -- R37 HD021970-25/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):366-9. doi: 10.1126/science.1193573.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947764" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cumulus Cells/*metabolism ; Cyclic AMP/metabolism ; Cyclic GMP/metabolism ; Female ; Granulosa Cells/*metabolism ; Intercellular Signaling Peptides and Proteins/metabolism ; Ligands ; *Meiosis ; Mice ; Models, Biological ; Mutation ; Natriuretic Peptide, C-Type/genetics/*metabolism ; Oocytes/*physiology ; Ovarian Follicle/cytology ; Protein Precursors/genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Receptors, Atrial Natriuretic Factor/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2010-07-10
    Description: At fertilization, mouse sperm bind to the zona pellucida (which consists of glycoproteins ZP1, ZP2, and ZP3) that surrounds eggs. A ZP2 cleavage model of gamete recognition requires intact ZP2, and a glycan release model postulates that zona glycans are ligands for sperm. These two models were tested by replacing endogenous protein with ZP2 that cannot be cleaved (Zp2(Mut)) or with ZP3 lacking implicated O glycans (Zp3(Mut)). Sperm bound to two-cell Zp2(Mut) embryos despite fertilization and cortical granule exocytosis. Contrary to prediction, sperm fertilized Zp3(Mut) eggs. Sperm at the surface of the zona pellucida remained acrosome-intact for more than 2 hours and were displaced by additional sperm. These data indicate that sperm-egg recognition depends on the cleavage status of ZP2 and that binding at the surface of the zona is not sufficient to induce sperm acrosome exocytosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272265/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272265/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gahlay, Gagandeep -- Gauthier, Lyn -- Baibakov, Boris -- Epifano, Olga -- Dean, Jurrien -- ZIA DK015603-05/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 9;329(5988):216-9. doi: 10.1126/science.1188178.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616279" target="_blank"〉PubMed〈/a〉
    Keywords: Acrosome/physiology ; Acrosome Reaction ; Animals ; Cell Adhesion ; Egg Proteins/genetics/*metabolism ; Embryo, Mammalian/metabolism ; Exocytosis ; Female ; Fertility ; Fertilization ; Ligands ; Male ; Membrane Glycoproteins/genetics/*metabolism ; Mice ; Mice, Transgenic ; Models, Biological ; Mutant Proteins/metabolism ; Polysaccharides/metabolism ; Receptors, Cell Surface/genetics/*metabolism ; Sperm Capacitation ; *Sperm-Ovum Interactions ; Spermatozoa/*metabolism ; Zona Pellucida/*metabolism ; Zygote/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2010-03-20
    Description: Stem cells support tissue maintenance by balancing self-renewal and differentiation. In mice, it is believed that a homogeneous stem cell population of single spermatogonia supports spermatogenesis, and that differentiation, which is accompanied by the formation of connected cells (cysts) of increasing length, is linear and nonreversible. We evaluated this model with the use of lineage analysis and live imaging, and found that this putative stem cell population is not homogeneous. Instead, the stem cell pool that supports steady-state spermatogenesis is contained within a subpopulation of single spermatogonia. We also found that cysts are not committed to differentiation and appear to recover stem cell potential by fragmentation, and that the fate of individual spermatogonial populations was markedly altered during regeneration after damage. Thus, there are multiple and reversible paths from stem cells to differentiation, and these may also occur in other systems.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981100/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981100/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakagawa, Toshinori -- Sharma, Manju -- Nabeshima, Yo-ichi -- Braun, Robert E -- Yoshida, Shosei -- U54 HD042454/HD/NICHD NIH HHS/ -- U54 HD042454-080002/HD/NICHD NIH HHS/ -- U54 HD4254/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 2;328(5974):62-7. doi: 10.1126/science.1182868. Epub 2010 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20299552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Cadherins/genetics/metabolism ; Cell Differentiation ; Cell Lineage ; Gene Expression Profiling ; Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics/metabolism ; Kruppel-Like Transcription Factors/genetics/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Models, Biological ; Nerve Tissue Proteins/genetics/metabolism ; Regeneration ; *Spermatogenesis ; Spermatogonia/*cytology/*physiology ; Stem Cell Niche ; Stem Cells/*cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2010-07-07
    Description: Terrestrial gross primary production (GPP) is the largest global CO(2) flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 +/- 8 petagrams of carbon per year (Pg C year(-1)) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP's latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate-carbon cycle process models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beer, Christian -- Reichstein, Markus -- Tomelleri, Enrico -- Ciais, Philippe -- Jung, Martin -- Carvalhais, Nuno -- Rodenbeck, Christian -- Arain, M Altaf -- Baldocchi, Dennis -- Bonan, Gordon B -- Bondeau, Alberte -- Cescatti, Alessandro -- Lasslop, Gitta -- Lindroth, Anders -- Lomas, Mark -- Luyssaert, Sebastiaan -- Margolis, Hank -- Oleson, Keith W -- Roupsard, Olivier -- Veenendaal, Elmar -- Viovy, Nicolas -- Williams, Christopher -- Woodward, F Ian -- Papale, Dario -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):834-8. doi: 10.1126/science.1184984. Epub 2010 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biogeochemical Model-Data Integration Group, Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. christian.beer@bgc-jena.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20603496" target="_blank"〉PubMed〈/a〉
    Keywords: Artificial Intelligence ; Atmosphere ; Carbon Dioxide/*metabolism ; *Climate ; Climatic Processes ; *Ecosystem ; Geography ; Models, Biological ; Models, Statistical ; Neural Networks (Computer) ; Oxygen Consumption ; *Photosynthesis ; Plant Leaves/*metabolism ; Plants/*metabolism ; Temperature ; Trees/metabolism ; Uncertainty ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2010-04-17
    Description: SAGA is a transcriptional coactivator complex that is conserved across eukaryotes and performs multiple functions during transcriptional activation and elongation. One role is deubiquitination of histone H2B, and this activity resides in a distinct subcomplex called the deubiquitinating module (DUBm), which contains the ubiquitin-specific protease Ubp8, bound to Sgf11, Sus1, and Sgf73. The deubiquitinating activity depends on the presence of all four DUBm proteins. We report here the 1.90 angstrom resolution crystal structure of the DUBm bound to ubiquitin aldehyde, as well as the 2.45 angstrom resolution structure of the uncomplexed DUBm. The structure reveals an arrangement of protein domains that gives rise to a highly interconnected complex, which is stabilized by eight structural zinc atoms that are critical for enzymatic activity. The structure suggests a model for how interactions with the other DUBm proteins activate Ubp8 and allows us to speculate about how the DUBm binds to monoubiquitinated histone H2B in nucleosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220450/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220450/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Samara, Nadine L -- Datta, Ajit B -- Berndsen, Christopher E -- Zhang, Xiangbin -- Yao, Tingting -- Cohen, Robert E -- Wolberger, Cynthia -- F32GM089037/GM/NIGMS NIH HHS/ -- R01 GM095822/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 May 21;328(5981):1025-9. doi: 10.1126/science.1190049. Epub 2010 Apr 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20395473" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehydes/chemistry/metabolism ; Crystallography, X-Ray ; Endopeptidases/*chemistry/metabolism ; Histone Acetyltransferases/*chemistry/metabolism ; Histones/metabolism ; Models, Biological ; Models, Molecular ; Nuclear Proteins/*chemistry/metabolism ; Nucleosomes/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA-Binding Proteins/*chemistry/metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism ; Trans-Activators/*chemistry/metabolism ; Transcription Factors/*chemistry/metabolism ; Ubiquitin/chemistry/*metabolism ; Ubiquitinated Proteins/metabolism ; Ubiquitination ; Ubiquitins/chemistry/metabolism ; Zinc/chemistry/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, Seamus J -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1330-1. doi: 10.1126/science.1199461.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Cell Biology Laboratory, Department of Genetics, Trinity College, Dublin 2, Ireland. martinsj@tcd.ie〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127237" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/genetics/*metabolism ; BH3 Interacting Domain Death Agonist Protein/genetics/*metabolism ; Cytochromes c/metabolism ; Intracellular Membranes/metabolism ; Membrane Proteins/genetics/*metabolism ; Mice ; Mitochondria/metabolism ; Models, Biological ; Permeability ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Stress, Physiological ; Tumor Suppressor Proteins/genetics/*metabolism ; bcl-2 Homologous Antagonist-Killer Protein/*metabolism ; bcl-2-Associated X Protein/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2010-11-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gray, Michael W -- Lukes, Julius -- Archibald, John M -- Keeling, Patrick J -- Doolittle, W Ford -- New York, N.Y. -- Science. 2010 Nov 12;330(6006):920-1. doi: 10.1126/science.1198594.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071654" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Cell Physiological Processes ; Genome, Mitochondrial ; Introns ; Mitochondria/genetics/physiology ; Models, Biological ; Mutation ; RNA Editing ; RNA Splicing ; Ribosomes/physiology ; Selection, Genetic ; Spliceosomes/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2010-10-12
    Description: Voltage- and store-operated calcium (Ca(2+)) channels are the major routes of Ca(2+) entry in mammalian cells, but little is known about how cells coordinate the activity of these channels to generate coherent calcium signals. We found that STIM1 (stromal interaction molecule 1), the main activator of store-operated Ca(2+) channels, directly suppresses depolarization-induced opening of the voltage-gated Ca(2+) channel Ca(V)1.2. STIM1 binds to the C terminus of Ca(V)1.2 through its Ca(2+) release-activated Ca(2+) activation domain, acutely inhibits gating, and causes long-term internalization of the channel from the membrane. This establishes a previously unknown function for STIM1 and provides a molecular mechanism to explain the reciprocal regulation of these two channels in cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Chan Young -- Shcheglovitov, Aleksandr -- Dolmetsch, Ricardo -- DP1 OD003889/OD/NIH HHS/ -- DP1OD003889/OD/NIH HHS/ -- R01 NS048564/NS/NINDS NIH HHS/ -- R21MH087898/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):101-5. doi: 10.1126/science.1191027.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20929812" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium Channels, L-Type/chemistry/genetics/*metabolism ; Calcium Signaling ; Cell Line ; Cell Membrane/*metabolism ; Humans ; Ion Channel Gating ; Jurkat Cells ; Membrane Proteins/chemistry/genetics/*metabolism ; Models, Biological ; Neoplasm Proteins/chemistry/genetics/*metabolism ; Neurons/*metabolism ; Patch-Clamp Techniques ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Rats, Sprague-Dawley ; T-Lymphocytes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-03-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paszek, Matthew -- Weaver, Valerie -- New York, N.Y. -- Science. 2010 Mar 12;327(5971):1335-6. doi: 10.1126/science.1187865.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20223974" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/metabolism/pathology ; Cell Membrane/*metabolism ; Cell Movement ; Ephrin-A1/chemistry/*metabolism ; Humans ; Ligands ; Lipid Bilayers ; *Mechanotransduction, Cellular ; Models, Biological ; Neoplasm Metastasis ; Neoplasms/*metabolism/pathology ; Protein Multimerization ; Receptor, EphA2/*chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2010-07-07
    Description: The respiratory release of carbon dioxide (CO(2)) from the land surface is a major flux in the global carbon cycle, antipodal to photosynthetic CO(2) uptake. Understanding the sensitivity of respiratory processes to temperature is central for quantifying the climate-carbon cycle feedback. We approximated the sensitivity of terrestrial ecosystem respiration to air temperature (Q(10)) across 60 FLUXNET sites with the use of a methodology that circumvents confounding effects. Contrary to previous findings, our results suggest that Q(10) is independent of mean annual temperature, does not differ among biomes, and is confined to values around 1.4 +/- 0.1. The strong relation between photosynthesis and respiration, by contrast, is highly variable among sites. The results may partly explain a less pronounced climate-carbon cycle feedback than suggested by current carbon cycle climate models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mahecha, Miguel D -- Reichstein, Markus -- Carvalhais, Nuno -- Lasslop, Gitta -- Lange, Holger -- Seneviratne, Sonia I -- Vargas, Rodrigo -- Ammann, Christof -- Arain, M Altaf -- Cescatti, Alessandro -- Janssens, Ivan A -- Migliavacca, Mirco -- Montagnani, Leonardo -- Richardson, Andrew D -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):838-40. doi: 10.1126/science.1189587. Epub 2010 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. mmahecha@bgc-jena.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20603495" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/metabolism ; Carbon Dioxide/*metabolism ; Cell Respiration ; *Climate ; Ecological and Environmental Processes ; *Ecosystem ; Models, Biological ; Models, Statistical ; Photosynthesis ; Plants/*metabolism ; Soil/analysis ; Soil Microbiology ; *Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2010-02-27
    Description: CD4+ T cells are critical for host defense but are also major drivers of immune-mediated disease. These T cells specialize to become distinct subsets and produce restricted patterns of cytokines, which are tailored to combat various microbial pathogens. Although classically viewed as distinct lineages, recent work calls into question whether helper CD4+ T cell subsets are more appropriately viewed as terminally differentiated cells or works in progress. Herein, we review recent advances that pertain to this topic and the mechanisms that contribute to helper CD4+ T cell commitment and plasticity. The therapeutic implications of these new findings are also considered.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997673/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997673/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Shea, John J -- Paul, William E -- Z01 AR041106-13/Intramural NIH HHS/ -- Z01 AR041106-14/Intramural NIH HHS/ -- Z01 AR041132-07/Intramural NIH HHS/ -- Z01 AR041159-01/Intramural NIH HHS/ -- Z01 AR041160-01/Intramural NIH HHS/ -- Z01 AR041167-01/Intramural NIH HHS/ -- ZIA AR041106-15/Intramural NIH HHS/ -- ZIA AR041159-02/Intramural NIH HHS/ -- ZIA AR041161-02/Intramural NIH HHS/ -- ZIA AR041167-02/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 26;327(5969):1098-102. doi: 10.1126/science.1178334.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1616, USA. osheajo@mail.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20185720" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Cytokines/*biosynthesis ; Gene Expression Regulation ; Humans ; Models, Biological ; T-Lymphocyte Subsets/*cytology/*immunology/metabolism ; T-Lymphocytes, Helper-Inducer/*cytology/*immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-02-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pickup, David J -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):787-8. doi: 10.1126/science.1187160.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA. picku001@mc.duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20150470" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/physiology ; Animals ; Cell Membrane/physiology/virology ; Leukocytes/virology ; Membrane Glycoproteins/metabolism ; Mice ; Microvilli/physiology/*virology ; Models, Biological ; Phosphorylation ; Poxviridae/*physiology ; Protein-Tyrosine Kinases/metabolism ; Vaccinia virus/*physiology ; Viral Envelope Proteins/metabolism ; Viral Proteins/*metabolism ; Viral Structural Proteins/metabolism ; Virion/physiology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2010-12-04
    Description: Cultivated beets (Beta vulgaris ssp. vulgaris) are unable to form reproductive shoots during the first year of their life cycle. Flowering only occurs if plants get vernalized, that is, pass through the winter, and are subsequently exposed to an increasing day length (photoperiod) in spring. Here, we show that the regulation of flowering time in beets is controlled by the interplay of two paralogs of the FLOWERING LOCUS T (FT) gene in Arabidopsis that have evolved antagonistic functions. BvFT2 is functionally conserved with FT and essential for flowering. In contrast, BvFT1 represses flowering and its down-regulation is crucial for the vernalization response in beets. These data suggest that the beet has evolved a different strategy relative to Arabidopsis and cereals to regulate vernalization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pin, Pierre A -- Benlloch, Reyes -- Bonnet, Dominique -- Wremerth-Weich, Elisabeth -- Kraft, Thomas -- Gielen, Jan J L -- Nilsson, Ove -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1397-400. doi: 10.1126/science.1197004.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Umea Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901-83 Umea, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127254" target="_blank"〉PubMed〈/a〉
    Keywords: Amaranthaceae/genetics/growth & development ; Arabidopsis Proteins/genetics/metabolism ; Beta vulgaris/*genetics/*growth & development ; Cold Temperature ; Flowers/*growth & development ; Gene Expression Regulation, Plant ; *Genes, Plant ; Models, Biological ; Molecular Sequence Data ; Phenotype ; Plant Proteins/chemistry/*metabolism ; Plants, Genetically Modified ; RNA Interference ; Seasons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2010-05-22
    Description: The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983991/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983991/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Breitkreutz, Ashton -- Choi, Hyungwon -- Sharom, Jeffrey R -- Boucher, Lorrie -- Neduva, Victor -- Larsen, Brett -- Lin, Zhen-Yuan -- Breitkreutz, Bobby-Joe -- Stark, Chris -- Liu, Guomin -- Ahn, Jessica -- Dewar-Darch, Danielle -- Reguly, Teresa -- Tang, Xiaojing -- Almeida, Ricardo -- Qin, Zhaohui Steve -- Pawson, Tony -- Gingras, Anne-Claude -- Nesvizhskii, Alexey I -- Tyers, Mike -- CA-126239/CA/NCI NIH HHS/ -- MOP-12246/Canadian Institutes of Health Research/Canada -- MOP-57793/Canadian Institutes of Health Research/Canada -- MOP-84314/Canadian Institutes of Health Research/Canada -- R01 CA126239/CA/NCI NIH HHS/ -- R01 GM094231/GM/NIGMS NIH HHS/ -- R01 OD010929/OD/NIH HHS/ -- R01 RR024031/RR/NCRR NIH HHS/ -- R01 RR024031-05/RR/NCRR NIH HHS/ -- R01RR024031/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2010 May 21;328(5981):1043-6. doi: 10.1126/science.1176495.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Systems Biology, Samuel Lunenfeld Research Institute, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20489023" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carbon/metabolism ; Cell Cycle Proteins/metabolism ; DNA Damage ; MAP Kinase Signaling System ; Mass Spectrometry ; Metabolic Networks and Pathways ; Models, Biological ; Nitrogen/metabolism ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Protein Interaction Mapping ; Protein Kinases/*metabolism ; Protein Subunits/metabolism ; Protein Tyrosine Phosphatases/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proteome ; Saccharomyces cerevisiae/*enzymology/metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2010-06-26
    Description: Hamilton's rule states that cooperation will evolve if the fitness cost to actors is less than the benefit to recipients multiplied by their genetic relatedness. This rule makes many simplifying assumptions, however, and does not accurately describe social evolution in organisms such as microbes where selection is both strong and nonadditive. We derived a generalization of Hamilton's rule and measured its parameters in Myxococcus xanthus bacteria. Nonadditivity made cooperative sporulation remarkably resistant to exploitation by cheater strains. Selection was driven by higher-order moments of population structure, not relatedness. These results provide an empirically testable cooperation principle applicable to both microbes and multicellular organisms and show how nonlinear interactions among cells insulate bacteria against cheaters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097903/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3097903/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Jeff -- Van Dyken, J David -- Zee, Peter C -- GM07690/GM/NIGMS NIH HHS/ -- R01 GM079690/GM/NIGMS NIH HHS/ -- R01 GM079690-01/GM/NIGMS NIH HHS/ -- R01GM084238/GM/NIGMS NIH HHS/ -- T32GM007757/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1700-3. doi: 10.1126/science.1189675.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington, IN 47405, USA. smith74@indiana.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20576891" target="_blank"〉PubMed〈/a〉
    Keywords: Biological Evolution ; Genetic Fitness ; Genotype ; *Microbial Interactions ; Models, Biological ; Models, Statistical ; Myxococcus xanthus/genetics/*physiology ; Selection, Genetic ; Spores, Bacterial/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-05-22
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931587/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931587/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prindle, Arthur -- Hasty, Jeff -- R01 GM079333/GM/NIGMS NIH HHS/ -- R01 GM079333-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 May 21;328(5981):987-8. doi: 10.1126/science.1190372.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20489014" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Aggregation ; Cell Count ; Cues ; Cyclic AMP/metabolism ; Cytosol/metabolism ; Dictyostelium/cytology/growth & development/*physiology ; Fluorescence Resonance Energy Transfer ; Models, Biological ; Quorum Sensing ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2010-05-15
    Description: Clinical malaria is associated with the proliferation of Plasmodium parasites in human erythrocytes. The coordinated processes of parasite egress from and invasion into erythrocytes are rapid and tightly regulated. We have found that the plant-like calcium-dependent protein kinase PfCDPK5, which is expressed in invasive merozoite forms of Plasmodium falciparum, was critical for egress. Parasites deficient in PfCDPK5 arrested as mature schizonts with intact membranes, despite normal maturation of egress proteases and invasion ligands. Merozoites physically released from stalled schizonts were capable of invading new erythrocytes, separating the pathways of egress and invasion. The arrest was downstream of cyclic guanosine monophosphate-dependent protein kinase (PfPKG) function and independent of protease processing. Thus, PfCDPK5 plays an essential role during the blood stage of malaria replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109083/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109083/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dvorin, Jeffrey D -- Martyn, Derek C -- Patel, Saurabh D -- Grimley, Joshua S -- Collins, Christine R -- Hopp, Christine S -- Bright, A Taylor -- Westenberger, Scott -- Winzeler, Elizabeth -- Blackman, Michael J -- Baker, David A -- Wandless, Thomas J -- Duraisingh, Manoj T -- 086550/Wellcome Trust/United Kingdom -- G1000779/Medical Research Council/United Kingdom -- GM073046/GM/NIGMS NIH HHS/ -- K08 AI087874/AI/NIAID NIH HHS/ -- K12-HD000850/HD/NICHD NIH HHS/ -- MC_U117532063/Medical Research Council/United Kingdom -- R01 AI057919/AI/NIAID NIH HHS/ -- R01 AI057919-05/AI/NIAID NIH HHS/ -- R01 GM073046/GM/NIGMS NIH HHS/ -- R01AI057919/AI/NIAID NIH HHS/ -- U117532063/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 May 14;328(5980):910-2. doi: 10.1126/science.1188191.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20466936" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium-Binding Proteins/chemistry/genetics/*metabolism ; Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors/metabolism ; Enzyme Inhibitors/pharmacology ; Erythrocytes/*parasitology ; Host-Parasite Interactions ; Humans ; Ligands ; Merozoites/enzymology/physiology ; Models, Biological ; Morpholines/metabolism ; Plasmodium falciparum/cytology/enzymology/growth & development/*physiology ; Protein Kinases/chemistry/genetics/*metabolism ; Protozoan Proteins/chemistry/genetics/*metabolism ; Pyridines/pharmacology ; Pyrroles/pharmacology ; Recombinant Fusion Proteins/chemistry/metabolism ; Schizonts/cytology/enzymology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2010-05-15
    Description: It is predicted that climate change will cause species extinctions and distributional shifts in coming decades, but data to validate these predictions are relatively scarce. Here, we compare recent and historical surveys for 48 Mexican lizard species at 200 sites. Since 1975, 12% of local populations have gone extinct. We verified physiological models of extinction risk with observed local extinctions and extended projections worldwide. Since 1975, we estimate that 4% of local populations have gone extinct worldwide, but by 2080 local extinctions are projected to reach 39% worldwide, and species extinctions may reach 20%. Global extinction projections were validated with local extinctions observed from 1975 to 2009 for regional biotas on four other continents, suggesting that lizards have already crossed a threshold for extinctions caused by climate change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sinervo, Barry -- Mendez-de-la-Cruz, Fausto -- Miles, Donald B -- Heulin, Benoit -- Bastiaans, Elizabeth -- Villagran-Santa Cruz, Maricela -- Lara-Resendiz, Rafael -- Martinez-Mendez, Norberto -- Calderon-Espinosa, Martha Lucia -- Meza-Lazaro, Rubi Nelsi -- Gadsden, Hector -- Avila, Luciano Javier -- Morando, Mariana -- De la Riva, Ignacio J -- Victoriano Sepulveda, Pedro -- Rocha, Carlos Frederico Duarte -- Ibarguengoytia, Nora -- Aguilar Puntriano, Cesar -- Massot, Manuel -- Lepetz, Virginie -- Oksanen, Tuula A -- Chapple, David G -- Bauer, Aaron M -- Branch, William R -- Clobert, Jean -- Sites, Jack W Jr -- New York, N.Y. -- Science. 2010 May 14;328(5980):894-9. doi: 10.1126/science.1184695.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA. lizardrps@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20466932" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization ; Animals ; *Biodiversity ; Biological Evolution ; Body Temperature ; *Climate Change ; *Ecosystem ; *Extinction, Biological ; Female ; Forecasting ; Geography ; Global Warming ; *Lizards/genetics/physiology ; Male ; Mexico ; Models, Biological ; Phylogeny ; Population Dynamics ; Reproduction ; Seasons ; Selection, Genetic ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2010-11-13
    Description: Animals have developed a range of drinking strategies depending on physiological and environmental constraints. Vertebrates with incomplete cheeks use their tongue to drink; the most common example is the lapping of cats and dogs. We show that the domestic cat (Felis catus) laps by a subtle mechanism based on water adhesion to the dorsal side of the tongue. A combined experimental and theoretical analysis reveals that Felis catus exploits fluid inertia to defeat gravity and pull liquid into the mouth. This competition between inertia and gravity sets the lapping frequency and yields a prediction for the dependence of frequency on animal mass. Measurements of lapping frequency across the family Felidae support this prediction, which suggests that the lapping mechanism is conserved among felines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reis, Pedro M -- Jung, Sunghwan -- Aristoff, Jeffrey M -- Stocker, Roman -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1231-4. doi: 10.1126/science.1195421. Epub 2010 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21071630" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomechanical Phenomena ; Cats/*physiology ; Drinking/*physiology ; Felidae/physiology ; Gravitation ; Models, Biological ; Movement ; Physical Processes ; Tongue/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...