ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (5,804,796)
  • Wiley  (1,037,736)
  • Molecular Diversity Preservation International  (495,622)
Collection
Publisher
Language
Years
  • 1
    Publication Date: 2024-07-09
    Description: Late Quaternary crustal uplift is well recognized in northeast Sicily, southern Italy, a region also prone to damaging earthquakes such as the 1908 “Messina” earthquake (Mw 7.1), the deadliest seismic event reported within the Italian Earthquake Catalogue. Yet it is still understudied if, within the Milazzo Peninsula, crustal uplift rates are varying spatially and temporally and whether they may be either influenced by (i) local upper-plate faulting activity or (ii) deep geodynamic processes. To investigate the long-term crustal vertical movements in northeast Sicily, we have mapped a flight of Middle-Late Pleistocene marine terraces within the Milazzo Peninsula and in its southern area and refined their chronology, using a synchronous correlation approach driven by published age controls. This has allowed a new calculation of the associated crustal uplift rates, along a north–south oriented coastal-parallel transect within the investigated area. Our results show a decreasing uplift rate from south to north across the Milazzo Peninsula and beyond, and that the associated rates of uplift have been constant through the Late Quaternary. This spatially varying yet temporally constant vertical deformation helps to constrain the amount of uplift, allowing us to explore which is the driving mechanism(s), proposing a few related scenarios. We discuss our results in terms of tectonic implications and emphasize the importance of using appropriate approaches, as such applying a synchronous correlation method, to refine chronologies of undated palaeoshorelines when used for tectonic investigations.
    Description: In press
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-07-09
    Description: Aim Seamounts are conspicuous geological features with an important ecological role and can be considered vulnerable marine ecosystems (VMEs). Since many deep‐sea regions remain largely unexplored, investigating the occurrence of VME taxa on seamounts is challenging. Our study aimed to predict the distribution of four cold‐water coral (CWC) taxa, indicators for VMEs, in a region where occurrence data are scarce. Location Seamounts around the Cabo Verde archipelago (NW Africa). Methods We used species presence–absence data obtained from remotely operated vehicle (ROV) footage collected during two research expeditions. Terrain variables calculated using a multiscale approach from a 100‐m‐resolution bathymetry grid, as well as physical oceanographical data from the VIKING20X model, at a native resolution of 1/20°, were used as environmental predictors. Two modelling techniques (generalized additive model and random forest) were employed and single‐model predictions were combined into a final weighted‐average ensemble model. Model performance was validated using different metrics through cross‐validation. Results Terrain orientation, at broad scale, presented one of the highest relative variable contributions to the distribution models of all CWC taxa, suggesting that hydrodynamic–topographic interactions on the seamounts could benefit CWCs by maximizing food supply. However, changes at finer scales in terrain morphology and bottom salinity were important for driving differences in the distribution of specific CWCs. The ensemble model predicted the presence of VME taxa on all seamounts and consistently achieved the highest performance metrics, outperforming individual models. Nonetheless, model extrapolation and uncertainty, measured as the coefficient of variation, were high, particularly, in least surveyed areas across seamounts, highlighting the need to collect more data in future surveys. Main Conclusions Our study shows how data‐poor areas may be assessed for the likelihood of VMEs and provides important information to guide future research in Cabo Verde, which is fundamental to advise ongoing conservation planning.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-07-09
    Description: This study addresses the lithospheric structure of the West and Central African rift system (WCARS) and explores its origin and development in relation to the enigmatic Cameroon volcanic line (CVL). Based on a recent seismic tomography model, we subdivide the areas in tectonic domains. We perform integrated 3D geophysical and petrological forward modeling. By exploring the thickness and composition of different domains, we compare the model response to the observed topography and gravity anomalies, under consideration of the available seismic Moho depth points. Our model reveals three distinct domains within the study area: The WCARS is predominantly underlain by a Phanerozoic‐type lithospheric mantle, surrounded by the West African and the Congo Cratons, where the lithospheric mantle has a Proterozoic‐type signature. Between these domains, we identify a transition area where lithospheric thickness changes rapidly. Our preferred model shows significant variability of crustal thickness from 20 km in the rift area to 50 km beneath the cratons accompanied by thin lithosphere of 80 km in the rift area to thick lithosphere of up to 240 km beneath the cratons. The final model confirms that the WCARS' origin is passive, and suggests that the origin of the CVL, particularly its continental part, is the result of two tectonic events: (a) V‐shaped opening of the lithospheric mantle beneath the WCARS, resulting in (b) a strong variation of the lithosphere thickness at the transition between the rift zone and the northwestern part of the Congo craton. Plain Language Summary In this study, we describe the current structure of the subsurface (from the surface to a depth of 300 km) in Central and Western Africa. The aim is to understand the formation of the Central African Rift zone during the opening of the Atlantic Ocean, and how this relates to the linear chain of volcanoes that cross Cameroon, known as the Cameroon Volcanic Line. To achieve these objectives, we divide the study area into tectonic domains reflecting their seismological signature, and then, establish a three‐dimensional representation of the subsurface structure, based on fitting topography and gravity data. Our model confirms the geological subdivision of the study area into three blocks corresponding to two cratons and a rift zone, with transitional areas between them. Our model is compatible with a passive origin of the rifts in the region. We propose that the origin of the volcanic line of Cameroon is related to magma ascent during the separation of the African and South American plate in connection with the opening of the Atlantic and channeled by the lithospheric architecture. Key Points We present a new 3D model of the lithosphere for the West and Central African Rift System (WCARS) Our model confirms that the WCARS has a passive origin Our model suggest that the origin of the Cameroon volcanic line is linked to the architecture of the WCARS and adjoining cratons
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-07-08
    Description: Highlights • All investigated sites are in quiescent stage. Multi layers of clam shell debris were the ancient sediment surfaces during high methane flux. • Current fluxes contribute to less than 2 wt % of authigenic carbonates and 2 wt % iron sulfide minerals being precipitated in 600-800 cm sediment. • The sequestration of carbon could be 〉 50 mmol C cm-2 yr-1 under current in situ condition. Abstract Methane seepage records information of the local carbon cycle with respect to the generation, consumption and sequestration of carbon. Here presents the investigation of 7 gravity cores retrieved in 2004 during cruise SO-177 in the Haiyang 4 Area at the northern slope of the South China Sea. Porewater solutes, sulfate, methane, total alkalinity, sulfide and calcium demonstrate currently the weak seep activity. Local carbon cycling and sequestration is also revealed, that dominates by anaerobic oxidation of biogenic methane to dissolved bicarbonate inducing calcium carbonate and iron sulfide minerals (mainly pyrite) precipitation. A reactive transport model was employed to quantify the carbon cycle and budget. Model results show that current methane fluxes contribute to less than 2 wt % of authigenic carbonates and 2 wt % iron sulfide minerals being precipitated in 600–800 cm sediment depth. The sequestration of carbon could be 〉 50 mmol C cm−2 yr−1 under in situ condition. The observed increase of carbonate and iron sulfide minerals at ∼100 cm, however, require higher methane fluxes to shift the zone of anaerobic oxidation of methane upwards to around 1 m below the seafloor, which have occurred during sea level low stands in the geological past. The oscillation of seepage flux contributed to the formation of multiple layers of authigenic carbonates and pyrite, which indicates the high capability of carbon sink and is speculated to be induced by the dissociation of the underlying hydrates triggered by sea level drop and or temperature increase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-07-08
    Description: Despite impressive results achieved by many on‐land visual mapping algorithms in the recent decades, transferring these methods from land to the deep sea remains a challenge due to harsh environmental conditions. Images captured by autonomous underwater vehicles, equipped with high‐resolution cameras and artificial illumination systems, often suffer from heterogeneous illumination and quality degradation caused by attenuation and scattering, on top of refraction of light rays. These challenges often result in the failure of on‐land Simultaneous Localization and Mapping (SLAM) approaches when applied underwater or cause Structure‐from‐Motion (SfM) approaches to exhibit drifting or omit challenging images. Consequently, this leads to gaps, jumps, or weakly reconstructed areas. In this work, we present a navigation‐aided hierarchical reconstruction approach to facilitate the automated robotic three‐dimensional reconstruction of hectares of seafloor. Our hierarchical approach combines the advantages of SLAM and global SfM that are much more efficient than incremental SfM, while ensuring the completeness and consistency of the global map. This is achieved through identifying and revisiting problematic or weakly reconstructed areas, avoiding to omit images and making better use of limited dive time. The proposed system has been extensively tested and evaluated during several research cruises, demonstrating its robustness and practicality in real‐world conditions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    Publication Date: 2024-07-08
    Description: The Arctic Ocean plays an important role in the regulation of the earth's climate system, for instance by storing large amounts of carbon dioxide within its interior. It also plays a critical role in the global thermohaline circulation, transporting water entering from the Atlantic Ocean to the interior and initializing the southward transport of deep waters. Currently, the Arctic Ocean is undergoing rapid changes due to climate warming. The resulting consequences on ventilation patterns, however, are scarce. In this study we present transient tracer (CFC-12 and SF6) measurements, in conjunction with dissolved oxygen concentrations, to asses ventilation and circulation changes in the Eurasian Arctic Ocean over three decades (1991–2021). We constrained transit time distributions of water masses in different areas and quantified temporal variability in ventilation. Specifically, mean ages of intermediate water layers in the Eurasian Arctic Ocean were evaluated, revealing a decrease in ventilation in each of the designated areas from 2005 to 2021. This intermediate layer (250–1,500 m) is dominated by Atlantic Water entering from the Nordic Seas. We also identify a variability in ventilation during the observation period in most regions, as the data from 1991 shows mean ages comparable to those from 2021. Only in the northern Amundsen Basin, where the Arctic Ocean Boundary Current is present at intermediate depths, the ventilation in 1991 is congruent to the one in 2005, increasing thereafter until 2021. This suggests a reduced ventilation and decrease in the strength of the Boundary Current during the last 16 years. Key Points Temporal variability of ventilation in the Eurasian Arctic Ocean during the past 30 years is estimated by observations of transient tracers We found a slow down of the ventilation between 2005 and 2021 in the intermediate waters Evidence of multidecadal variability of ventilation in the intermediate waters of the Eurasian Arctic Ocean is present Plain Language Summary The Eurasian Arctic Ocean, the region of the Arctic Ocean connected to the European and Asian continents, is an important pathway for recently ventilated water from the Nordic Seas. These waters are exported back to the North Atlantic following their travel through the Arctic Ocean. Ventilation describes the process of surface waters being transported into the interior ocean due to increasing density, which affects the underlying water masses. In this study we investigate how the ventilation patterns have evolved in the Eurasian Arctic Ocean over the past three decades, using transient tracer (CFC-12 and SF6) measurements. We observed a significant change in the intermediate layer (250–1,500 m) with older waters found in measurements in 1991 and 2021 compared to 2005 and 2015. Moreover, our data suggest a slowdown in ventilation throughout the three decades in the northern Amundsen Basin, implying a decrease in the circulation time-scale of the Arctic Ocean Boundary Current over the past 16 years. This has potentially important implications for the transport of, for example, heat, salt or oxygen from the Atlantic Ocean around the Arctic Ocean, and back.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-07-08
    Description: Freshwater input from Greenland ice sheet melt has been increasing in the past decades from warming temperatures. To identify the impacts from enhanced meltwater input into the subpolar North Atlantic from 1997 to 2021, we use output from two nearly identical simulations in the eddy-rich model VIKING20X (1/20°) only differing in the freshwater input from Greenland: one with realistic interannually varying runoff increasing in the early 2000s and the other with climatologically (1961–2000) continued runoff. The majority of the additional freshwater remains within the boundary current enhancing the density gradient toward the warm and salty interior waters yielding increased current velocities. The accelerated boundary current shows a tendency to enhanced, upstream shifted eddy shedding into the Labrador Sea interior. Further, the experiments allow to attribute higher stratification and shallower mixed layers southwest of Greenland and deeper mixed layers in the Irminger Sea, particularly in 2015–2018, to the runoff increase in the early 2000s. Key Points The West Greenland Current (WGC) freshens and cools with the observed recent increase in meltwater runoff from Greenland The density gradient across the boundary current intensifies, strengthening the WGC and increasing local eddy formation Enhanced meltwater runoff contributed to an eastward shift in deep convection towards the Irminger Sea (2015–2018) Plain Language Summary Global warming has accelerated the melting of the Greenland ice sheet over the past few decades resulting in enhanced freshwater input into the North Atlantic. The additional freshwater can potentially inhibit deep water formation and have future implications on ocean circulation. To determine the influence from Greenland melt, we compare two high-resolution model experiments all with the same forcing but differing input of Greenland freshwater fluxes from 1997 to 2021. We find that in the experiment with realistically increasing Greenland meltwater, the water becomes fresher and cooler along the continental shelf and boundary of the subpolar gyre. The density difference between the shelf and interior increases with more freshwater, resulting in faster West Greenland Current speeds and enhanced eddy formation. Deeper mixed layers are found in the eastern Irminger Sea, particularly in 2015–2018. From 2009 to 2013, there were shallower mixed layers in the Labrador Sea where less Greenland meltwater was mixed downwards and spread eastward, causing mixed layers to deepen in the Irminger Sea.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-07-05
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-07-05
    Description: In addition to endangering sea traffic, cable routes, and wind farms, sunken warship wrecks with dangerous cargo, fuel, or munitions on board may emerge as point sources for environmental damage. Energetic compounds such as TNT (which could leak from these munitions) are known for their toxicity, mutagenicity, and carcinogenicity. These compounds may cause potential adverse effects on marine life via contamination of the marine ecosystem, and their entry into the marine and human food chain could directly affect human health. To ascertain the impending danger of an environmental catastrophe posed by sunken warships, the North Sea Wrecks (NSW) project (funded by the Interreg North Sea Region Program) was launched in 2018. Based on historical data (derived from military archives) including the calculated amount of munitions still on board, its known location and accessibility, the German World War II ship “Vorpostenboot 1302” (former civilian name - “JOHN MAHN”) was selected as a case study to investigate the leakage and distribution of toxic explosives in the marine environment. The wreck site and surrounding areas were mapped in great detail by scientific divers and a multibeam echosounder. Water and sediment samples were taken in a cross-shaped pattern around the wreck. To assess a possible entry into the marine food chain, aged mussels were exposed at the wreck, and wild fish (pouting), a sedentary species that stays locally at the wreck, were caught. All samples were analyzed for the presence of TNT and derivatives thereof by GC–MS/MS analysis. As a result, we could provide evidence that sunken warship wrecks emerge as a point source of contamination with nitroaromatic energetic compounds leaking from corroding munitions cargo still on board. Not only did we find these explosive substances in bottom water and sediment samples around the wreck, but also in the caged mussels as well as in wild fish living at the wreck. Fortunately so far, the concentrations found in mussel meat and fish filet were only in the one-digit ng per gram range thus indicating no current concern for the human seafood consumer. However, in the future the situation mayworsen as the corrosion continues. Fromour study, it is proposed that wrecks should not only be ranked according to critical infrastructure and human activities at sea, but also to the threats they pose to the environment and the human seafood consumer.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-07-05
    Description: Shipwrecks and dumped munition continue to be a major hazard, both in the North Sea but also on a global scale. Research within the EU Interreg project North Sea Wrecks (NSW), in cooperation with the German Aerospace Centre, Institute for the Protection of Maritime Infrastructures (DLR), is generating new insights into the status of wrecks, the potential leakage of pollutants from remaining munitions loads and the effects of contamination on exposed marine organisms in the North Sea environment. Further, historical documents are generated from archives to describe ship’s history and sinking scenario. These historical findings were compared to models and images of the visual inspections of the wrecks. Further, samples of water, sediment and organisms are being analysed for traces of explosives. Combining the results of these different fields of research allows for a better understanding of the environmental risks deriving from these wrecks. This process is shown below by focusing on the wreck of the German light cruiser SMS MAINZ, which sank in 1914. Data were compared to three additional wrecks situated also within the southern German Bight. Available data about the wrecks were preliminary assessed using a wreck risk model. Finally, wrecks were ranked according to their potential environmental risk.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-07-05
    Description: The present work intended to investigate the fate of contaminant-loaded microplastics if ingested by benthic filter feeder Mytilus edulis under laboratory conditions. In the course of a 7-day experiment the mussels were exposed to PVC microplastics in a size range 〉40 mm, in doses of 2000 particles L_1 (11.56 mg L_1). Particles were either virgin or loaded with one of four different nominal concentrations of the polycyclic aromatic hydrocarbon (PAH) fluoranthene (500, 125, 31.25 and 7.8125 mg g_1). Verification of fluoranthene concentrations on the particles provided evidence of the high absorptive capacity of PVC for this PAH, indicating that comparable particles may serve as considerable accumulation sites for high concentrations of hydrophobic contaminants in the aquatic environment. Analysis of digestive gland tissues via polarised light microscopy revealed the occurrence of particles and particle aggregates within stomach and intestines of all mussels treated with microplastics, thus making the xenobiotic bioavailable. Results of contaminant analysis in mussel tissues via equilibrium sampling point to a considerable capability of microplastics for the accumulation of hydrophobic contaminants from the environment and their potential to act as vehicles for the transport of theses contaminants into organismal tissues. of fluoranthene concentrations on the particles provided evidence of the high absorptive capacity of PVC for this PAH, indicating that comparable particles may serve as considerable accumulation sites for high concentrations of hydrophobic contaminants in the aquatic environment. Analysis of digestive gland tissues via polarised light microscopy revealed the occurrence of particles and particle aggregates within stomach and intestines of all mussels treated with microplastics, thus making the xenobiotic bioavailable. Results of contaminant analysis in mussel tissues via equilibrium sampling point to a considerable capability of microplastics for the accumulation of hydrophobic contaminants from the environment and their potential to act as vehicles for the transport of theses contaminants into organismal tissues. © 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
  • 13
    Publication Date: 2024-07-05
    Description: Volcanic flank collapses, especially those in island settings, have generated some of the most voluminous mass transport deposits on Earth and can trigger devastating tsunamis. Reliable tsunami hazard assessments for flank collapse-driven tsunamis require an understanding of the complex emplacement processes involved. The seafloor sequence southeast of Montserrat (Lesser Antilles) is a key site for the study of volcanic flank collapse emplacement processes that span subaerial to submarine environments. Here, we present new 2D and 3D seismic data as well as MeBo drill core data from one of the most extensive mass transport deposits offshore Montserrat, which exemplifies multi-phase landslide deposition from volcanic islands. The deposits reveal emplacement in multiple stages including two blocky volcanic debris avalanches, secondary seafloor failure and a late-stage erosive density current that carved channel-like incisions into the hummocky surface of the deposit about 15 km from the source region. The highly erosive density current potentially originated from downslope-acceleration of fine-grained material that was suspended in the water column earlier during the slide. Late-stage erosive turbidity currents may be a more common process following volcanic sector collapse than has been previously recognized, exerting a potentially important control on the observed deposit morphology as well as on the runout and the overall shape of the deposit. Key Points Landslide emplacement offshore Montserrat included volcanic flank collapses, sediment incorporation, and a late-stage erosive flow Highly erosive flows are likely to be common processes during volcanic flank collapse deposition Pre-existing topography plays a major role in shaping flank collapse-associated mass transport deposits Plain Language Summary Disintegration of volcanic islands can cause very large landslides and destructive tsunamis. To assess the tsunami hazard of such events, it is crucial to understand the processes that are involved in their formation. We present new insights from seismic data and drill cores from a landslide deposit offshore Montserrat, a volcanic island in the Lesser Antilles Arc in the Caribbean. Our analysis reveals the emplacement of landslide material in several stages, including multiple volcanic flank collapses, incorporation of seafloor sediments and an erosive flow that carved channels into the top of the deposit right after its emplacement. We suggest that highly erosive flows are a common process during volcanic flank collapse deposition and that they play a significant role in the shaping of the deposit's appearance.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-07-04
    Description: Phytoplankton primary productivity (PP) varies significantly over environmental gradients, particularly in physically‐dynamic systems such as estuaries and coastal seas. During summer, runoff peaks in the Changjiang River driving large environmental gradients in both the Changjiang estuary and adjacent East China Sea (ECS), likely driving significant variability in PP. As satellite models of PP often underperform in coastal waters, we aimed to develop a novel approach for assessing net PP variability in such a dynamic environment. Parallel in situ measurements of Fast Repetition Rate (FRR) fluorometry and carbon (C) uptake rates were conducted for the first time in this region during two summer cruises in 2019 and 2021. A series of 13 C‐incubations ( n = 31) were performed, with measured PP ranging from ∼6 to 1,700 mgC m −3 d −1 . Net PP values were significantly correlated with salinity ( r = 0.45), phytoplankton chlorophyll a (Chl‐ a , r = 0.88), Photosystem II (PSII) functional absorption cross‐section ( σ PSII , r = −0.76) and maximum PSII quantum yield ( F v / F m , r = 0.59). Stepwise regression analysis showed that Chl‐ a and σ PSII were the strongest predictors of net PP. A generalized additive model (GAM) was also used to estimate net PP considering nonlinear effects of Chl‐ a and σ PSII . We demonstrate that GAM outperforms linear modeling approaches in estimating net PP in this study, as evidenced by a lower root mean square error (∼140 vs. 250 mgC m −3 d −1 ). Our novel approach provides a valuable tool to examine carbon cycling dynamics in this important region. Plain Language Summary The East China Sea has a complex current system that creates a highly dynamic physical environment for phytoplankton, particularly during the summer months. Net primary productivity (PP) is highly variable in this region, yet characterizing these spatial patterns in PP is difficult due to the lack of a high‐resolution data collecting method. Therefore, a strong need exists for a quick and easily implemented method for monitoring PP in this dynamic system. Based on parallel measurements of phytoplankton biomass and photophysiology, we present a novel approach that allows us to rapidly and easily assess regional PP at a high resolution. The high data volume potentially afforded by our net PP estimation method could not only contribute to a better understanding of PP variations in such a dynamic environment, but also help fill the large gaps in field data needed for validating satellite‐based PP models. Key Points Parallel in situ measurements of net primary productivity (PP) and Fast Repetition Rate fluorometry were conducted in the Changjiang estuary Productivity was highest at stations with high Chl and low σ PSII , typically located along the Chiangjiang river plume front A generalized additive model was developed to estimate net PP, providing an approach for assessing regional C‐cycling dynamics
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-07-04
    Description: Submarine landslides pose a hazard to coastal communities and critical seafloor infrastructure, occurring on all of the world's continental margins, from coastal zones to hadal trenches. Offshore monitoring has been limited by the largely unpredictable occurrence of submarine landslides and the need to cover large regions. Recent subsea monitoring has provided new insights into the preconditioning and run-out of submarine landslides using active geophysical techniques. However, these tools measure a small spatial footprint and are power- and memory-intensive, thus limiting long-duration monitoring. Most landslide events remain unrecorded. In this chapter, we first show how passive acoustic and seismologic techniques can record acoustic emissions and ground motions created by terrestrial landslides. This terrestrial-focused research has catalyzed advances in characterizing submarine landslides using onshore and offshore networks of broadband seismometers, hydrophones, and geophones. We discuss new insights into submarine landslide preconditioning, timing, location, velocity, and down-slope evolution arising from these advances. Finally, we outline challenges, emphasizing the need to calibrate seismic and acoustic signals generated by submarine landslides. Passive seismic and acoustic sensing has a strong potential to enable more complete hazard catalogs to be built and open the door to emerging techniques (such as fiber-optic sensing) to fill key knowledge gaps.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-07-04
    Description: While basaltic volcanism is dominate during rifting and continental breakup, felsic magmatism may also comprise important components of some rift margins. During International Ocean Discovery Program (IODP) Expedition 396 on the continental margin of Norway, a graphite-garnet-cordierite bearing dacitic, pyroclastic unit was recovered within early Eocene sediments on Mimir High (Site U1570), a marginal high on the Vøring transform margin. Here, we present a comprehensive textural, mineralogical, and petrological study of the dacite in order to assess its melting origin and emplacement. The major mineral phases (garnet, cordierite, quartz, plagioclase, alkali feldspar) are hosted in a fresh rhyolitic, highly vesicular, glassy matrix, locally mingled with sediments. The xenocrystic major element chemistry of garnet and cordierite, the presence of zircon inclusions with inherited cores, and thermobarometric calculations all support a crustal metapelite origin. While most magma-rich margin models favor crustal anatexis in the lower crust, thermobarometric calculations performed here show that the dacite was produced at upper-crustal depths (〈 5 kbar) and high temperature (750–800 °C) with up to 3 wt% water content. In situ U-Pb analyses on zircon inclusions give a magmatic age of 54.6 ± 1.1 Ma, revealing the emplacement of the dacite post-dates the Paleocene-Eocene Thermal Maximum (PETM). Our results suggest that the opening of the North Atlantic was associated with a phase of low-pressure, high-temperature crustal melting at the onset of the main phase of magmatism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Wiley | AGU (American Geophysical Union)
    Publication Date: 2024-07-02
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-07-02
    Description: Highlights • Accurate fault model can be built even when sparse drilling wells are available. • The multiresolution fault model provides information of faults with different sizes. • Fault model provides possibility of tectonic and fluid flow analysis simultaneously. • Modelling of faults in different scales, enable more accurate well path design. • The ANN provides optimized parameters for fault detection by ant tracking algorithm. Modelling faults plays a crucial step in the chain of studies through the first phase of the hydrocarbon exploration and its following studies in reservoir engineering, simulation and field development. This study introduces an innovative and automatic integrated approach that combines seismic multi-attributes and well data for faults modelling. The proposed strategy begins with extracting fault-related seismic attributes commonly used for seismic reservoir characterization. Chaos, variance and curvature attributes, typically highlight large-scale faults that shape the structural framework of the study field. In contrast, small-scale faults, influencing subsurface fluid flow in the fractured reservoir, are modeled using the ant-tracking algorithm applied to seismic data. Small-scale and large-scale fault models, then integrated with the conventional fault model to create an integrated discrete fracture network (DFN). This DFN model incorporates information on both large-scale and small-scale faults. The proposed strategy was applied on a geologically complex petroleum field in Iran. The results, validated using Formation Micro Imager (FMI) data, demonstrate accuracy of the integrated DFN model in comparison to conventional approaches on the studied filed, particularly in capturing small-scale faults. Consequently, it can be concluded that the proposed strategy provides a viable alternative for generating accurate DFN model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-07-02
    Description: Highlights • New geophysical data and samples redefine submarine volcanism in Sicilian Channel. • Three dominant bands of volcanism are distinguished. • Ancient, eroded structures aligned at 120° are tied to faulted banks in the north. • Younger band of similarly aligned volcanism in the south is linked to grabens. • Youngest structures comprise small, dispersed volcanoes with distinct orientation. Abstract The origin and role of volcanism in continental rifts remains poorly understood in comparison to other volcano-tectonic settings. The Sicilian Channel (central Mediterranean Sea) is largely floored by continental crust and represents an area affected by pronounced crustal extension and strike-slip tectonism. It hosts a variety of volcanic landforms closely associated with faults, which can be used to better understand the nature and distribution of rift-related volcanism. A paucity of appropriate seafloor data in the Sicilian Channel has led to uncertainties regarding the location, volume, sources and timing of submarine volcanism. To improve on this situation, we use newly acquired geophysical data (multibeam echosounder and magnetic data, sub-bottom profiles) and dredged seafloor samples to: (i) re-assess the evidence for submarine volcanism in the Sicilian Channel and define its spatial pattern, (ii) infer the relative age and style of magmatism, and (iii) relate this to the dominant tectonic structures in the region. Quaternary rift-related volcanism has been focused at Pantelleria and Linosa, at the northwest boundaries of their respective NW-SE trending grabens. Subsidiary and older volcanic sites potentially occur at the Linosa III and Pantelleria SE seamounts, collectively representing the only sites of recent volcanism that can be directly related to the main rift process. These long-lived polygenetic volcanic landforms have been shaped by magmatism that is directly correlated with extensional faulting and buried igneous bodies. Older volcanic landforms, sharing a similar scale and alignment, occur to the north at Nameless Bank and Adventure Bank. These deeply eroded volcanoes have likely been inactive since the Pliocene and are probably related to earlier stages of crustal thinning and underlying feeder structures in the northern region of the Sicilian Channel. Along a similar alignment, Pinne Bank, SE Pinne Bank and Cimotoe in the northern Sicilian Channel lack a surface volcanic signature but are associated with intrusive bodies or deeply buried volcanic rock masses. Terrible Bank, in the same region, also shows evidence of ancient, polygenetic magmatism, but was subject to significant erosion and lacks a prominent alignment. The much younger volcanism at Graham Volcanic Field and along the northern Capo-Granitola-Sciacca Fault Zone differs markedly from that observed in the other study areas. Here, the low-volume and scattered volcanic activity is driven by shallow-water mafic magma eruptions, which gave rise to small individual cones. These sites are associated with large fault structures away from the main rift axis and may have a distinct magmatic origin. Dispersed active fluid venting occurs across both ancient and young volcanic sites in the region and is directly associated with shallow magmatic bodies within tectonically-controlled basins. Our study provides the foundation for an updated tectonic and magmatic framework for the Sicilian Channel, and for future detailed chronological and geochemical assessment of the sources and evolution of magmatic processes in the region.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-07-02
    Description: Highlights • Ankaramites are Ca-rich and Ni-poor porphyritic basalts that are common in oceanic arcs. • Melt inclusions from Kibblewhite Volcano show similar compositions to ankaramites. • Ankaramite is a primary magma component in oceanic arcs. • Interaction between melt and mantle can produce ankaramitic melts. • Harzburgite formed by melt-mantle interactions is the source of high-Mg andesites. Abstract Ankaramites, which are clinopyroxene-rich basalts with primitive whole-rock compositions (Mg# 〉65), are common in oceanic arcs and are characterized by high whole-rock CaO/Al2O3 (〉1.0) ratios and olivine crystals with anomalously low nickel contents (〈0.2 wt% NiO). These geochemical characteristics cannot be explained by the melting of ordinary mantle peridotite. However, their origin is critical for understanding the formation of primary magmas in oceanic arcs. Here, we investigated olivine-hosted melt inclusions (MIs) from ankaramites and magnesian andesites of the Kibblewhite Volcano in the Kermadec arc. The MIs from the ankaramites have similar major and trace element characteristics to the host rocks, indicating that the ankaramites did not result from an accumulation of mafic minerals but rather represent the primary magma in the Kibblewhite Volcano. The MIs from the magnesian andesites were hosted in forsteritic olivine xenocrysts with a wide range of NiO contents (Fo90–92; 0.13–0.39 wt% NiO) and have similar major element compositions to the ankaramites but exhibit a wide range of CaO/Al2O3 (0.85–1.54). The trace element characteristics of the MIs from the magnesian andesites do not match those of the host rocks, indicating that they are not primary melts of the magnesian andesites but primitive basaltic melts generated before the magnesian andesites formed. Interestingly, the CaO/Al2O3 ratio of MIs from the magnesian andesites was negatively correlated with the NiO content of their host olivines. This correlation suggests that the composition of the primary basaltic magmas of the Kibblewhite Volcano changed continuously from peridotite-derived to ankaramitic. This correlation could not be explained by grain-scale process, crustal anatexis, or contribution of slab-derived carbonate-rich fluids. Instead, we propose that this correlation can be explained by the interaction of the ascending primary basaltic melts with the lithospheric mantle. During melt-mantle interaction, the assimilation of clinopyroxene and fractionation of olivine and orthopyroxene caused the CaO/Al2O3 ratio to increase in the melt and the Ni content to decrease. Furthermore, because the magnesian andesites have low CaO/Al2O3 ratios and could be derived from a clinopyroxene-poor mantle lithology, the interaction between the melt and mantle may also be closely related to the origin of the magnesian andesites at Kibblewhite Volcano. This interpretation provides a new perspective on the origin of the oceanic arc ankaramites and why primary andesitic and basaltic magmas coexist in the Kibblewhite Volcano.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-07-02
    Description: Highlights • Alkaline magmas of the TLTF island chain result from a subduction-modified mantle source and two-stage partial melting. • The role of mantle source and parental melt composition for high Cu-Au mineral potentials is important but limited. • A shallow crustal magma reservoir is key for epithermal ore formation. Abstract The Tabar-Lihir-Tanga-Feni (TLTF) island chain in northeastern Papua New Guinea formed by tectonic and alkaline to shoshonitic magmatic activity since the Pliocene. Several volcanic centers are Cusingle bondAu mineralized including the world-class Ladolam Au deposit and Conical Seamount south of Lihir. The latter has been recognized as a juvenile analogue to the Ladolam deposit located on-shore. Whereas the mineralization at Conical Seamount is reasonably well studied, the specific magmatic processes that promote epithermal mineralization at this seamount but not at others are poorly understood. Here, we present new petrological and geochemical data from Conical Seamount, and compare them with those from the barren (unmineralized) Edison, Tubaf and New World seamounts nearby. We focus on whole rock compositions and major and trace element analysis of melt inclusions and minerals including clinopyroxene, sulfide and magnetite. We combine our observations with modelled constraints on mantle source composition and partial melting as well as magma evolution. A first-stage melting leaves a residual mantle source enriched in Au. Second-stage melting of a previously subduction-metasomatized mantle generally promotes the transfer and concentration of metals and volatiles in the ascending melts. These magmas are unlikely to control ore formation as all seamounts show evidence for similar mantle sources and parental melt composition. However, the presence of a shallow crustal magma chamber is unique to Conical Seamount. It is characterized by frequent melt replenishments and extensive magma fractionation leading to sulfide and magmatic volatile saturation. These specific magma chamber processes lead to the pre-enrichment of the magma in chalcophile elements including Au, while sulfide saturation coeval with magmatic volatile exsolution provide the way for an effective Au transfer from the magmatic to the epithermal system.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-07-01
    Description: Marginal seas influenced by large rivers are characterized by complex hydrodynamic and organic matter cycling processes. However, the impacts of hydrodynamics on the composition and reactivity of particulate organic matter (POM) remain unclear. Here we conducted a comprehensive study on the bulk, molecular and biological properties of suspended POM in the Changjiang Estuary and adjacent area subjected to strong currents, eddies as well as typhoons during spring and autumn. D/L‐enantiomers of particulate amino acids (PAA) were analyzed to evaluate the bioreactivity of POM and quantify bacterial‐derived organic carbon. We found that POM bioavailability as indicated by carbon‐normalized yields of PAA (PAA‐C%) reflected the ecosystem productivity. Relatively high PAA‐C% values (20−35%) were observed in productive areas influenced by Changjiang River plume, cyclonic eddies and typhoons, likely related to the enhanced nutrient availability arising from hydrodynamic processes. In contrast, the oligotrophic Taiwan Warm Current‐influenced regions featured relatively low POM bioavailability (PAA‐C% 〈 10%) despite typhoons facilitating water mixing. The PAA‐C% values showed a significant positive correlation with extracellular enzyme activity, indicating that bioavailable POM can rapidly stimulate heterotrophic transformation. Hot spots of elevated bioavailable POM showed high contributions of bacterial organic carbon. A large portion (∼2/3) of bacterial organic carbon was present in the form of bacterial detritus, suggesting that patches of these biological hot spots represent important sites of carbon sequestration. Together, our findings indicate that fresh POM production is largely controlled by nutrient supply driven by hydrodynamic processes, with important implications for carbon sequestration in the dynamic ocean margins. Plain Language Summary Marginal seas are subject to complex hydrodynamic processes and play an important role in carbon sequestration. Disentangling the linkages between hydrodynamics and organic carbon reactivity and composition is crucial to understanding the regional carbon cycle. Here we collected suspended particulate organic matter (POM) in the Changjiang Estuary and adjacent coastal areas. Based on the biomarker D/L‐amino acids, we assessed the bioavailability of POM and quantified the organic carbon originating from bacteria. We found that high bioactivity of POM occurred in productive Changjiang River plume, cyclonic eddy, and typhoon influenced areas. These hydrodynamic processes appear to increase nutrient availability, therefore promoting phytoplankton growth. Bioavailable POM can rapidly stimulate heterotrophic activity and facilitate the transformation of algal‐derived organic carbon to bacterial detritus, thus contributing to carbon sequestration. Our findings suggest that the production of bioavailable POM is largely controlled by hydrodynamically driven nutrient supply. Key Points We use D/L‐amino acids to assess the bioreactivity and bacterial origins of particulate organic matter (POM) in the dynamic Changjiang Estuary and adjacent area High bioavailability of POM occurs in productive regions affected by Changjiang River plume, cyclonic eddies and typhoons Hot spots of bioavailable POM represent important sites for carbon sequestration
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-07-01
    Description: Highlights • First successful in situ DGT application in the deep ocean. • DGT-lability of dissolved (〈0.2 μm) Cu, Ni, Cd, Mn, As, V, REY differs depending on chemical speciation. • REY in deep ocean water can be almost quantitatively assessed with DGT. • Low Cu availability reflects dominating organic speciation. Abstract Geochemical behaviour and bio-availability of trace metals are closely related to their physical fractionation and chemical speciation. The DGT speciation technique allows the challenging assessment of labile concentrations of Mn, Cd, Cu, Ni, V, As, and REY in ocean waters. In this first deep-water in situ study of DGT-lability, we demonstrate the approach in bottom waters of the Clarion-Clipperton Zone in the central NE Pacific. In the dissolved fraction (〈0.2 μm), 70% to 100% of Cd, Ni, V, and REY, but only 25% of Cu and less than 50% of As were determined, reflecting their prevailing dominance of organic vs. inorganic complexation. This study demonstrates the applicability and sensitivity of DGT-passive samplers for trace metals as a suitable technique in monitoring of anthropogenic activities, such as deep seabed mining, as well as for natural process studies in abyssal environments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-06-30
    Description: In the boreal summer of 2021, the equatorial Atlantic experienced the strongest warm event, that is, Atlantic Niño, since the beginning of satellite observations in the 1970s. Such events have far‐reaching impacts on large‐scale wind patterns and rainfall over the surrounding continents. Yet, developing a paradigm of how Atlantic Niño interacts with the upper‐ocean currents and intraseasonal waves remains elusive. Here we show that the equatorial Kelvin wave associated with the onset of the 2021 Atlantic Niño modulated both the background flow and the eddy flux of the equatorial upper‐ocean circulation, causing an extremely weak and delayed tropical instability wave (TIW) season. TIW‐induced variations of sea surface temperature (SST), sea surface salinity, sea surface height, and eddy temperature advection were exceptionally weak during May to July, the climatological peak of TIW activity, but rebounded in August when higher than normal variability was observed. Moored velocity data at 23°W show that during the peak of the 2021 Atlantic Niño from June to August, the Equatorial Undercurrent was deeper and stronger than usual. An anomalously weak eddy momentum flux strongly suppressed barotropic energy conversion north of the equator from May to July, likely contributing to low TIW activity. Reduced baroclinic energy conversion also might have played a role, as the meridional gradient of SST was sharply reduced during the Atlantic Niño. Despite extremely weak TIW velocities, modest intraseasonal variability of chlorophyll‐a (Chl‐ a ) was observed during the Atlantic Niño, due to pronounced meridional Chl‐ a gradients that partly compensated for the weak TIWs. Plain Language Summary Every few years the eastern equatorial Atlantic Ocean is significantly warmer than usual during boreal summer. Such warm events are referred to as Atlantic Niño events, and share similarities with El Niño events in the Pacific. In 2021, the strongest Atlantic Niño in at least four decades was observed in the equatorial Atlantic. This study is the first that investigates the complex interaction between Atlantic Niño, tropical Atlantic upper‐ocean currents, and equatorial waves based on various observational data sets. We show that the developing 2021 Atlantic Niño weakened both the background flow and the variability of near‐surface currents in May, which in turn largely reduced the strength of intraseasonal (20–50 days) waves that are usually generated by instability of the upper‐ocean zonal currents. As a consequence, the cooling effect that these waves usually have north of the equator and the warming effect along the equator vanished from May to July 2021. Interestingly, variability of chlorophyll concentration was enhanced, suggesting that enhanced meridional chlorophyll gradients compensated for reduced wave activity. Key Points The developing 2021 Atlantic Niño led to weaker equatorial surface currents and reduced vertical shear of upper‐ocean horizontal velocity Strong reduction of the surface flow, eddy flux, and meridional temperature gradient in May caused extremely weak and delayed tropical instability wave (TIW) season Reduced meridional TIW advection contributed to sharpen the north equatorial Chl‐ a front resulting in modest intraseasonal Chl‐ a variability
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-06-28
    Description: A revaluation of the relative sea-level (RSL) indicators in the Baia di Infreschi (Cilento, Southern Italy) supported by new 30 U/Th dating on speleothems indicates that the upper level of Lithophaga burrows identified by Bini et al. (2020) at ~9 m a.s.l. and correlated to the Last Interglacial (LIG) highstand should be referred to the highstand of the MIS 9e, whereas the local RSL for the highstand of the LIG is now reassessed at 5.3 ± 0.18 m a.s.l. The upper level of the Lithophaga marker can be followed for ~12 km along the coast, suggesting a substantial absence of important relative tectonic movements. In the Baia di Infreschi an additional marine indicator, a notch sealed by a flowstone dated ~110 ka, indicates several phases of RSL stationing below the maximum highstand of the LIG. The presence of flowstones as low as 2 m a.s.l. dated to the MIS 7 shows that the highstand of MIS 7 was probably below the present sea level. All these evidences allow us to reassess the stratigraphy of some archaeological caves in the area, indicating that the sedimentary successions preserved there are older than what was previously believed.
    Description: Published
    Description: 100212
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-06-28
    Description: The Red Sea is an important example of a continental rift transitioning slowly to an oceanic basin. However, structures that can inform us of how that transition occurred have been poorly reported because deep seismic reflection data capable of imaging basement under the rift sediments are generally lacking publicly. Three lines of multichannel seismic reflection data have recently been published revealing structures on the Nubian side of the central part of the basin. In this study, we reassess these data in the light of recent studies of the central Red Sea. Over continental crust, the data reveal reflection sequences likely due to strata at or near the base of the evaporites, in two cases with varied dips suggesting the presence of syn-rift growth stratigraphy. Almost all of those reflections dip downwards towards the rift axis, not away as would be expected from tilted fault blocks of bookshelf faulting types. That observation, and low relief of basement, confirm inferences made earlier based on gravity anomalies that this part of the Red Sea lacks large-relief fault escarpments and is most likely a syn-rift sag basin. In the transition to oceanic crust, an abnormally broad magnetic anomaly of estimated Chron 5 age is found not to be associated with structures such as sills, so it likely arises from deeper sources. One of the seismic lines traverses a ridge in Bouguer gravity anomalies that runs across the axis. This feature has previously been interpreted as a volcanic ridge similar to those observed at other ultra-slow spreading ridges. The seismic data reveal diffuse basement reflections and confirm that the record immediately above basement lacks reflections typical of sedimentary strata. Both observations are consistent with the presence of oceanic crust. Modelling of gravity anomalies suggests the ridge is likely underlain by igneous intrusive rocks displacing mantle rocks, as expected for a volcanic ridge. The seismic data, combined with recently updated multibeam and high-resolution sparker seismic results, further suggest how the evaporite movements have been modulated by basement topography. These results add to our knowledge of the evaporite movements and continent-ocean transition structures in the central Red Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-06-28
    Description: Highlights: • A cyclonic frontal eddy emerged near the South Java Coast (SJC) in 2019. • The cyclonic eddy induces filaments of Chl-a, cold water, and nutrients. • Anti-cyclonic eddies distribute the filaments further offshore. • The role of wind can't be ignored in distributing filaments in the SJC. • We propose a three-stage mechanism for Chl-a distribution in the offshore SJC. Intense mesoscale eddy activity has been observed off the southern Java coast (SJC), yet its impact on local ecosystems remains largely unknown. To investigate this, we examined remotely sensed altimetry, chlorophyll-a (Chl-a), and sea surface temperature (SST) data, focusing on their response to eddies in the region. Our eddy detection and tracking analysis revealed a unique cyclonic frontal eddy near the SJC coast and a large anticyclonic eddy offshore, active from July to September 2019. The cyclonic frontal eddy induced water transport through eddy filaments, upwelled subsurface cold water, and enhanced Chl-a concentrations by horizontally entraining Chl-a-rich shelf water offshore. The anticyclonic eddy then contributed to further distributing this enriched water southward. The mean cross-shelf transport associated with the frontal eddy was estimated at 1.80–2.33 Sv offshore, exporting approximately 1.87–2.40 × 103 tons of Chl-a to the Indian Ocean during its lifetime. Additionally, the spatial cross-correlation analysis of zonal and meridional wind stress with Chl-a revealed relatively high correlation values (0.6–1) and short lag times (〈5 days) in offshore areas, indicating that the role of wind in the Chl-a advection cannot be ignored. We propose a three-stage mechanism to explain the presence of high Chl-a offshore:1) Wind-driven upwelling intensifies coastal nutrients, elevating Chl-a concentrations in coastal waters, 2) Frontal cyclonic eddy facilitates the retention and offshore export of these upwelling-enriched waters. and 3) Anticyclonic eddy advects these nutrient-rich waters further south. The combination of enhanced coastal upwelling and eddies can explain nutrient-rich coastal waters in offshore regions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-06-28
    Description: The dynamic processes associated with subducting tectonic plates and rising plumes of hot material are typically treated separately in dynamical models and seismological studies. However, various types of observations and related models indicate these processes overlap spatially. Here we use precursors to PP and SS reflecting off mantle transition zone discontinuities to map deflections of these discontinuities near three subduction zones surrounding the Caribbean Plate: 1) Lesser Antilles, 2) Middle America and 3) northern South American subduction zones. In all three regions slow seismic anomalies are present behind the sinking slab within the transition zone in tomographic images. Using array methods, we identify precursors and verify their in-plane propagation for MW ≥ 5.8 events occurring between the years 2000 and 2020 by generating a large number of source receiver combinations with reflection points in the area, including crossing ray paths. The measured time lag between PP/SS arrivals and their corresponding precursors on robust stacks are used to measure the depth of the mantle transition zone discontinuities. In all three areas we find evidence for upward deflection of the 660 discontinuity behind the sinking slab, consistent with the presence of hot plume material (average temperature anomalies of 180 to 620 K), while there is not a corresponding downward deflection of the 410 km discontinuity. One interpretation of these disparate observations is suggested based on comparison to existing models of mantle convection and subduction: plume material rising across 660 km discontinuity could be entrained by lateral flow in the transition zone induced by the nearby sinking slab, and thus delaying the rise of hot material across the 410 km discontinuity.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-06-28
    Description: Three volcanic arcs have been the source of New Zealand's volcanic activity since the Neogene: Northland arc, Coromandel Volcanic Zone (CVZ) and Taupō Volcanic Zone (TVZ). The eruption chronology for the Quaternary, sourced by the TVZ, is well studied and established, whereas the volcanic evolution of the precursor arc systems, like the CVZ (central activity c. 18 to 2 Ma), is poorly known due to limited accessibility to, or identification of, onshore volcanic deposits and their sources. Here, we investigate the marine tephra record of the Neogene, mostly sourced by the CVZ, of cores from IODP Exp. 375 (Sites U1520 and U1526), ODP Leg 181 (Sites 1123, 1124 and 1125), IODP Leg 329 (Site U1371) and DSDP Leg 90 (Site 594) offshore of New Zealand. In total, we identify 306 primary tephra layers in the marine sediments. Multi-approach age models (e.g. biostratigraphy, zircon ages) are used in combination with geochemical fingerprinting (major and trace element compositions) and the stratigraphic context of each marine tephra layer to establish 168 tie-lines between marine tephra layers from different holes and sites. Following this approach, we identify 208 explosive volcanic events in the Neogene between c. 17.5 and 2.6 Ma. This is the first comprehensive study of New Zealand's Neogene explosive volcanism established from tephrochronostratigraphic studies, which reveals continuous volcanic activity between c. 12 and 2.6 Ma with an abrupt compositional change at c. 4.5 Ma, potentially associated with the transition from CVZ to TVZ. Key Points New Zealand's Neogene explosive volcanism based on the marine tephra record Geochemical fingerprinting of marine tephra layers across the study area to establish volcanic events Insights into geochemical variations with time, repose times and spatiotemporal distribution
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-06-28
    Description: Mapping and sampling four sections of the slow-spreading Reykjanes Ridge provide insight into how tectonic and volcanic activity varies with distance from the Iceland plume. The studied areas are characterized by significant variations in water depth, lava chemistry, crustal thickness, thermal structure, and ridge morphology. For each study area, fault pattern and dimension, tectonic strain, seamount morphology, and density are inferred from 15 m-resolution bathymetry. These observations are combined with geochemical analysis from glass samples and sediment thickness estimations along Remotely Operated Vehicle-dive videos. They reveal that (a) tectonic and volcanic activity along the Reykjanes Ridge, do not systematically vary with distance from the plume center. (b) The tectonic geometry appears directly related to the deepening of the brittle/ductile transition and the maximum change in tectonic strain related to the rapid change in crustal thickness and the transition between axial-high and axial valley (∼59.5°N). (c) Across-axis variations in the fault density and sediment thickness provide similar widths for the neo-volcanic zone except in regions of increased seamount emplacement. (d) The variations in seamount density (especially strong for flat-topped seamounts) are not related to the distance from the plume but appear to be correlated with the interaction between the V-shape ridges (VSR) flanking the ridge and the ridge axis. These observations are more compatible with the buoyant upwelling melting instability hypothesis for VSR formation and suggest that buoyant melting instabilities create many small magma batches which by-pass the normal subaxial magmatic plumbing system, erupting over a wider-than-normal area. Key Points The distance from the plume center is not the only factor controlling tectonic and volcanic activity along the Reykjanes Ridge Fault dimensions are primarily controlled by the variation of crustal thermal structure with distance from the hotspot Flat-topped seamount abundances peak where a V-shaped ridge intersects the axis, consistent with a buoyant upwelling melting instability
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-06-26
    Description: When volcanic mountains slide into the sea, they trigger tsunamis. How big are these waves, and how far away can they do damage? Ritter Island provides some answers.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-06-24
    Description: Organic carbon (OC) in permafrost interacts with the mineral fraction of soil and sediments, representing 〈 1% to ~80% of the total OC pool. Quantifying the nature and controls of mineral-OC interactions is therefore crucial for realistic assessments of permafrost-carbon-climate feedbacks, especially in ice-rich regions facing rapid thaw and the development of thermo-erosion landforms. Here, we analyzed sediment samples from the Batagay megaslump in East Siberia, and we present total element concentrations , mineralogy, and mineral-OC interactions in its different stratigraphic units. Our findings indicate that up to 34 ± 8% of the OC pool interacts with mineral surfaces or elements. Interglacial deposits exhibit enhanced OC-mineral interactions, where OC has undergone greater microbial transformation and has likely low degradability. We provide a first-order estimate of ~12,000 tons of OC mobilized annually downslope of the headwall (i.e., the approximate mass of 30 large aircrafts), with a maximum of 38% interacting with OC via complexation with metals or associations to poorly crystalline iron oxides. These data imply that over one-third of the OC exposed by the slump is not readily available for mineralization, potentially leading to prolonged OC residence time in soil and sediments under stable physicochemical conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    Publication Date: 2024-06-24
    Description: The simulation of deep-sea conditions in laboratories is technically challenging but necessary for experiments that aim at a deeper understanding of physiological mechanisms or host-symbiont interactions of deep-sea organisms. In a proof-of-concept study, we designed a recirculating system for long-term culture (〉2 yr) of deep-sea mussels Gigantidas childressi (previously Bathymodiolus childressi). Mussels were automatically (and safely) supplied with a maximum stable level of ~60 μmol L−1 methane in seawater using a novel methane–air mixing system. Experimental animals also received daily doses of live microalgae. Condition indices of cultured G. childressi remained high over the years, and low shell growth rates could be detected, too, which is indicative of positive energy budgets. Using stable isotope data, we demonstrate that G. childressi in our culture system gained energy, both, from the digestion of methane-oxidizing endosymbionts and from digesting particulate food (microalgae). Limitations of the system, as well as opportunities for future experimental approaches involving deep-sea mussels, are discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-06-24
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-06-24
    Description: Air-sea interaction in late boreal winter is studied over the extratropical North Atlantic (NA) during 1960–2020 by examining the relationship between sea-surface temperature (SST) and total turbulent heat flux (THF). The two quantities are positively correlated on interannual timescales over the central-midlatitude and subpolar NA, suggesting the atmosphere on average drives SST and THF variability is independent of SST. On decadal timescales and over the central-midlatitude NA the correlation is negative, suggesting ocean processes on average drive SST and THF variability is sensitive to SST. The correlation is positive over the subpolar NA. There, interannual and decadal THF variability is governed by the North Atlantic Oscillation (NAO). During the major late 20th and early 21st century SST increase in the subpolar NA diminishing oceanic heat loss associated with a weakening NAO was observed. This study suggests that the atmosphere is more sensitive to SST over the central-midlatitude than subpolar NA. Key Points: - Regional variation in the nature of air-sea interaction over the extratropical North Atlantic (NA) north of 35°N - Timescale dependence in relationship between sea-surface temperature (SST) and turbulent heat flux over the central-midlatitude NA - The atmosphere is more sensitive to SST variability over the central-midlatitude than subpolar NA
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-06-24
    Description: The disturbance of marine organism phenology due to climate change and the subsequent effects on recruitment success are still poorly understood, especially in migratory fish species, such as the Atlantic herring (Clupea harengus; Clupeidae). Here we used the commercial catch data from a local fisher over a 50-year period (1971–2020) to estimate western Baltic spring-spawning (WBSS) herring mean arrival time Q50 (i.e., the week when 50% of the total fish catches had been made) at their spawning ground within the Kiel Fjord, southwest Baltic Sea, and the duration of the spawning season for each year. The relationship between the seawater temperature in the Kiel Bight and other environmental parameters (such as water salinity, North Atlantic and Atlantic multidecadal oscillations) and Q50 was evaluated using a general linear model to test the hypothesis that fish arrived earlier after warm than cold winters. We also estimated the accumulated thermal time to Q50 during gonadal development to estimate the effects of seawater temperature on the variations of Q50. The results of this study revealed a dramatic decrease in herring catches within the Kiel Fjord since the mid-1990s, as documented for the whole southwestern Baltic Sea. Warmer winter seawater temperature was the only factor related to an earlier arrival (1 week for one January seawater temperature degree increase) of herring at their spawning ground. The relationship was found for the first time on week 52 of the year prior to spawning and was the strongest (50% of the variability explained) from the fourth week of January (8 weeks before the mean Q50 among the studied years). A thermal constant to Q50 (~316°C day) was found when temperatures were integrated from the 49th week of the year prior to spawning. These results indicate that seawater temperature enhanced the speed of gonadal maturation during the latest phases of gametogenesis, leading to an early fish arrival under warm conditions. The duration of the spawning season was elongated during warmer years, therefore potentially mitigating the effects of trophic mismatch when fish spawn early. The results of this study highlight the altering effects of climate change on the spawning activity of a migratory fish species in the Baltic Sea where fast global changes presage that in other coastal areas worldwide
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-06-24
    Description: Highlights • Statistically different gas geochemistry was observed in two adjacent springs. • About 74% of helium was contributed by the mantle. • Excess N2 relative to Ar was attributed to subducted materials and seawater mixing. • Magmatic CO2 has been largely removed by calcite precipitation in the reaction zone. • The residual CO2 may also be supplied by microbial oxidation of alkanes. Gas emissions from hydrothermal systems can serve as indicators of subsurface activity. In addition to gas sources, hydrothermal gas geochemistry is strongly influenced by secondary processes that occur during/after hydrothermal circulation. Here, we observed statistically significant differences in the geochemical characteristics (except for helium isotopes) of bubbling gases discharged from two adjacent vents in the Northern Luzon Arc. Helium (3He/4He = 4.25–7.09 Ra) in both vents was controlled by mixing between mantle and crustal components, where about 74% of helium was contributed by the mantle. Differences in N2/Ar ratios (∼ 300–330) of the two neighboring springs are attributed to subducted materials and seawater mixing (contributing ∼2.5% N2 and Ar), rather than phase separation in the reaction zone. Specifically, Ar was mainly supplied by atmospheric components that dissolved in the percolated seawater with only 8%–9% contributed by the excess radiogenic 40Ar. Excess N2 relative to Ar was mainly supplied by the decomposition of subducted materials (83%–92%) of the South China Sea plate beneath the Philippine Sea Plate. The Lutao gases showed low CO2 concentrations (0.07–22.2 mmol/mol), despite the high 3He/4He ratios indicating a significant contribution of magmatic components. Magmatic CO2 may have been largely consumed by the high Ca Lutao vent fluids via carbonate precipitation in the reaction zone. Alternatively, stable carbon isotope compositions (δ13C) indicate that Lutao CO2 may be supplied by microbial oxidation of alkanes (e.g., CH4 with concentrations of 14.6–173 mmol/mol in the samples), with fractionation factor ΔCO2–CH4 ranging from −15‰ to −25‰ and conversion rates of 〈10%. Up to 65% of the CO2 in the 2016 samples experienced secondary calcite precipitation in the discharge zone. Our results indicate that recycled subducted materials could potentially affect the geochemical characteristics of gases discharged from arc-volcanic systems. In addition, the influence of secondary processes needs to be considered before tracing the sources of hydrothermal fluids and/or gases, especially in shallow-water hydrothermal systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-06-24
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-06-21
    Description: The marine habitat beneath Antarctica’s ice shelves spans ~1.6 million km2, and life in this vast and extreme environment is among Earth’s least accessible, least disturbed and least known, yet likely to be impacted by climate-forced warming and environmental change. Although competition among biota is a fundamental structuring force of ecological communities, hence ecosystem functions and services, nothing was known of competition for resources under ice shelves, until this study. Boreholes drilled through a ~ 200 m thick ice shelf enabled collections of novel sub-ice-shelf seabed sediment which contained fragments of biogenic substrata rich in encrusting (lithophilic) macrobenthos, principally bryozoans – a globally-ubiquitous phylum sensitive to environmental change. Analysis of sub-glacial biogenic substrata, by stereo microscopy, provided first evidence of spatial contest competition, enabling generation of a new range of competition measures for the sub-ice-shelf benthic space. Measures were compared with those of global open-water datasets traversing polar, temperate and tropical latitudes (and encompassing both hemispheres). Spatial competition in sub-ice-shelf samples was found to be higher in intensity and severity than all other global means. The likelihood of sub-ice-shelf competition being intraspecific was three times lower than for open-sea polar continental shelf areas, and competition complexity, in terms of the number of different types of competitor pairings, was two-fold higher. As posited foran enduring disturbance minimum, a specific bryozoan clade was especially competitively dominant in sub-ice shelf samples compared with both contemporary and fossil assemblage records. Overall, spatial competition under an Antarctic ice shelf, as characterised by bryozoan interactions, was strikingly different from that of open- sea polar continental shelf sites, and more closely resembled tropical and temperate latitudes. This study represents the first analysis of sub-ice-shelf macrobenthic spatial competition and provides a new ecological baseline for exploring, monitoring and comparing ecosystem response to environmental change in a warming world.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-06-21
    Description: The Qinghai-Tibet Plateau (QTP) is characterized by a vast number of frozen and unfrozen freshwater reservoirs, which is why it is also called “the third pole” of the Earth or “Asian Water Tower”. We analyzed testate amoeba (TA) biodiversity and corresponding protozoic biosilicification in lake sediments of the QTP in relation to environmental properties (freshwater conditions, elevation, and climate). As TA are known as excellent bio-indicators, our results allowed us to derive conclusions about the influence of climate warming on TA communities and microbial biogeochemical silicon (Si) cycling. We found a total of 113 TA taxa including some rare and one unknown species in the analyzed lake sediments of the QTP highlighting the potential of this remote region for TA biodiversity. 〉1/3 of the identified TA taxa were relatively small (〈30 μm) reflecting the relatively harsh environmental conditions in the examined lakes. TA communities were strongly affected by physico-chemical properties of the lakes, especially water temperature and pH, but also elevation and climate conditions (temperature, precipitation). Our study reveals climate-related changes in TA biodiversity with consequences for protozoic biosilicification. As the warming trend in the QTP is two to three times faster compared to the global average, our results provide not only deeper insights into the relations between TA biodiversity and environmental properties, but also predictions of future developments in other regions of the world. Moreover, our results provide fundamental data for paleolimnological reconstructions. Thus, examining the QTP is helpful to understand microbial biogeochemical Si cycling in the past, present, and future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Ecological Modelling, Elsevier, 478, pp. 110278-110278, ISSN: 0304-3800
    Publication Date: 2024-06-21
    Description: With changing climate, the boreal forest could potentially migrate north and become threatened by droughts in the south. However, whether larches, the dominant tree species in eastern Siberia, can adapt to novel situations is largely unknown but is crucial for predicting future population dynamics. Exploring variable traits and trait adaptation through inheritance in an individual-based model can improve our understanding and help future projections. We updated the individual-based spatially explicit vegetation model LAVESI (Larix Vegetation Simulator), used for forest predictions in Eastern Siberia, with trait value variation and incorporated inheritance of parental values to their offspring. Forcing the model with both past and future climate projections, we simulated two areas – the expanding northern treeline and a southerly area experiencing drought. While the specific trait of ‘seed weight’ regulates migration, the abstract ‘drought resistance’ protects stands. We show that trait variation with inheritance leads to an increase in migration rate (∼ 3% area increase until 2100). The drought resistance simulations show that, under increasing stress, including adaptive traits leads to larger surviving populations (17% of threatened under RCP 4.5 (Representative Concentration Pathway)). We show that with the increase expected under the RCP 8.5 scenario vast areas (80% of the extrapolated area) of larch forest are threatened and could disappear due to drought as adaptation plays only a minor role under strong warming. We conclude that variable traits facilitate the availability of variants under environmental changes. Inheritance allows populations to adapt to environments and promote successful traits, which leads to populations that can spread faster and be more resilient, provided the changes are not too drastic in both time and magnitude. We show that trait variation and inheritance contribute to more accurate models that can improve our understanding of responses of boreal forests to global change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-06-21
    Description: Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-06-21
    Description: While the influence of precession on monsoon at low latitudes through insolation forcing is well-known, the role of obliquity is still debated since its influence on the distribution of incoming solar radiation is small in these regions. In southern Africa, long marine and terrestrial sedimentary records attest of a precessional influence on the South African monsoon at orbital time scale. The obliquity signal is occasionally observed in the geological records although modeling results suggest an influence of precession and obliquity on summer monsoon. Here, we present a record of microscopic charcoal from core MD96-2098 located off Namibia covering the past 184,000 years. Our record of fire activity reveals cyclic changes at frequencies of 23, 58 and 12 kyr−1 and lacks the obliquity signal at 41 kyr−1. Changes in fire over southern Africa are interpreted as shifts in large and intense fires spreading in open-grassland savanna as a result of orbitally-driven changes in rainfall intensity associated with the South African monsoon. We show that, despite the absence of a 41 kyr obliquity imprint, the presence of 23, 58 and 12 kyr−1 frequencies likely stems from a nonlinear response of fire to precipitation controlled by a combination of precession and obliquity frequencies, supporting the influence of obliquity on the South African monsoon.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Quaternary Science, Wiley, 36(1), pp. 20-28, ISSN: 0267-8179
    Publication Date: 2024-06-21
    Description: Holocene temperature proxy records are commonly used in quantitative synthesis and model-data comparisons. However, comparing correlations between time series from records collected in proximity to one another with the expected correlations based on climate model simulations indicates either regional or noisy climate signals in Holocene temperature proxy records. In this study, we evaluate the consistency of spatial correlations present in Holocene proxy records with those found in data from the Last Glacial Maximum (LGM). Specifically, we predict correlations expected in LGM proxy records if the only difference to Holocene correlations would be due to more time uncertainty and more climate variability in the LGM. We compare this simple prediction to the actual correlation structure in the LGM proxy records. We found that time series data of ice-core stable isotope records and planktonic foraminifera Mg/Ca ratios were consistent between the Holocene and LGM periods, while time series of Uk'37 proxy records were not as we found no correlation between nearby LGM records. Our results support the finding of highly regional or noisy marine proxy records in the compilation analysed here and suggest the need for further studies on the role of climate proxies and the processes of climate signal recording and preservation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Ecology and Evolution, Wiley, 13(10), pp. e10585-e10585, ISSN: 2045-7758
    Publication Date: 2024-06-21
    Description: Global climatic changes expected in the next centuries are likely to cause unparalleled vegetation disturbances, which in turn impact ecosystem services. To assess the significance of disturbances, it is necessary to characterize and understand typical natural vegetation variability on multi-decadal timescales and longer. We investigate this in the Holocene vegetation by examining a taxonomically harmonized and temporally standardized global fossil pollen dataset. Using principal component analysis, we characterize the variability in pollen assemblages, which are a proxy for vegetation composition, and derive timescale-dependent estimates of variability using the first-order Haar structure function. We find, on average, increasing fluctuations in vegetation composition from centennial to millennial timescales, as well as spatially coherent patterns of variability. We further relate these variations to pairwise comparisons between biome classes based on vegetation composition. As such, higher variability is identified for open-land vegetation compared to forests. This is consistent with the more active fire regimes of open-land biomes fostering variability. Needleleaf forests are more variable than broadleaf forests on shorter (centennial) timescales, but the inverse is true on longer (millennial) timescales. This inversion could also be explained by the fire characteristics of the biomes as fire disturbances would increase vegetation variability on shorter timescales, but stabilize vegetation composition on longer timecales by preventing the migration of less fire-adapted species.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2024-06-21
    Description: Stromboli (Italy) is an open-vent volcano with persistent explosive activity producing up to five hundred mild explosions per day. Fluctuations in explosion intensity, varying even by orders of magnitude in terms of emitted volume and their subsequent impact on the surrounding regions, sometimes occur abruptly. Consequently, identifying precursors of larger eruptive activities, particularly for more intense (paroxysmal) explosions, is challenging. In order to search for anomalies in the pre-paroxysm activity related to the summer 2019 eruption, we applied a hybrid method to the automatic analysis of geophysical and geochemical time series. This approach is based on the combination of two methods: 1. the Empirical Mode Decomposition (EMD) and 2. the Support Vector Regression (SVR). The aggregation of these two methods allowed us to identify anomalies in the patterns of the geophysical and geochemical parameters measured on Stromboli in a ten-month period including the July–August 2019 eruption. The results of this study are encouraging for an improvement of the monitoring systems and for volcano early warning applications.
    Description: This work has been supported by the INGV project Pianeta Dinamico 2023-2025 - ObseRvation, Measurement and modelling of Eruptive processes (ORME), and partially supported by the Progetto Strategico Dipartimentale INGV 2019 “Forecasting eruptive activity at Stromboli volcano: timing, eruptive style, size, intensity and duration” (FIRST, Delibera n. 144/2020; Scientific Responsibility: S.C.). Furthermore, this research has benefited from the support of Convenzione B2 DPC-INGV 2022-2024, Stromboli, Task 1.3 “Development of a unique activity index and estimation of the probability of the transition between ‘ordinary’ and ‘extraordinary’ eruptive activity”, and of the INGV project “Reti Multiparametriche”, Task A2 “Development of methods for the identification of precursors of Stromboli's paroxysms and major explosions based on multiparametric data analysis and study of possible early warning techniques”.
    Description: In press
    Description: 108131
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: JCR Journal
    Keywords: Stromboli volcano ; Volcanic monitoring ; Data analysis ; Multiparametric geophysics ; Paroxysmal explosions ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2024-06-20
    Description: Ancient environmental DNA (aeDNA) data are close to enabling insights into past global-scale biodiversity dynamics at unprecedented taxonomic extent and resolution. However, achieving this potential requires solutions that bridge bioinformatics and paleoecoinformatics. Essential needs include support for dynamic taxonomic inferences, dynamic age inferences, and precise stratigraphic depth. Moreover, aeDNA data are complex and heterogeneous, generated by dispersed researcher networks, with methods advancing rapidly. Hence, expert community governance and curation are essential to building high-value data resources. Immediate recommendations include uploading metabarcoding-based taxonomic inventories into paleoecoinformatic resources, building linkages among open bioinformatic and paleoecoinformatic data resources, harmonizing aeDNA processing workflows, and expanding community data governance. These advances will enable transformative insights into global-scale biodiversity dynamics during large environmental and anthropogenic changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2024-06-20
    Description: Because continuous and high-resolution records are scarce in the polar Urals, a multiproxy study was carried out on a 54 m long sediment succession (Co1321) from Lake Bolshoye Shchuchye. The sedimentological, geochemical, pollen and chironomid data suggest that glaciers occupied the lake's catchment during the cold and dry MIS 2 and document a change in ice extent around 23.5–18 cal ka bp. Subsequently, meltwater input, sediment supply and erosional activity decreased as local glaciers progressively melted. The vegetation around the lake comprised open, herb and grass-dominated tundra-steppe until the Bølling-Allerød, but shows a distinct change to probably moister conditions around 17–16 cal ka bp. Local glaciers completely disappeared during the Bølling-Allerød, when summer air temperatures were similar to today and low shrub tundra became established. The Younger Dryas is confined by distinct shifts in the pollen and chironomid records pointing to drier conditions. The Holocene is characterised by a denser vegetation cover, stabilised soil conditions and decreased minerogenic input, especially during the local thermal maximum between c. 10 and 5 cal ka bp. Subsequently, present-day vegetation developed and summer air temperatures decreased to modern, except for two intervals, which may represent the Little Ice Age and Medieval Warm Period.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Palaeogeography Palaeoclimatology Palaeoecology, Elsevier, 612, pp. 111380-111380, ISSN: 0031-0182
    Publication Date: 2024-06-20
    Description: Relatively little is known about the relationship between the Indian summer monsoon (ISM) and the El Niño-Southern Oscillation (ENSO) on the centennial timescale during the Holocene. We present a well-dated high-resolution X-ray fluorescence (XRF) scanning record from a sediment core from Lake Qionghai on the southeastern Tibetan Plateau, which reveals the impact of ENSO activity on ISM variability. The results indicate a gradual drying of the regional climate on the sub-orbital timescale, which is in broad agreement with ISM changes controlled by Northern Hemisphere summer insolation. Additionally, centennial-scale drought events occurred at around 6230–5740, 4620–4250, 3820–3540, 3210–2440, 2180–1320, and 1000–615 cal yr B.P. and are consistent with enhanced ENSO activity, documenting the occurrence of ENSO-related drought events in the Holocene. Both ISM oscillations and ENSO variability show significant 350-yr, 500-yr, and 800-yr cyclicities, and there is a highly significant negative relationship between the ISM and ENSO at these cyclicities, indicating that a weak ISM was related to increased ENSO intensity, and vice versa. Our findings provide evidence for the modulation of ISM intensity by ENSO variability on the centennial timescale during the Holocene.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2024-06-20
    Description: Since the initial discovery of the non-exponential mass fractionation (non-EMF) of Nd isotopes analysis in 2002, similar deviations from an EMF pattern have been reported for measurements of a number of isotope systems (e.g., Si, Ge, Sr, Sn, Ba, Yb, W, Os, Hg and Pb) with MC-ICP-MS. However, the previous controversial reports on the magnitude of the deviations from EMF suggest that instrumental mass bias behaviour of MC-ICP-MS is neither fully understood nor well-characterised. Consequently, the standard approach of using a mass dependent fractionation (MDF) correction model (e.g., exponential law) may lead to both inaccurate and imprecise results. In this study, we systematically characterise the instrumental mass fractionation of MC-ICP-MS using Nd isotope measurements carried out under different plasma conditions, quantified using the normalised argon index (NAI) as an estimate of plasma temperature. Our results indicate that the mass bias of MC-ICP-MS is not always a simple exponential function of mass but shows systematic deviations from an EMF behaviour, which are closely associated with decreased NAIs. As a result, the conventional exponential correction yields a 143Nd/144Nd value of 0.512257 for the reference material BHVO-2 when the NAI is low, which is 722 ppm lower than the reported value of 0.512979. By tuning the plasma to higher NAIs (higher plasma temperatures), the deviations from the EMF array are systematically attenuated and the exponential correction is able to correct for the instrumental mass bias under high NAIs. In contrast, a regression correction model for Nd isotopes is developed to account for the observed mass fractionation behaviour that does not follow EMF under low NAIs, given that the regression correction relies on the observed loglinear fractionation of different isotope pairs and does not require both isotope ratios to undergo EMF. We expect that the analytical protocol and fundamental insights gained in this study are applicable to a wide range of other isotope measurements with MC-ICP-MS.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2024-06-20
    Description: The Black Sea is a permanently anoxic, marine basin serving as model system for the deposition of organic-rich sediments in a highly stratified ocean. In such systems, archaeal lipids are widely used as paleoceanographic and biogeochemical proxies; however, the diverse planktonic and benthic sources as well as their potentially distinct diagenetic fate may complicate their application. To track the flux of archaeal lipids and to constrain their sources and turnover, we quantitatively examined the distributions and stable carbon isotopic compositions (delta 13C) of intact polar lipids (IPLs) and core lipids (CLs) from the upper oxic water column into the underlying sediments, reaching deposits from the last glacial. The distribution of IPLs responded more sensitively to the geochemical zonation than the CLs, with the latter being governed by the deposition from the chemocline. The isotopic composition of archaeal lipids indicates CLs and IPLs in the deep anoxic water column have negligible influence on the sedimentary pool. Archaeol substitutes tetraether lipids as the most abundant IPL in the deep anoxic water column and the lacustrine methanic zone. Its elevated IPL/CL ratios and negative delta 13C values indicate active methane metabolism. Sedimentary CL- and IPL-crenarchaeol were exclusively derived from the water column, as indicated by non-variable delta 13C values that are identical to those in the chemocline and by the low BIT (branched isoprenoid tetraether index). By contrast, in situ production accounts on average for 22% of the sedimentary IPL-GDGT-0 (glycerol dibiphytanyl glycerol tetraether) based on isotopic mass balance using the fermentation product lactate as an endmember for the dissolved substrate pool. Despite the structural similarity, glycosidic crenarchaeol appears to be more recalcitrant in comparison to its non-cycloalkylated counterpart GDGT-0, as indicated by its consistently higher IPL/CL ratio in sediments. The higher TEX86, CCaT, and GDGT-2/-3 values in glacial sediments could plausibly result from selective turnover of archaeal lipids and/or an archaeal ecology shift during the transition from the glacial lacustrine to the Holocene marine setting. Our in-depth molecular-isotopic examination of archaeal core and intact polar lipids provided new constraints on the sources and fate of archaeal lipids and their applicability in paleoceanographic and biogeochemical studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2024-06-19
    Description: This chapter provides an overview of near-surface geochemical processes operating on Earth, with special emphasis placed on (i) marine weathering such as alteration and dissolution of silicates, carbonates and terrigenous riverine particles in the ocean, complemented by (ii) reverse weathering reactions leading to marine authigenic clay formation, and the impact of these phenomena on ocean alkalinity budget and the chemical and isotope composition of seawater. Model simulations of the above processes provide estimates of the global marine fluxes of major cations (Na+, K+, Mg2+, Ca2+) and alkalinity in the ocean induced by silicate weathering and dissolution of terrigenous material in seawater. Additional constraints on silicate vs. carbonate weathering, oceanic/coastal CaCO3 cycling, and paleo-seawater reconstructions are provided via the stable and radiogenic isotope systems of alkali and alkaline earth metals (Li, K, Mg, Ca, and Sr isotopes) that are discussed within the context of marine and reverse weathering in the present and past ocean. Key points • Impact of weathering processes on marine elemental cycles and the ocean alkalinity budget. • Alteration and dissolution of silicate minerals and riverine particles in the ocean quantified via thermodynamic equilibrium (PHREEQC) calculations, in seawater and top sediment settings. • Estimates of global ocean fluxes of dissolved cations (Na+ , K+ , Mg 2+ , Ca2+ ) and alkalinity induced by alteration and dissolution of terrigenous material in seawater and marine sediments. • Principles and mechanisms of isotope variability in nature (mass-dependent and radiogenic isotope effects) observed for alkali and alkaline earth metals. • Silicate vs. carbonate weathering and coastal carbon/carbonate cycling constrained via stable and radiogenic Ca and Sr, and Li isotopes. • Oceanic processes, marine carbonate chemistry (alkalinization vs. acidification), and paleo-seawater reconstructions constrained via d44 Ca, d88 Sr, d26 Mg proxies and numerical (MATLAB) modeling. • Emerging metal isotope proxies (d41 K) for silicate and reverse weathering in the ocean.
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2024-06-18
    Description: Pronounced glacial and interglacial climate cycles characterized northern ecosystems during the Pleistocene. Our understanding of the resultant community transformations and past ecological interactions strongly depends on the taxa found in fossil assemblages. Here, we present a shotgun metagenomic analysis of sedimentary ancient DNA (sedaDNA) to infer past ecosystem-wide biotic composition (from viruses to megaherbivores) from the Middle and Late Pleistocene at the Batagay megaslump, East Siberia. The shotgun DNA records of past vegetation composition largely agree with pollen and plant metabarcoding data from the same samples. Interglacial ecosystems at Batagay attributed to Marine Isotope Stage (MIS) 17 and MIS 7 were characterized by forested vegetation (Pinus, Betula, Alnus) and open grassland. The microbial and fungal communities indicate strong activity related to soil decomposition, especially during MIS17. The local landscape likely featured more open, herb-dominated areas, and the vegetation mosaic supported birds and small omnivorous mammals. Parts of the area were intermittently/partially flooded as suggested by the presence of water-dependent taxa. During MIS 3, the sampled ecosystems are identified as cold-temperate, periodically flooded grassland. Diverse megafauna (Mammuthus, Equus, Coelodonta) coexisted with small mammals (rodents). The MIS 2 ecosystems existed under harsher conditions, as suggested by the presence of cold-adapted herbaceous taxa. Typical Pleistocene megafauna still inhabited the area. The new approach, in which shotgun sequencing is supported by metabarcoding and pollen data, enables the investigation of community composition changes across a broad range of taxonomic groups and inferences about trophic interactions and aspects of soil microbial ecology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2024-06-18
    Description: The study of environmental ancient DNA provides us with the unique opportunity to link environmental with ecosystem change over a millennial timescale. Paleorecords such as lake sediments contain genetic pools of past living organisms that are a valuable source of information to reconstruct how ecosystems were and how they changed in response to climate in the past. Here, we report on paleometagenomics of a sedimentary record in northern Siberia covering the past 6700 years. We integrated taxonomic with functional gene analysis, which enabled to shed light not only on community compositions but also on eco-physiological adaptations and ecosystem functioning. We reconstructed the presence of an open boreal forest 6700 years ago that over time was gradually replaced by tundra. This vegetation change had major consequences on the environmental microbiome, primarily enriching bacterial and archaeal ammonia oxidizers (e.g., Nitrospira, Nitrosopumilus, and Ca. Nitrosocosmicus) in the tundra ecosystem. We identified a core microbiome conserved through time and largely consisting of heterotrophic bacteria of the Bacteroidetes phylum (e.g., Mucilaginibacter) harboring numerous functional genes for degradation of plant-biomass and abiotic and biotic stress resistance. Archaea were also a key functional guild, involved in nitrogen and carbon cycling, not only methanogenesis but possibly also degradation of plant material via enzymes such as cellulases and amylases. Overall, the paleo-perspective offered by our study can have a profound impact on modern climate change biology, by helping to explain and predict the ecological interplay among multiple ecosystem levels based on past experiences.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-06-18
    Description: Using pollen analysis and metabarcoding of plant sedimentary ancient DNA (sedaDNa), we infer the floristic diversity in the vicinity of Lake Balyktukel, Ulagan Plateau, the Altai Mountains, over the last 7 kyr. The SedaDNA method identified 200% more taxa than found by morphological pollen analysis. In particular, it revealed that the dominant tree for the last 7 kyr was Larix rather than Pinus, which was less frequent in the vicinity of Lake Balyktukel. About 7 ka, larch forest mixed with dwarf birch was widespread on the Ulagan Plateau. The period between 5.3 and 3.4 kyr BP was characterized by the maximal spread of larch forest with an understorey cover of Vaccinium vitis-idaea. Pollen-based annual precipitation reconstruction indicates the most humid phase was between 6.95 and 4.3 ka, and generally coincides with maximal phytodiversity. The most bioproductive period of the lake was from 7 to 6 ka. After that, the trophicity of the lake decreased until 4.5 ka. The appearance of Hippuris vulgaris and increase in Ranunculus subgen. Batrachium at about 5.3–5 ka may indicate the extension of shallow-water ecotopes. Between 3.7 and 3.5 ka, the cyanobacterium Anabaena – an indicator of increased organic matter and algal blooms – was widespread. A planktic thermophilic cladoceran Bosmina longirostris appeared after 1.8 ka and colonized the lake, suggesting an increase in lake trophicity. The last 100 years have been characterized by dramatic changes in the cladoceran community reflecting significant warming of climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-06-18
    Description: Highlights • a high-fidelity RANS CFD method is used to simulate the flow through netting panels. • The influence of netting solidity, twine diameter, mesh opening angle and incident angle is examined. • Mesh opening angle, solidity and angle of incidence greatly influence the hydrodynamic force coefficients and efficiency. To ensure the economic and environmental sustainability of the fisheries and aquaculture industries, it is necessary to address issues related to fuel consumption, environmental degradation, and fish welfare. Hence, we need a thorough understanding of the filtration efficiency and the hydrodynamic forces acting on towed fishing gears and netting structures. Here we apply a Reynolds-averaged Navier-Stokes (RANS) CFD method to model the flow through netting panels, where we vary the operational and design parameters of flow speed, netting solidity, twine diameter, mesh opening angle and the incidence angle of the flow to the panel. Thus, we create a simulated data set which we analyze to provide a fundamental understanding of the functional relationships for the pressure drop and tangential drag coefficients, and the flow deflection in terms of these parameters. We pay particular attention to the effect of mesh opening angle, a parameter that has not received much attention in the literature. We demonstrate that it has a large influence on the drag and lift coefficients and consequently on the hydrodynamic efficiency of netting panels. These results will be particularly useful for reducing the hydrodynamic forces on netting structures and improving the fuel efficiency of towed fishing gear operations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-06-18
    Description: Gypsum makes up about one fifth of giant salt deposits formed by evaporation of seawater throughout Earth’s history. Although thermodynamic calculations and precipitation experiments predict that gypsum precipitates when the salinity of evaporating seawater attains about 110 g kg-1, gypsum deposits of the Mediterranean Salt Giant often bear the geochemical signature of precipitation from less saline water masses. Addressing this geochemical riddle is important because marine gypsum deposition and continental gypsum erosion affect the global carbon cycle. We investigated gypsum deposits formed in the marginal basins of the Mediterranean Sea during the Messinian Salinity Crisis (about 6 million years ago). These often bear low-salinity fluid inclusions and isotopically light crystallization water, confirming previous published reports that the Mediterranean Salt Giant harbors low-salinity gypsum deposits. A geochemical model constrained by fluid inclusion salinity and isotope (87Sr/86Sr, δ34SSO4, δ18OH2O, δDH2O) measurements excludes that Ca2+- and SO42--enriched continental runoff alone provides the trigger for gypsum precipitation at low salinity. We propose that, concurrent with the prevalent evaporative conditions and with Ca2+- and SO42--bearing runoff, the biogeochemical sulfur cycle is capable of producing a spatially-restricted and temporally-transient increase of Ca2+ and SO42- within benthic microbial mats, creating local chemical conditions conductive to gypsum precipitation. This hypothesis is supported by the presence of dense packages of fossils of colorless sulfur bacteria within gypsum in several Mediterranean marginal basins, together with independent geochemical and petrographic evidence for an active biogeochemical sulfur cycle in the same basins. Should this scenario be confirmed, it would expand the range of environments that promote marine gypsum deposition; it would also imply that an additional, biological coupling between the calcium, sulfur and carbon cycles exists.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-06-17
    Description: In the period February–April 2021, seventeen energetic hours-long episodes of intense lava fountaining occurred at Mt. Etna, producing lava flows and ash plumes followed by heavy fallout. Clinopyroxene mesocrysts from these paroxysms show complex sector and concentric zoning patterns, with juxtaposition of Si-Mg-rich (Al-Ti-poor) and Si-Mg-poor (Al-Ti-rich) crystal layers. Clinopyroxene-based equilibrium thermobarometry and hygrometry define an overall crystallization path in the range of ~170–480 MPa, ~1060–1110 °C, and ~ 1.2–2.7 wt% H2O, with a main magma storage region estimated at depths of ~11–15 km. From this perspective, we observe that 2021 lava fountains were fed by hotter magmas of deeper origin with respect to those feeding 2011–2012 paroxysms. Zoning patterns of 2021 clinopyroxene mesocrysts formed in a vertically-extended plumbing system upon the effect of mixing phenomena and crystal recycling caused by recurrent inputs of fresh magmas into interconnected mushy reservoirs. Kinetic growth modeling constrains the formation of 2021 clinopyroxene mesocrysts over timescales of ~30–90 h and small degrees of undercooling ≤28 °C. Fesingle bondMg diffusion chronometry confirms that the time elapsed between the formation of clinopyroxene rim and magma eruption is utterly related to growth kinetics caused by pre-eruptive dynamic transfer of magma at crustal depths. Kinetic effects are exacerbated for clinopyroxene microlites/microcrysts forming at the syn-eruptive stage, when magma decompression, degassing, and cooling become more effective in the last 1.5 km below the vent of Mt. Etna. Kinetic growth modeling reveals that eruption dynamics within the conduit promote an exceptionally rapid disequilibrium growth of clinopyroxene microlites/microcrysts in only ~0.4–3.3 min upon large degrees of undercooling 〉60 °C. The resulting ascent velocity of 2021 magmas within the conduit is ~8–63 m/s, a factor of ~3 higher than the less energetic 2011–2012 paroxysms.
    Description: Published
    Description: 106710
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Magma dynamics at Mt. Etna ; Clinopyroxene zoning patterns ; P-T-H2O magma crystallization histories ; Magma ascent velocities ; petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-06-17
    Description: Petrological studies of active volcanoes typically focus on eruptive phenomena occurring over long timescales of the order of days to years, aiming at identifying major changes in the physico-chemical state of magma during ascent towards the surface. Exceptionally, we present results from an integrated petrological and statistical approach based on the compilation of ∼5300 major and trace element data for glass and crystals, in combination with volcanological data on eruptive events occurred over timescales of minutes at Stromboli volcano (Sicily). On May 11, 2019, we had the rare opportunity to collect individual fresh fallout ash products from eighteen mostly consecutive explosions, erupted in a 2-h time span and, at the same time, to acquire continuous high frequency (50 Hz) infrared thermal data of the same explosions. Through video analysis, we observe that explosions were more frequent and ash-dominated at the southwestern crater area (SCA, 8–10 events/h) than at the northeastern crater area (NCA, 3–5 events/h), where coarser material was ejected. The statistical analysis of glass and plagioclase compositions reveals differences in the products erupted from the two crater areas. SCA explosions tapped less differentiated magmas (Mg#∼42–46, ∼257–365 LaN, ∼0.7–0.9 Eu/Eu*) in equilibrium with more anorthitic plagioclase cores (An∼72–88), whereas NCA area explosions are more differentiated (Mg#∼40–44, ∼286–387 LaN, ∼0.6–0.8 Eu/Eu*) and in equilibrium with less anorthitic plagioclase cores (An∼68–82). Thermometric calculations based on major and trace element clinopyroxene-plagioclase-melt equilibrium modeling highlight that the SCA explosions were statistically fed by hotter magmas in comparison to NCA explosions. Plagioclase-based diffusion modeling also indicates longer timescales for the dynamic ascent of NCA magmas, leading to preferential groundmass crystallization at the conduit walls and transition from sideromelane to tachylite groundmass textures. The final emerging picture is that in May 2019, concurrent normal eruptions from different crater areas at Stromboli were heralds of compositionally and thermally diverse magmas rising at different rates within the uppermost branched part of the conduit region. High frequency petrological investigations aided by statistical treatment of data have the potential to constrain dynamic conduit processes related to transient, explosive eruptions in persistently active volcanoes, thereby offering new insights on the interplay between magma dynamics, ascent timescales, and eruptive behavior.
    Description: Published
    Description: 107255
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: High-temporal resolution petrology ; Stromboli volcano ; Thermobarometry ; Eruptive timescales ; Plumbing, conduit and eruptive dynamics ; Petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-06-17
    Description: We present undercooling (∆T) experiments aimed at investigating the effect of growth kinetics on the textural and compositional evolution of clinopyroxene crystals growing from a high-K basalt erupted during the 2003 paroxysm of Stromboli volcano (Italy). The experiments were performed at P = 350 MPa, T = 1050–1210 °C, H2Omelt = 0–3 wt%, and fO2 = Ni-NiO + 1.5 buffer. An initial stage of supersaturation was imposed to the melt under nominally anhydrous (∆Tanh = 10–150 °C) and hydrous (∆Thyd = 25–125 °C) conditions. Afterwards, this supersaturation state was mitigated by melt relaxation phenomena over an annealing time of 24 h. Results show that plagioclase is the liquidus mineral phase of the high-K basalt at ∆Tanh = 10 °C and dominates the phase assemblage as the degree of undercooling increases. Conversely, clinopyroxene and spinel co-saturate the melt at ∆Thyd = 25 °C, followed by the subordinate formation of plagioclase. At ∆Tanh/hyd ≤ 50 °C, the textural maturation of clinopyroxene produces polyhedral crystals with {−111} (hourglass) and {hk0} (prism) sectors typical of a layer-by-layer growth mechanism governed by an interface-controlled crystallization regime. At ∆Tanh/hyd ≥ 75 °C, the attainment of dendritic and skeletal morphologies testifies to the establishment of diffusion-limited reactions at the crystal-melt interface. 3D reconstructions of synchrotron radiation X-ray microtomographic data reveal a composite growth history for clinopyroxene crystals obtained at ∆Tanh/hyd ≥ 95 °C. The early stage of melt supersaturation produces rosette-like structures composed of dendritic branches of clinopyroxene radiating from a common spinel grain, which acts as surface for heterogeneous nucleation. As diffusive relaxation phenomena progress over the annealing time, the elongate dendrites that constitute the inner crystal domain are partially infilled by the melt and develop skeletal overgrowths in the outer domain. With the increasing degree of undercooling, TAl and M1Ti cations are progressively incorporated in the lattice site of clinopyroxene at the expense of TSi and M1Mg cations. Because of the effect of H2Omelt on the liquidus depression and melt depolymerization, crystals obtained at ∆Thyd are also more enriched in TAl and M1Ti and depleted in TSi and M1Mg than those growing at ∆Tanh. The emerging picture is that the morphological and geochemical evolution of clinopyroxene is mutually controlled by the combined effects of melt supersaturation and relaxation phenomena. A new empirical relationship based on the cation exchange reactions in the lattice site of clinopyroxene is finally proposed to estimate the degree of undercooling governing the crystallization of augitic phenocrysts erupted during normal and violent explosions at Stromboli.
    Description: Published
    Description: 107327
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Clinopyroxene ; Undercooling ; Hourglass ; Crystallization ; Microtomography ; Stromboli ; Experimental Petrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-06-17
    Description: We investigated the Late Pleistocene-Holocene crustal vertical movements off the coast of Marzamemi village in SE Sicily, Italy. By using a Synchronous Correlation Approach (SCA), we analysed terraced landforms that characterize a submerged sector within one of Southern Italy's most seismically active regions. In this area, the emerging portion of the NE-SW oriented bulge of the African foreland structurally shapes the coastal and marine regions off Marzamemi village. Based on a newly created 17 km2 high-resolution bathymetric map generated from a Multibeam Echosounder (MBES) survey conducted in June 2021, we identified and examined four main paleo-shorelines identifying four submerged terraces. Terraced landforms play a crucial role in reconstructing Quaternary glacial and interglacial stages, offering insights into associated sea level fluctuations. Through the application of the SCA, our goal is to refine the chronology of these recently mapped and submerged marine terraces off the Marzamemi village, thereby contributing to the calculation of associated rates of crustal vertical movements. We demonstrate that these rates persist constantly throughout the Late Pleistocene-Holocene epoch, suggesting overall tectonic stability, with a slight and likely local fault-related subsidence. We explore a few chronology scenarios, raising questions about whether these submerged marine terraces are indeed recording the Late Pleistocene-Holocene limit or not. This research contributes to a better understanding of the geological dynamics in this region and sheds light on the potential factors influencing coastal landscape development over time.
    Description: Published
    Description: 107326
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: Submarine geomorphology ; Submerged marine terraces ; Marine terraces chronology ; Late Quaternary ; Sea Level Change ; Crustal vertical movements
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-06-17
    Description: Yedoma is a permafrost deposit widely distributed across the Arctic and found exclusively within the unglaciated regions in northern Siberia, Alaska, and the Yukon, which are the core regions of Beringia. Yedoma deposits accumulated during the late Pleistocene Stage and are characterized by their predominantly fine-grained texture and association with syngenetic perma-frost formation. The very high ground ice content is most commonly present as pore ice and wedge ice that formed contemporaneously with sediment deposition. In the last decade, research has transitioned from debates about the origin of the Yedoma deposits towards increasing attention on the large carbon and nitrogen pools in Yedoma, their vulnerability to thaw, and increasing mobilization as the climate has warmed across the Arctic. In addition to classical cryolithological and sedimentological research, new methods such as stable isotope paleoclimate reconstruction and ancient sedimentary DNA studies have been more widely applied to better understand the characteristics of Yedoma deposits and helped emphasize their value as archives of Quaternary climate and paleoecological conditions during Ice Age Beringia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Earth and Planetary Science Letters, Elsevier, 640, pp. 118801-118801, ISSN: 0012-821X
    Publication Date: 2024-06-17
    Description: Carbon cycle models used to calculate the marine reservoir age of the non-polar surface ocean (called Marine20) out of IntCal20, the compilation of atmospheric C, have so far neglected a key aspect of the millennial-scale variability connected with the thermal bipolar seesaw: changes in the strength of the Atlantic meridional overturning circulation (AMOC) related to Dansgaard/Oeschger and Heinrich events. Here we implement such AMOC changes in the carbon cycle box model BICYCLE-SE to investigate how model performance over the last 55 kyr is affected, in particular with respect to available 14C and CO2 data. Constraints from deep ocean 14C data suggest that the AMOC in the model during Heinrich stadial 1 needs to be highly reduced or even completely shutdown. Ocean circulation and sea ice coverage combined are the processes that almost completely explain the simulated changes in deep ocean 14C age, and these are also responsible for a glacial drawdown of ∼60 ppm of atmospheric CO2. We find that the implementation of abrupt reductions in AMOC during Greenland stadials in the model setup that was previously used for the calculation of Marine20 leads to differences of less than ±100 14C yrs. The representation of AMOC changes therefore appears to be of minor importance for deriving non-polar mean ocean radiocarbon calibration products such as Marine20, where atmospheric carbon cycle variables are forced by reconstructions. However, simulated atmospheric CO2 exhibits minima during AMOC reductions in Heinrich stadials, in disagreement with ice core data. This mismatch supports previous suggestions that millennial-scale changes in CO2 were probably not driven directly by the AMOC, but rather by biological and physical processes in the Southern Ocean and by contributions from variable land carbon storage.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-06-17
    Description: Scientists have long attempted to explain why closely similar age patterns of death are characteristic of highly diverse human and nonhuman populations. Historical efforts to identify a general "law of mortality" from these patterns that applied across species ended in 1935 when it was declared that such a law did not exist. These early efforts were conducted using mortality curves based on all causes of death. The authors predict that if comparisons of mortality are based instead on "intrinsic" causes of death (i.e., deaths that reflect the basic biology of the organism), then age patterns of mortality consistent with the historical concept of a law might be revealed. Using data on laboratory animals and humans, they demonstrate that age patterns of intrinsic mortality overlap when graphed on a biologically comparable time scale. These results are consistent with the existence of a law of mortality following sexual maturity, as originally asserted by Benjamin Gompertz and Raymond Pearl. The societal, medical, and research implications of such a law are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-06-17
    Description: The crises of climate change and biodiversity loss are interlinked and must be addressed jointly. A proposed solution for reducing reliance on fossil fuels, and thus mitigating climate change, is the transition from conventional combustion-engine to electric vehicles. This transition currently requires additional mineral resources, such as nickel and cobalt used in car batteries, presently obtained from land-based mines. Most options to meet this demand are associated with some biodiversity loss. One proposal is to mine the deep seabed, a vast, relatively pristine and mostly unexplored region of our planet. Few comparisons of environmental impacts of solely expanding land-based mining versus extending mining to the deep seabed for the additional resources exist and for biodiversity only qualitative. Here, we present a framework that facilitates a holistic comparison of relative ecosystem impacts by mining, using empirical data from relevant environmental metrics. This framework (Environmental Impact Wheel) includes a suite of physicochemical and biological components, rather than a few selected metrics, surrogates, or proxies. It is modified from the “recovery wheel” presented in the International Standards for the Practice of Ecological Restoration to address impacts rather than recovery. The wheel includes six attributes (physical condition, community composition, structural diversity, ecosystem function, external exchanges and absence of threats). Each has 3–5 sub attributes, in turn measured with several indicators. The framework includes five steps: (1) identifying geographic scope; (2) identifying relevant spatiotemporal scales; (3) selecting relevant indicators for each sub-attribute; (4) aggregating changes in indicators to scores; and (5) generating Environmental Impact Wheels for targeted comparisons. To move forward comparisons of land-based with deep seabed mining, thresholds of the indicators that reflect the range in severity of environmental impacts are needed. Indicators should be based on clearly articulated environmental goals, with objectives and targets that are specific, measurable, achievable, relevant, and time bound.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2024-06-17
    Description: Detection of small plastic particles in environmental water samples has been a topic of increasing interest in recent years. A multitude of techniques, such as variants of Raman spectroscopy, have been employed to facilitate their analysis in such complex sample matrices. However, these studies are often conducted for a limited number of plastic types in matrices with relatively little additional materials. Thus, much remains unknown about what parameters influence the detection limits of Raman spectroscopy for more environmentally relevant samples. To address this, this study utilizes Raman spectroscopy to detect six plastic particle types; 161 and 33 nm polystyrene, 〈 450 nm and 36 nm poly(ethylene terephthalate), 121 nm polypropylene, and 126 nm polyethylene; spiked into artificial saltwater, artificial freshwater, North Sea, Thames River, and Elbe River water. Overall, factors such as plastic particle properties, water matrix composition, and experimental setup were shown to influence the final limits of detection.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-06-17
    Description: The Banda Sea is of crucial importance for the circulation of the world's oceans, as it is part of the connection between the Pacific to the Indian Ocean. One peculiarity of the upper ocean hydrography in the Banda Sea is the occurrence of barrier layers. The regionality and temporal variability of barrier layer thickness (BLT) in the Banda Sea are examined in this study utilizing in-situ observations and ocean reanalysis output. It is found that a barrier layer occurs in over 90 % of the observational data profiles, and in over 72 % of those profiles, the BLT is shallower than 10 m. Furthermore, we find a seasonal cycle in BLT with a maximum thickness of about 60 m occurring during austral autumn and winter and coinciding with the presence of low saline waters fed by the regional river discharge and rainfall from the Java Sea and Makassar Strait. In addition, we identify the existence of a quasi-permanent anticyclonic circulation cell in the Banda Sea that may support the trapping of surface freshwater by retention. The anticyclonic circulation is most likely wind-driven because it coincides with the regional Ekman pumping pattern. Modulation of the anticyclone is via seasonal variability in the wind stress curl which in turn may explain the efficiency of freshwater retention and thus the BLT. The annual mean BLT distribution in the Banda Sea shows a preferential region of thickened barrier layers around 6o-8oS and 124o-126oE and resampling the pattern of the monthly mean climatology. Key Points: - First study estimating barrier layer thickness (BLT) in the Banda Sea using comprehensive observations - A quasi-permanent barrier layer exists in the Banda Sea with seasonal variation in occurrence and thickness - The intrusion of low saline waters and anticyclonic circulation are identified as the main mechanisms for creating and modulating the local BLT
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-06-17
    Description: Key Points: - We reconstruct the temporal evolution of seawater isotope ratios of boron, strontium, lithium, and osmium over the last 65 million years - The evolution of seawater boron isotope ratio shows similarity to the evolution of strontium, lithium and osmium isotope ratios - Randomly drawn, smooth time series are provided for use in uncertainty propagation in calculation of palaeo pH The boron isotope ratio of seawater (δ11Bsw) is a parameter which must be known to reconstruct palaeo pH and CO2 from boron isotope measurements of marine carbonates. Beyond a few million years ago, δ11Bsw is likely to have been different to modern. Palaeo δ11Bsw can be estimated by simultaneously constraining the vertical gradients in foraminiferal δ11B (Δδ11B) and pH (ΔpH). A number of subtly different techniques have been used to estimate ΔpH in the past, all broadly based on assumptions about vertical gradients in oxygen, and/or carbon, or other carbonate system constraints. In this work we pull together existing data from previous studies, alongside a constraint on the rate of change of δ11Bsw from modeling. We combine this information in an overarching statistical framework called a Gaussian Process. The Gaussian Process technique allows us to bring together data and constraints on the rate of change in δ11Bsw to generate random plausible evolutions of δ11Bsw. We reconstruct δ11Bsw, and by extension palaeo pH, across the last 65Myr using this novel methodology. Reconstructed δ11Bsw is compared to other seawater isotope ratios, namely ,87/86 Sr, 187/188 Os , and δ7Li, which we also reconstruct with Gaussian Processes. Our method provides a template for incorporation of future δ11Bsw constraints, and a mechanism for propagation of uncertainty in δ11Bsw into future studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-06-14
    Description: During 2008–2020, four strong earthquakes occurred in Yutian, Xinjiang Uygur Automous Region, northwest China, in particular, two M7 + and two M6 + earthquakes demonstrating the high tectonic activity of this region. We systematically use multiple electromagnetic data from satellites and ground, such as GIM TEC (Global Ionospheric Mapping Total Electron Content) published by JPL (Jet Propulsion Laboratory), and the ULF (Ultra Low Frequency) electromagnetic waves and plasma parameters onboard DEMETER (Detection of Electro- Magnetic Emission Transmitted from Earthquake Regions), Swarm and CSES (China Seismo-Electromagnetic Satellite) satellites. The ionospheric perturbations were revealed frequently around the four case studies, but mostly within 10 days before, over the epicentral area, and sometimes over its conjugate region at southern hemisphere. The abnormal amplitude is quite larger in years with high solar activity than in those with low solar activity. We employ the SAMI2 model to simulate the variations from the effects of E × B under different plasma background in 2008 and 2014 to explain the great difference in different solar years. The similarity of the anomalies in this region demonstrates the higher electromagnetic and chemical emissions, implying that the electric field is possibly generated by the preparation of the seismic events in the epicentral area inducing the ionospheric disturbances above this area and its conjugate region through this coupling channel.
    Description: Published
    Description: 101943
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-06-14
    Description: Highlights • δ13C and δ18O profiles increase from exterior to interior until reaching a plateau. • Primary Layer δ13C reflects the δ13C of the Dissolved Inorganic Carbon. • In high pCO2 experiments, δ13C and δ18O closer to equilibrium fields. • Brachiopods grow according to an incremental growth model. Abstract Brachiopod shells are ubiquitous since the Early Cambrian up to now. As they secrete a shell made of low-magnesium calcite, more resistant to diagenesis than biocarbonates richer in Mg, their geochemical signatures are generally considered a powerful tool for paleo-environmental and paleo-climatic reconstructions. However, gaps in knowledge still remain on the underlying controls of the shell chemistry, in particular at a high spatial resolution. In this study, in situ oxygen and carbon isotope measurements by SIMS (Secondary Ion Mass Spectrometry) were performed in brachiopod shells of the cold-temperate water species Magellania venosa, constituted of a primary and a secondary layer. The individual specimens studied here grew under controlled conditions mimicking the natural environment and in experiments under low-pH (high pCO2) and high-temperature conditions. Transversal carbon and oxygen profiles showed a “brachiopod pattern” typical of extant two-layered brachiopods, with the primary layer depleted in 18O and 13C relative to equilibrium and the secondary layer showing a gradual increasing trend until reaching a near-equilibrium plateau. Overall, shells cultured at low pH were found to have δ18O and δ13C values closer to equilibrium when compared to shells from the control experiment. These near-equilibrium values may reflect a decrease in shell precipitation rate, leading to less kinetic effects, and/or a more rapid kinetics for the equilibration between DIC species and water. By close pairing of seawater δ18O and δ13C to that of shell microstructure, our study enables us to derive layer-specific C and O enrichment factors, which show the extent of pH and temperature effects superimposed on the seawater δ18O and DIC δ13C signal inherited. Finally, we show that during brachiopod shell growth, newly precipitated calcite is added to the calcite already existing, thus empirically validating the conceptual accretionary growth model proposed by Ackerly (1989).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-06-14
    Description: The spectral composition of light is an important factor for the metabolism of photosynthetic organisms. Several blue light-regulated metabolic processes have already been identified in the industrially relevant microalga Monoraphidium braunii. However, little is known about the spectral impact on this species' growth, fatty acid (FA), and pigment composition. In this study, M. braunii was cultivated under different light spectra (white light: 400–700 nm, blue light: 400–550 nm, green light: 450–600 nm, and red light: 580–700 nm) at 25°C for 96 h. The growth was monitored daily. Additionally, the FA composition, and pigment concentration was analyzed after 96 h. The highest biomass production was observed upon white light and red light irradiation. However, green light also led to comparably high biomass production, fueling the scientific debate about the contribution of weakly absorbed light wavelengths to microalgal biomass production. All light spectra (white, blue, and green) that comprised blue-green light (450–550 nm) led to a higher degree of FA unsaturation and a greater concentration of all identified pigments than red light. These results further contribute to the growing understanding that blue-green light is an essential trigger for maximized pigment concentration and FA unsaturation in green microalgae.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2024-06-14
    Description: This article presents risk factors that are associated with the handling of unexploded ordnance (UXO) during explosive ordnance disposal (EOD) operations in German waters. The construction of offshore wind parks and the German immediate action program are expected to increase the number of EOD operations. Existing literature and guidelines do not offer a structured and reproducible framework for assessing EOD risk. To fill this gap, a network of EOD risk factors was developed by means of a literature review and validation via expert consultation. The study was scoped to “personnel and equipment at the EOD location” as the risk receptor and “undesired detonation” as the undesired event under investigation. Factors are subdivided into UXO factors that depend on the object that should be handled and factors that describe the object's surrounding environment. While the former can be researched by an EOD expert, the latter must be measured on site or acquired from a model. Each of these factors contributes to risk, some directly and others indirectly via other factors. The complexity of the resulting network, with its 33 factors, demonstrates the need for a reliable and reproducible model to quantify EOD risk. Its purpose is not to replace EOD experts but to aid them in their decision‐making process. Such a tool can provide valuable support for the high‐cost and high‐risk EOD operations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2024-06-14
    Description: The mesopelagic or ocean twilight zone (OTZ) in the ocean contains huge numbers of fish in a relatively pristine environment and may therefore attract interest as a commercial fishery. In this study we evaluate in economic terms, the likely trade-offs between the different services provided by the mesopelagic layer in the Bay of Biscay and the societal benefits of its commercial exploitation. Benefits arise mainly from the likely use of this group of species as raw material for producing fishmeal and fish oil. Costs are derived from the loss in climate regulating and cultural, services, but also from the loss in the provisioning service of other commercial species. To do so we compare the current non-exploited status with a situation in where mesopelagic fishes are harvested at levels capable of producing the Maximum Sustainable Yield. Results suggest that if mesopelagic fishes are harvested, a mean value of 1.2 million Euro loss in a year will be created in the Bay of Biscay, although in a range between 42 million Euro loss and 48 Euro million benefits. This uncertainty comes, mainly, from the limited existing knowledge of the mesopelagic fishes’ biomass but also from the uncertainty on the biomass of the rest of the species of the studied ecosystem. The large range indicates that a better understanding of the mesopelagic ecosystem is needed, however, results also show that ecosystem services under no exploitation provided by the OTZ could be more valuable than the fishmeal and fish oil that potentially could be obtained from the fishes harvested in this sea layer.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-06-14
    Description: Infections by filamentous phages, which are usually nonlethal to the bacterial cells, influence bacterial fitness in various ways. While phage-encoded accessory genes, for example virulence genes, can be highly beneficial, the production of viral particles is energetically costly and often reduces bacterial growth. Consequently, if costs outweigh benefits, bacteria evolve resistance, which can shorten phage epidemics. Abiotic conditions are known to influence the net-fitness effect for infected bacteria. Their impact on the dynamics and trajectories of host resistance evolution, however, remains yet unknown. To address this, we experimentally evolved the bacterium Vibrio alginolyticus in the presence of a filamentous phage at three different salinity levels, that is (1) ambient, (2) 50% reduction and (3) fluctuations between reduced and ambient. In all three salinities, bacteria rapidly acquired resistance through super infection exclusion (SIE), whereby phage-infected cells acquired immunity at the cost of reduced growth. Over time, SIE was gradually replaced by evolutionary fitter surface receptor mutants (SRM). This replacement was significantly faster at ambient and fluctuating conditions compared with the low saline environment. Our experimentally parameterized mathematical model explains that suboptimal environmental conditions, in which bacterial growth is slower, slow down phage resistance evolution ultimately prolonging phage epidemics. Our results may explain the high prevalence of filamentous phages in natural environments where bacteria are frequently exposed to suboptimal conditions and constantly shifting selections regimes. Thus, our future ocean may favour the emergence of phage-born pathogenic bacteria and impose a greater risk for disease outbreaks, impacting not only marine animals but also humans.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Wiley
    In:  Ecology and Evolution vol. 12 no. e9549 | H2020 European Institute of Innovation and Technology, Grant/Award Number: 813360; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, Grant/ Award Number: 16.161.301
    Publication Date: 2024-06-13
    Description: Monitoring community composition of Foraminifera (single-celled marine protists) pro-vides valuable insights into environmental conditions in marine ecosystems. Despitethe efficiency of environmental DNA (eDNA) and bulk-sample DNA (bulk-DNA) me-tabarcoding to assess the presence of multiple taxa, this has not been straightforwardfor Foraminifera partially due to the high genetic variability in widely used ribosomalmarkers. Here, we test the correctness in retrieving foraminiferal communities by me-tabarcoding of mock communities, bulk-DNA from coral reef sediment samples, andeDNA from their associated ethanol preservative using the recently sequenced cy-tochrome c oxidase subunit 1 (COI) marker. To assess the detection success, we com-pared our results with large benthic foraminiferal communities previously reportedfrom the same sampling sites. Results from our mock communities demonstrate thatall species were detected in two mock communities and all but one in the remainingfour. Technical replicates were highly similar in number of reads for each assigned ASVin both the mock communities and bulk-DNA samples. Bulk-DNA showed a signifi-cantly higher species richness than their associated eDNA samples, and also detectedadditional species to what was already reported at the specific sites. Our study con-firms that metabarcoding using the foraminiferal COI marker adequately retrieves thediversity and community composition of both the mock communities and the bulk-DNA samples. With its decreased variability compared with the commonly used nu-clear 18 S rRNA, the COI marker renders bulk-DNA metabarcoding a powerful tool toassess foraminiferal community composition under the condition that the referencedatabase is adequate to the target taxa.
    Keywords: bulk-sample ; DNA ; community composition ; coral reef ; environmental DNA ; foraminifera ; metabarcoding
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2024-06-13
    Description: Southern hemisphere humpback whale (Megaptera novaeangliae, SHHW) breeding populations follow a high-fidelity Antarctic krill (Euphausia superba) diet while feeding in distinct sectors of the Southern Ocean. Their capital breeding life history requires predictable ecosystem productivity to fuel migration and migration-related behaviours. It is therefore postulated that populations feeding in areas subject to the strongest climate change impacts are more likely to show the first signs of a departure from a high-fidelity krill diet. We tested this hypothesis by investigating blubber fatty acid profiles and skin stable isotopes obtained from five SHHW populations in 2019, and comparing them to Antarctic krill stable isotopes sampled in three SHHW feeding areas in the Southern Ocean in 2019. Fatty acid profiles and δ13C and δ15N varied significantly among all five populations, however, calculated trophic positions did not (2.7 to 3.1). Similarly, fatty acid ratios, 16:1ω7c/16:0 and 20:5ω3/22:6ω3 were above 1, showing that whales from all five populations are secondary heterotrophs following an omnivorous diet with a diatom-origin. Thus, evidence for a potential departure from a high-fidelity Antarctic krill diet was not seen in any population. δ13C of all populations were similar to δ13C of krill sampled in productive upwelling areas or the marginal sea-ice zone. Consistency in trophic position and diet origin but significant fatty acid and stable isotope differences demonstrate that the observed variability arises at lower trophic levels. Our results indicate that, at present, there is no evidence of a divergence from a high-fidelity krill diet. Nevertheless, the characteristic isotopic signal of whales feeding in productive upwelling areas, or in the marginal sea-ice zone, implies that future cryosphere reductions could impact their feeding ecology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2024-06-13
    Description: Volcanic rocks are the prominent host rocks in geothermal and volcanic systems in general, displaying heterogeneity. Although various external factors such as temperature, pressure, time, fluid chemistry, and subsurface geology have been thoroughly researched regarding the source of hydrothermal minerals in geothermal fields, the effect of hydrothermal alteration on volcanic hosts is still controversial in the literature. This review compiles data on the physical and mechanical properties of the host rocks composing volcanic environments exhibiting hydrothermal alteration or remaining unaltered. The considered data is originated from hydrothermal areas from Kuril-Kamchatka (Russia), Los Humeros (Mexico), Ngatamaraki, Rotokawa, Kawerau and Ohakuri geothermal fields and Mt. Ruapehu, Mt. Taranaki, and Whakaari volcanoes (New Zealand), Solfatara (Italy), Reykjanes, Nesjavellir, and Theistarereykir geothermal fields (Iceland), La Soufrière de Guadeloupe (Caribbean) volcano, and Merapi volcano (Indonesia). Analysis of average values displayed in several graphical representations and correlations finds that dense rocks (such as lavas and intrusive rocks) exhibit greater competence and lower porosity than fragmental rocks. However, altered dense rocks display greater variability in mechanical properties compared to pyroclastic rocks, primarily influenced by mineral dissolution leading to rock weakening. Exceptions occur for high-temperature hydrothermal alteration, such as advanced silicification and propylitic alteration, with the latter influenced by minor types of alteration. Fragmental rocks have diverse behaviour with the extent of hydrothermal alteration and welding/compaction. According to the compiled data, an overall strengthening of pyroclastic rocks develops as hydrothermal alteration increases, regardless of the type of hydrothermal alteration. The complexity of hydrothermal systems, the variability shown by different hydrothermal settings and histories in terms of temperature, fluid chemistry and secondary mineral assemblage, and the variety of rock materials with different microstructures contribute to moderate correlations between properties compared to those established in an unaltered state. However, the same trends (linear, nonlinear, positive, negative) are preserved along hydrothermal alteration. This review emphasizes the significance of the type and degree of hydrothermal alteration, along with the rock type and pre-existence of fractures, in shaping the development of alteration in volcanic environments and modifying the properties of host rocks. The relevance of the review relies on the fact that these properties are considered to enhance the productivity of geothermal fields and improve the assessment of volcanic hazards. Future research is expected to expand on this groundwork.
    Description: Published
    Description: 104754
    Description: OSV4: Preparazione alle crisi vulcaniche
    Description: JCR Journal
    Keywords: Hydrothermal alteration ; physical properties ; degree of hydrothermal alteration ; mechanical properties ; hydrothermal alteration facies ; intrusion-related geothermal systems ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2024-06-13
    Description: Amplitude and phase scintillation indexes (S4 and SigmaPhi) provided by Ionospheric Scintillation Monitoring (ISM) receivers are the most used GNSS-based indicators of the signal fluctuations induced by the presence of ionospheric irregularities. These indexes are available only from ISM receivers which are not as abundant as other types of professional GNSS receivers, resulting in limited geographic distribution. This makes the scintillation indexes measurements rare and sparse compared to other types of ionospheric measurements available from GNSS receivers. Total Electron Content (TEC), on the other hand, is an ionospheric parameter available from a wide range of multi-frequency GNSS receivers. Many efforts have worked on establishing scintillation indicators based on TEC, and geodetic receivers in general, introducing various metrics, including the Rate of TEC change (ROT) and ROT Index (ROTI). However, a possible relationship between TEC and its variation, and the corresponding scintillation index that an Ionospheric Scintillation Monitor (ISM) receiver would estimate is not trivial. In principle, TEC can be retrieved from carrier phase measurements of the GNSS receiver, as . We investigate how to estimate SigmaPhi from time series of TEC and ROT measurements from an ISM in Ny-Ålesund (Svalbard) using Machine Learning (ML). To evaluate its usability to estimate SigmaPhi from geodetic receivers, the model is tested using TEC data provided by a quasi-co-located geodetic receiver belonging to the International GNSS Service (IGS) network. It is shown that the model performance when TEC from the IGS receiver is used gives comparable results to the model performance when TEC from the ISM receiver is utilised. The model's ability to infer the exact value of the scintillation index is bound to Mean Square Error (MSE) = 0.1 radians^2 when SigmaPhi 〈 0. 8 radians. For SigmaPhi 〉 0. 8 radians the MSE reaches 0.18 and 0.45 radians^2 in operative testing using ISM and IGS measurements, respectively. However, the model’s ability to detect phase scintillation from IGS TEC measurements is comparable to expert visual inspection. Such a model has potential in alerting against phase fluctuations resulting in enhanced SigmaPhi, especially in locations where ISM receivers are not available, but other types of dual-frequency GNSS receivers are present.
    Description: Published
    Description: 3753-3771
    Description: OSA3: Climatologia e meteorologia spaziale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2024-06-13
    Description: Climate change affects human activities, including tourism across various sectors and time frames. The winter tourism industry, dependent on low temperatures, faces significant impacts. This paper reviews the implications of climate change on winter tourism, emphasising challenges for activities like skiing and snowboarding, which rely on consistent snowfall and low temperatures. As the climate changes, these once taken-for-granted conditions are no longer as commonplace. Through a comprehensive review supported by up-to-date satellite imagery, this paper presents evidence suggesting that the reliability of winter snow is decreasing, with findings revealing a progressive reduction in snow levels associated with temperature and precipitation changes in some regions. The analysis underscores the need for concerted efforts by stakeholders who must recognize the reality of diminishing snow availability and work towards understanding the specific changes in snow patterns. This should involve multi-risk and multi-instrument assessments, including ongoing satellite data monitoring to track snow cover changes. The practical implications for sports activities and the tourism industry reliant on snow involve addressing challenges by diversifying offerings. This includes developing alternative winter tourism activities less dependent on snow, such as winter hiking, nature walks, or cultural experiences.
    Description: Published
    Description: 120554
    Description: OSA2: Evoluzione climatica: effetti e loro mitigazione
    Description: JCR Journal
    Keywords: Climate change ; Adaptation ; Tourism losses ; Winter sport ; Multi-date satellite imagery ; 05.09. Miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2024-06-13
    Description: The topside ionosphere extends from the F2-layer peak, where the electron density reaches its absolute maximum in the ionosphere, to the overlying plasmasphere and magnetosphere. In the topside ionosphere, the electron density decreases with height with a vertical variation rate strongly dependent on height itself. The last version of the International Reference Ionosphere (IRI) model, i.e., IRI-2020, describes this complex behavior through four topside options based on different sub-models (i.e., options) developed from the 1970s to the present. All these options have in common the F2-layer peak as an anchor point, while they differ in their topside electron density profile and/or plasma effective scale height formulations. In this work, we perform a validation of the accuracy of the four IRI-2020 topside options based on the comparison against in-situ electron density observations by Gravity Recovery and Climate Experiment (GRACE), Ionospheric Connection Explorer (ICON), and Defense Meteorological Satellite Program (DMSP) F15 low-Earth-orbit satellites. Datasets used in this study encompass observations recorded from 1999 to 2022, covering different diurnal, seasonal, and solar activity conditions, on a global basis and for the height range 400–850 km above the ground. The nearly two solar cycles dataset facilitated the evaluation of IRI-2020 topside options ability to reproduce the spatial and time variations of the topside ionosphere for different solar activity conditions. The weaknesses and strengths of each IRI-2020 topside option are highlighted and discussed, and suggestions on how to improve the modeling of the challenging topside ionosphere region within the IRI model are provided for future reference.
    Description: In press
    Description: OSA3: Climatologia e meteorologia spaziale
    Description: JCR Journal
    Keywords: Topside ionosphere modeling ; International Reference Ionosphere (IRI) model ; In-situ electron density observations ; Low-Earth-Orbit satellites ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2024-06-13
    Description: The exchange of trace gases across the ocean/atmosphere interface, as well as the deposition of atmospheric pollutants and aerosols, are key processes linking the biogeochemical cycles and biological processes in the ocean with atmospheric chemistry and climate. Here we summarize our knowledge about the distributions of long-lived trace gases (CO2, CH4, N2O), short-lived trace gases, and pollutants (dimethyl sulfide (DMS), isoprene, halocarbons, NOx, SO2, O3, and others), and aerosols in the Indian Ocean. In general, dissolved trace gases show a pronounced temporal and spatial variability, which is caused by the variability of both physical processes (e.g., coastal upwelling) and biological productivity. The distributions of pollutants and aerosols and their depositions to the sea surface are mainly driven by the monsoon system and the variability of their land sources. Nitrogen and iron-containing aerosols can significantly affect biological production in the surface layer of the open Indian Ocean.
    Type: Book chapter , PeerReviewed
    Format: text
    Format: slideshow
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2024-06-13
    Description: The Indian Ocean is an important conduit for the exchange of physical and biogeochemical properties through many distinct interbasin oceanic connections. The Indonesian archipelago provides a gappy pathway for warm tropical waters to enter the Indian Ocean from the Pacific. South of Australia, a complex circulation transports cooler subtropical waters from the Pacific while Indian Ocean waters from within the Leeuwin Current feed a series of currents along the southern Australian continental margin. Southern Ocean waters source both the deep and shallow overturning circulations into the Indian Ocean. The westward leakage of eddies spawned from the Agulhas Current off South Africa returns warm and salty Indian Ocean waters into the Atlantic and plays a significant role in the upper branch of the global meridional overturning circulation. This chapter discusses these pathways and highlights how they change with time and influence the circulation and properties of the Indian and global oceans.
    Type: Book chapter , PeerReviewed
    Format: text
    Format: slideshow
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2024-06-12
    Description: The Campanian Volcanic Zone (CVZ) comprises multiple active volcanoes and includes the highly productive Campi Flegrei and Ischia caldera systems. These caldera volcanoes have produced probably the largest eruptions in Europe in the past 200 ka, such as the Monte Epomeo Green Tuff (MEGT; Ischia) at ca. 56 ka and the Campanian Ignimbrite (CI; Campi Flegrei) at ca. 40 ka, which form widespread isochrons across the Mediterranean region. These closely-spaced volcanic centres erupt phonolitic to trachytic glass compositions that are similar, and thus it can be challenging to correlate tephra deposits to specific volcanic sources. Here we present a detailed tephrostratigraphy for pre-CI eruption activity using the units preserved within a sequence at the coastal Acquamorta outcrop, on the western side of the CI caldera rim. Both the MEGT and CI units are present in the section, and they bracket twelve eruption units that were logged and sampled. New major and trace element glass chemistry data have been acquired for these Acquamorta tephra deposits. Three eruption deposits from Ischia and nine from Campi Flegrei are identified, which helps constrain the tempo of volcanic activity of these centres between the large caldera-forming eruptions. The three Ischia tephra deposits between the MEGT and the CI are indistinguishable based on both major and trace element glass chemistry and cannot be correlated to a specific or known eruption in this interval, such as the Schiappone tephra. The compositional variations between the Campi Flegrei eruptions reveal temporal shifts in the composition of the tephra deposits that reflect changes in the magmatic system prior to the CI eruption. These deposits indicate that there were at least nine eruptions at Campi Flegrei within 16 ka of the enormous CI eruption, and suggest that there was no significant period of repose before the caldera generating eruption.
    Description: Published
    Description: 107915
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2024-06-12
    Description: Active volcanoes are a continuous threat for several regions worldwide and cause socio-economic and environmental issues, including the Virunga Volcanic Province (D.R. Congo). There, more than 2 million people are permanently exposed to the hazards of the most active volcanoes in Africa: Nyiragongo and Nyamulagira. However, there is a clear lack of information regarding the impacts of these hazards and how they may be affected by social vulnerability. In this study, a household survey based on semi-structural interviews was performed for rural communities in Virunga. This research aims to (i) investigate the impacts of volcanic hazards on rural communities facing distinct levels of social vulnerability, (ii) understand the adaptive strategies developed by these communities to address these impacts, and finally (iii) identify the main grievances with respect to volcanic hazards raised by these rural communities. The most vulnerable households are those directly affected by volcano-tectonic hazards such as lava flows, mazukus, volcanic gases, ash fallout, and seismic activity. Indirect dangers related to water and food contamination by volcanic emissions are also stronger for the most vulnerable households. Respondents reported that most edible plants and waters are strongly affected by direct volcanic emissions. Drinking waters, which come from traditional drainage, rainfall, and streams, are generally not suitable for human consumption in the study area. Community suggestions for addressing issues related to volcanic-tectonic hazards include efforts to improve water and food quality, enhancement of the sanitary system, timely information on the volcanic activity, volcano monitoring, and capacity building for volcanologists.
    Description: Published
    Description: 103566
    Description: JCR Journal
    Keywords: Volcanic hazards ; Social vulnerability ; Risks perception ; Nyiragongo ; Nyamulagira
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2024-06-12
    Description: On December 26, 2018 (2:19 UTC), during a volcanic eruption on the Mt. Etna eastern flank (Sicily, southern Italy), the largest instrumental earthquake ever recorded in the volcano ruptured the Fiandaca Fault, with epicenter between Fleri and Pennisi villages (hypocenter at ca. 300 m a. s. l., Mw 4.9). This was the mainshock of an earthquake swarm and it was accompanied by widespread surface faulting and extensive damage along a narrow belt near the fault trace. Few hours after the mainshock, an episodic aseismic creep event occurred along the Aci Platani Fault, a SE extension of the Fiandaca Fault, which caused several damages in the Aci Platani village. We surveyed and mapped the coseismic and aseismic ground ruptures, and collected structural data on their geometry, displacement, and fault zone fabric. We compared the mapped surface ruptures with topography, lithology, and morphology of the buried top of the sedimentary basement. We conclude that the geometry of the volcanic pile influenced the surface expression of faulting during the December 26, 2018 event. The top surface of the marly clay basement should be considered as a detachment surface for shallow sliding blocks. The earthquake occurred on top of a depression of the sedimentary basement forcing the sliding eastward, causing at surface the re-arrangement of the fault strand pattern and deformation style, switching from shear faulting to a tensile failure. The Fleri earthquake therefore provides an unprecedented dataset for 1) understanding active faulting in the European largest onshore volcano, 2) modeling its complex dynamics, and 3) contributing to a more refined surface faulting hazard assessment at Mt. Etna. Results from this investigation might be useful for characterizing capable faulting in similar volcano-tectonic settings worldwide.
    Description: Published
    Description: 25-41
    Description: JCR Journal
    Keywords: 2018 Fleri earthquake ; Mt. Etna ; Surface faulting ; Geological hazards ; Aseismic creep
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2024-06-12
    Description: The deep-sea water column below 200 m is a vast three-dimensional habitat with an enormous but largely unexplored biodiversity (Robison, 2009). Cephalopod mollusks are abundant in the deep sea and are important prey for many kinds of predators. Still, most deep-sea cephalopods have never been observed alive in their natural habitat and their reproductive biology remains poorly documented. In March of 2015, at a depth of 2566 m, we observed a female squid of an undescribed species but likely belonging to the Gonatidae, carrying few but exceptionally large eggs in her arms. This raises questions as to how these and other related animals reproduce in the deep sea, an environment that is generally characterized by darkness, low temperature, reduced oxygen, limited food availability, and low population densities. The authors were conducting dives with deep-sea robots (remotely operated vehicles or ROVs) equipped with cameras in the deep basins of the Gulf of California, to investigate how deep-sea fauna are distributed in relation to the extensive low-oxygen zones in the region (Gilly et al., 2013). The squid (Individual 1, Table 1) we observed with an ROV at 2566 m in the Gulf of California in 2015 was carrying 30–40 large eggs (average maximum diameter 11.2 mm, n = 5; measured eggs were 11.4, 10.4, 11.5, 11.7 and 11 mm maximum diameter) embedded in a small external egg sheet that did not extend beyond the arm tips. The size of the eggs was similar to those of two squid (Individuals 2 and 3, Table 1) that were observed close to the seafloor during earlier expeditions in the same region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2024-06-12
    Description: Low-level jets (LLJs), vertical profiles with a wind speed maxima in the lowest hundred meters of the troposphere, have multiple impacts in the Earth system, but a global present-day climatology based on contemporary data does not exist. We use the spatially and temporally complete data set from ERA5 reanalysis to compile a global climatology of LLJs for studying the formation mechanisms, characteristics, and trends during the period of 1992–2021. In the global mean, LLJs are detected 21% of the time with more cases over land (32%) than over the ocean (15%). We classified the LLJs into three categories: non-polar land (LLLJ), polar land (PLLJ), and coastal (CLLJ) LLJs. For LLLJ, the averaged frequency of occurrence is 20% and 75% of them are associated with a near-surface temperature inversion as a prerequisite for an inertial oscillation. PLLJs are also associated with a temperature inversion and occur even more frequently with 59% of the time. These are also the lowest and the strongest LLJs among the three categories. CLLJs are particularly frequent in some marine hotspots, situated along the west coast of continents, with neutral to unstable stratification close to the surfaces and a stably stratified layer aloft. We found distinct regional trends in both the frequency and intensity of LLJs over the past decades, which can have implications for the emission and transport of aerosols, and the transport of atmospheric moisture. Future studies could address changes in LLJs and the associated implications in more detail, based on the here released ERA5-based LLJ data. Key Points: - First global comprehensive low-level jet (LLJ) climatology using ERA5 - Polar LLJs are the strongest and most frequent among the detected types - Distinct past trends in regional LLJ frequency and intensity
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2024-06-11
    Description: 1. The expansion of scientific image data holds great promise to quantify individuals, size distributions and traits. Computer vision tools are especially powerful to automate data mining of images and thus have been applied widely across studies in aquatic and terrestrial ecology. Yet marine benthic communities, especially infauna, remain understudied despite their dominance of marine biomass, biodiversity and playing critical roles in ecosystem functioning. 2. Here, we disaggregated infauna from sediment cores taken throughout the spring transition (April-June) from a near-natural mesocosm setup under experimental warming (Ambient, +1.5 degrees C, +3.0 degrees C). Numerically abundant mudsnails were imaged in batches under stereomicroscopy, from which we automatically counted and sized individuals using a superpixel-based segmentation algorithm. Our segmentation approach was based on clustering superpixels, which naturally partition images by low-level properties (e.g., colour, shape and edges) and allow instance-based segmentation to extract all individuals from each image. 3. We demonstrate high accuracy and precision for counting and sizing individuals, through a procedure that is robust to the number of individuals per image (5-65) and to size ranges spanning an order of magnitude (〈750 mu m to 7.4 mm). The segmentation routine provided at least a fivefold increase in efficiency compared with manual measurements. Scaling this approach to a larger dataset tallied 〉40k individuals and revealed overall growth in response to springtime warming. 4. We illustrate that image processing and segmentation workflows can be built upon existing open-access R packages, underlining the potential for wider adoption of computer vision tools among ecologists. The image-based approach also generated reproducible data products that, alongside our scripts, we have made freely available. This work reinforces the need for next-generation monitoring of benthic communities, especially infauna, which can display differential responses to average warming.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2024-06-11
    Description: Abundant mineral resources in the deep sea are prospected for mining for the global metal market. Seafloor massive sulphide (SMS) deposits along the Mid-Atlantic Ridge are one of the potential sources for these metals. The extraction of SMS deposits will expose adjacent marine ecosystems to suspended particle plumes charged with elevated concentrations of heavy metals and other potentially toxic compounds. Up to date there is no information about the impact of mining activities on deep-sea benthic ecosystems such as abundant deep-sea sponge grounds in the North Atlantic Ocean. Sponge grounds play a major role in benthic-pelagic coupling and represent an important habitat for a diversity of vertebrates, invertebrates and microorganisms. To simulate the effects of mining plumes on benthic life in the deep sea, we exposed Geodia barretti, a dominant sponge species in the North Atlantic Ocean, and an associated brittle star species from the genus Ophiura spp. to a field-relevant concentration of 30 mg L−1 suspended particles of crushed SMS deposits. Three weeks of exposure to suspended particles of crushed SMS resulted in a tenfold higher rate of tissue necrosis in sponges. All brittle stars in the experiment perished within ten days of exposure. SMS particles were evidently accumulated in the sponge's mesohyl and concentrations of iron and copper were 10 times elevated in SMS exposed individuals. Oxygen consumption and clearance rates were significantly retarded after the exposure to SMS particles, hampering the physiological performance of G. barretti. These adverse effects of crushed SMS deposits on G. barretti and its associated brittle star species potentially cascade in disruptions of benthic-pelagic coupling processes in the deep sea. More elaborate studies are advisable to identify threshold levels, management concepts and mitigation measures to minimize the impact of deep-sea mining plumes on benthic life.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2024-06-11
    Description: Biological invasions pose a rapidly expanding threat to the persistence, functioning and service provisioning of ecosystems globally, and to socio-economic interests. The stages of successful invasions are driven by the same mechanism that underlies adaptive changes across species in general-via natural selection on intraspecific variation in traits that influence survival and reproductive performance (i.e., fitness). Surprisingly, however, the rapid progress in the field of invasion science has resulted in a predominance of species-level approaches (such as deny lists), often irrespective of natural selection theory, local adaptation and other population-level processes that govern successful invasions. To address these issues, we analyse non-native species dynamics at the population level by employing a database of European freshwater macroinvertebrate time series, to investigate spreading speed, abundance dynamics and impact assessments among populations. Our findings reveal substantial variability in spreading speed and abundance trends within and between macroinvertebrate species across biogeographic regions, indicating that levels of invasiveness and impact differ markedly. Discrepancies and inconsistencies among species-level risk screenings and real population-level data were also identified, highlighting the inherent challenges in accurately assessing population-level effects through species-level assessments. In recognition of the importance of population-level assessments, we urge a shift in invasive species management frameworks, which should account for the dynamics of different populations and their environmental context. Adopting an adaptive, region-specific and population-focused approach is imperative, considering the diverse ecological contexts and varying degrees of susceptibility. Such an approach could improve and refine risk assessments while promoting mechanistic understandings of risks and impacts, thereby enabling the development of more effective conservation and management strategies. Biological invasions increasingly threaten global ecosystems and socio-economic interests, advancing through mechanisms like natural selection that enhance survival and reproductive traits. Our study focuses on population-level analyses of non-native European freshwater macroinvertebrates to better understand their spread and impact. We found significant variability in invasion dynamics across populations and regions, suggesting that current species-level risk assessments may overlook crucial population-specific factors.image
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2024-06-07
    Description: Persistently high marine temperatures are escalating and threating marine biodiversity. The Baltic Sea, warming faster than other seas, is a good model to study the impact of increasing sea surface temperatures. Zostera marina, a key player in the Baltic ecosystem, faces susceptibility to disturbances, especially under chronic high temperatures. Despite the increasing number of studies on the impact of global warming on seagrasses, little attention has been paid to the role of the holobiont. Using an outdoor benthocosm to replicate near-natural conditions, this study explores the repercussions of persistent warming on the microbiome of Z. marina and its implications for holobiont function. Results show that both seasonal warming and chronic warming, impact Z. marina roots and sediment microbiome. Compared with roots, sediments demonstrate higher diversity and stability throughout the study, but temperature effects manifest earlier in both compartments, possibly linked to premature Z. marina die-offs under chronic warming. Shifts in microbial composition, such as an increase in organic matter-degrading and sulfur-related bacteria, accompany chronic warming. A higher ratio of sulfate-reducing bacteria compared to sulfide oxidizers was found in the warming treatment which may result in the collapse of the seagrasses, due to toxic levels of sulfide. Differentiating predicted pathways for warmest temperatures were related to sulfur and nitrogen cycles, suggest an increase of the microbial metabolism, and possible seagrass protection strategies through the production of isoprene. These structural and compositional variations in the associated microbiome offer early insights into the ecological status of seagrasses. Certain taxa/genes/pathways may serve as markers for specific stresses. Monitoring programs should integrate this aspect to identify early indicators of seagrass health. Understanding microbiome changes under stress is crucial for the use of potential probiotic taxa to mitigate climate change effects. Broader-scale examination of seagrass–microorganism interactions is needed to leverage knowledge on host–microbe interactions in seagrasses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2024-06-07
    Description: Deep convection in the Subpolar Gyre (SPG) forms a link between the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC). The intensity of convection in ocean studies is usually estimated using mixed layer depth (MLD). Here MLD is derived using vertical profiles of potential density from the gridded ARMOR3D dataset and from in situ observations of the EN4 dataset. Given limited areas of convective chimneys, the robustness of the estimates from an available set of vertical profiles needs to be verified before accessing mechanisms of interannual variability of deep convection. For reaching this goal, we first outlined three convection domains in the SPG with a high frequency of deep convection events: the southwestern Labrador Sea (L-DC), the central Irminger Sea (I-DC), and the area south of Cape Farewell (F-DC). The minimum number of randomly scattered casts, required to be executed from January to April for a robust estimate of the maximum MLD, depends on the typical area of the convective regions within the domain and forms 50 casts for L-DC, 40 casts for I-DC and 10 casts for F-DC. For the investigated convection domains, a sufficient number of casts were collected for several standalone winters of the late 1990s, while continuous time series of the convection intensity can be obtained only since the mid-2000s.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2024-06-07
    Description: The recent severe European summer heat waves of 2015 and 2018 co-occurred with cold subpolar North Atlantic (NA) sea surface temperatures (SSTs). However, a significant connection between this oceanic state and European heat waves was not yet established. We performed two AMIP-like model experiments: (a) employing daily 2018 SSTs as observed and (b) applying a novel approach to remove the negative NA SST anomaly, while keeping SST daily and small-scale variability. Comparing these experiments, we find that cold subpolar NA SSTs significantly increase heat wave duration and magnitude downstream over the European continent. Surface temperature and circulation anomalies are connected by the upper-tropospheric summer wave pattern of meridional winds over the North Atlantic European sector, which is enhanced with cold NA SSTs. Our results highlight the relevance of the subpolar NA region for European summer conditions, a region that is marked by large biases in current coupled climate model simulations. Key Points: - Model study designed to investigate the ocean impact on European heat waves by prescribing observed and realistic ocean surface conditions - Cold subpolar North Atlantic sea surface temperatures significantly enhance heat wave intensity and duration over the European continent - North Atlantic ocean and European surface temperature and circulation anomalies are bridged by the upper-tropospheric summer mean wave
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2024-06-07
    Description: The impact of oxygen on the preservation of organic matter in marine surface sediments is still controversial. We revisited this long-standing debate by determining the burial efficiency of sedimentary organic matter in the Black Sea, the largest anoxic and euxinic basin in the modern ocean. Surface sediments were sampled in the Danube paleodelta on the northwestern margin of the Black Sea at 420–1550 m water depth. Steady-state modeling of solid species (particulate organic carbon and nitrogen) and solutes (ammonium, sulfate, and total alkalinity) in sediments was performed to quantify rates of mass accumulation, particulate organic matter (POM) degradation, and POM burial. We develop a novel analytical model to quantify these rates applying an inverse modelling approach to down core data accounting for molecular diffusion, sediment burial and compaction. Our model results indicate that 56.7 ± 6.6 % of the particulate organic matter deposited in the study area is not degraded in surface sediments but accumulates below 10 cm sediment depth. This burial efficiency is substantially higher than those previously derived for seafloor areas underlying oxygenated bottom waters. Hence, our study confirms previous studies showing that euxinic bottom water conditions promote the preservation of particulate organic matter in marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2024-06-07
    Description: We present a detailed field and petrological study of charnockites and ultra-high temperature (UHT) granulites from the Gruf Complex, eastern Central Alps. Charnockites occur as up to 0.5 km wide and 8 km long, internally boudinaged, opx-bearing sheet-like bodies within the regionally dominant migmatitic biotite-orthogneisses. Granulites occur as garnet–orthopyroxene–biotite–alkali feldspar-bearing schlieren (± sapphirine, sillimanite, cordierite, corundum, spinel, plagioclase, and quartz) within charnockites and as residual enclaves both in the charnockites and the migmatitic orthogneisses. Thermobarometric calculations, P–T pseudosections and orthopyroxene Al content, show that both charnockites and granulites equilibrated at metamorphic peak conditions of T = 920–940 °C and P = 8.5–9.5 kbar. Peak assemblages were subsequently overprinted by intergrowth, symplectite and corona textures involving orthopyroxene, sapphirine, cordierite and spinel at T = 720–740 °C and P = 7–7.5 kbar. We suggest that granulites and charnockites are lower crustal relicts preserved in the migmatitic orthogneisses. Garnet diffusion modelling shows that metamorphic garnet–opx ± sapphirine ± sillimanite peak assemblages and post-peak reaction textures always involving cordierite developed during two separate metamorphic cycles. Peak assemblages reflect UHT metamorphism related to post-Varican Permian extension, but post-peak coronae and symplectites formed during the mid-Tertiary, upper amphibolite facies, Alpine regional metamorphism. Fluid-absent partial melting of pelitic and psammitic sediments during the Permian UHT event lead to the formation of charnockitic magmas and granulitic residues. Intense melt loss and thorough dehydration of the granulites (although retaining biotite) favoured the partial preservation of peak mineral assemblages during Alpine metamorphism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-06-07
    Description: In geoscience and other fields, researchers use models as a simplified representation of reality. The models include processes that often rely on uncertain parameters that reduce model performance in reflecting real-world processes. The problem is commonly addressed by adapting parameter values to reach a good match between model simulations and corresponding observations. Different optimization tools have been successfully applied to address this task of model calibration. However, seeking one best value for every single model parameter might not always be optimal. For example, if model equations integrate over multiple real-world processes which cannot be fully resolved, it might be preferable to consider associated model parameters as random parameters. In this paper, a random parameter is drawn from a wide probability distribution for every singe model simulation. We developed an optimization approach that allows us to declare certain parameters random while optimizing those that are assumed to take fixed values. We designed a corresponding variant of the well known Covariance Matrix Adaption Evolution Strategy (CMA-ES). The new algorithm was applied to a global biogeochemical circulation model to quantify the impact of zooplankton mortality on the underlying biogeochemistry. Compared to the deterministic CMA-ES, our new method converges to a solution that better suits the credible range of the corresponding random parameter with less computational effort.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2024-06-07
    Description: Highlights • Development of an autonomous DIC analyzer based on Conductometric technique using a cell with 4 hollow brass electrodes. • CO2 extraction from seawater using a gas diffusion cell with a “Tube In A Tube” configuration and a gas permeable membrane. • Formulation of mathematical temperature and salinity correction to determine accurate DIC concentration. • Demonstration of the analyzer performance in the southwest Baltic Sea. Abstract Background The increase in anthropogenic CO2 concentrations in the Earth's atmosphere since the industrial revolution has resulted in an increased uptake of CO2 by the oceans, leading to ocean acidification. Dissolved Inorganic Carbon (DIC) is one of the key variables to characterize the seawater carbonate system. High quality DIC observations at a high spatial-temporal resolution is required to improve our understanding of the marine carbonate system. To meet the requirements, autonomous DIC analyzers are needed which offer a high sampling frequency, are cost-effective and have a low reagent and power consumption. Results We present the development and validation of a novel analyzer for autonomous measurements of DIC in seawater using conductometric detection. The analyzer employs a gas diffusion sequential injection approach in a “Tube In A Tube” configuration that facilitates diffusion of gaseous CO2 from an acidified sample through a gas permeable membrane into a stream of an alkaline solution. The change in conductivity in the alkaline medium is proportional to the DIC concentration of the sample and is measured using a detection cell constructed of 4 hollow brass electrodes. Physical and chemical optimizations of the analyzer yielded a sampling frequency of 4 samples h−1 using sub mL reagent volumes for each measurement. Temperature and salinity effects on DIC measurements were mathematically corrected to increase accuracy. Analytical precision of ±4.9 μmol kg−1 and ±9.7 μmol kg−1 were achieved from measurements of a DIC reference material in the laboratory and during a field deployment in the southwest Baltic Sea, respectively. Significance This study describes a simple, cost-effective, autonomous, on-site benchtop DIC analyzer capable of measuring DIC in seawater at a high temporal resolution as a step towards an underwater DIC sensor. The analyzer is able to measure a wide range of DIC concentrations in both fresh and marine waters. The achieved accuracy and precision offer an excellent opportunity to employ the analyzer for ocean acidification studies and CO2 leakage detection in the context of Carbon Capture and Storage operations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2024-06-07
    Description: Flow of dense shelf water provide an efficient mechanism for pumping CO 2 to the deep ocean along the continental shelf slope, particularly around the Antarctic bottom water (AABW) formation areas where much of the global bottom water is formed. However, the contribution of the formation of AABW to sequestering anthropogenic carbon ( C ant ) and its consequences remain unclear. Here, we show prominent transport of C ant (25.0 ± 4.7 Tg C yr −1 ) into the deep ocean (〉2,000 m) in four AABW formation regions around Antarctica based on an integrated observational data set (1974–2018). This maintains a lower C ant in the upper waters than that of other open oceans to sustain a stronger CO 2 uptake capacity (16.9 ± 3.8 Tg C yr −1 ). Nevertheless, the accumulation of C ant can further trigger acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr −1 . Our findings elucidate the prominent role of AABW in controlling the Southern Ocean carbon uptake and storage to mitigate climate change, whereas its side effects (e.g., acidification) could also spread to other ocean basins via the global ocean conveyor belt. Plain Language Summary The Southern Ocean is thought to uptake and store a large amount of anthropogenic CO 2 ( C ant ), but little attention has been paid to the Antarctic coastal regions in the south of 60°S, mainly due to the lack of observations. Based on an integrated data set, we discovered the deep penetration of C ant and a visible pattern of relatively high concentration of C ant along the AABW formation pathway, and the concentration of C ant along the shelf‐slope is higher than that of other marginal seas at low‐mid latitudes, implying a highly effective C ant transport in AABW formation areas. We also found strong upper‐layer CO 2 uptake and a significant acidification rate in the deep waters of the Southern Ocean due to the AABW‐driven CO 2 transport, which is 3 times faster than those in other deep oceans. It is therefore crucial to understand how the Antarctic shelf regions affect the global carbon cycle through the uptake and transport of anthropogenic CO 2 , which also drives acidification in the other ocean basins. Key Points We show evidence for the accumulation of C ant along the Antarctic shelf‐slope into the deep ocean The process of AABW formation drives C ant downward transport at 25.0 ± 4.7 Tg C yr −1 , sustaining the CO 2 uptake in the surface ocean This further triggers acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr −1 , which is faster than in other deep oceans
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2024-06-07
    Description: The ocean region along the latitude of 40oS in the South Atlantic, characterized by enhanced primary productivity, forms a transition zone between the nutrient replete but iron depleted Southern Ocean, and the nitrate and iron depleted Subtropical Gyre. Here, we present distributions of nutrient-type dissolved and particulate trace metals (dTMs and pTMs) including cadmium (Cd), nickel (Ni), copper (Cu), and zinc (Zn) in the South Atlantic from the GEOTRACES GA10 cruises. Phytoplankton uptake, riverine and atmospheric inputs shaped dTM and pTM concentrations in surface waters (dCd 27.8±36.0 pmol kg-1, n=222; dCu 0.732±0.429 nmol kg-1, n=222; dNi 3.38±0.52 nmol kg-1, n=219; dZn 0.332±0.398 nmol kg-1, n=214). Subsurface nutrients and dTMs (dCd 563±184 pmol kg-1, n=335; dCu 1.819±0.773 nmol kg-1, n=334; dNi 6.19±1.06 nmol kg-1, n=330; dZn 3.71±2.10 nmol kg-1, n=333) were controlled by the mixing of Antarctic origin waters and North Atlantic Deep Waters (NADW) with negligible contributions from local remineralization. Dissolved and particulate TMs in the Argentine Basin showed elevated concentrations towards the seafloor because of benthic inputs. Direct hydrothermal inputs of dTMs and pTMs to deep waters were not observed along the transect. The Cd-Cu-Zn-phosphate stoichiometries of Antarctic origin waters were set by a combination of dynamic physical circulation and preferential uptake of Cd, Cu, and Zn relative to phosphate in surface waters because of a dominance by diatoms in the Southern Ocean. Water mass mixing subsequently produced convoluted dCu-P and dZn-P relationships and apparent linear dCd-P and dNi-P relationships in the South Atlantic. More importantly, endmember characteristics of Antarctic waters and NADW are largely fixed in their formation regions in high latitude oceans. Therefore, the highly dynamic high latitude oceans are key regions that supply nutrients and TMs at specific ratios to low latitude oceans via the thermohaline circulation. Changes to processes in the high latitude oceans may have consequences for marine primary productivity downstream, and hence the global carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2024-06-07
    Description: To reach their net-zero targets, countries will have to compensate hard-to-abate CO2 emissions through carbon dioxide removal (CDR). Yet, current assessments rarely include socio-cultural or institutional aspects or fail to contextualize CDR options for implementation. Here we present a context-specific feasibility assessment of CDR options for the example of Germany. We assess 14 CDR options, including three chemical carbon capture options, six options for bioenergy combined with carbon capture and storage (BECCS), and five options that aim to increase ecosystem carbon uptake. The assessment addresses technological, economic, environmental, institutional, social-cultural and systemic considerations using a traffic-light system to evaluate implementation opportunities and hurdles. We find that in Germany CDR options like cover crops or seagrass restoration currently face comparably low implementation hurdles in terms of technological, economic, or environmental feasibility and low institutional or social opposition but show comparably small CO2 removal potentials. In contrast, some BECCS options that show high CDR potentials face significant techno-economic, societal and institutional hurdles when it comes to the geological storage of CO2. While a combination of CDR options is likely required to meet the net-zero target in Germany, the current climate protection law includes a limited set of options. Our analysis aims to provide comprehensive information on CDR hurdles and possibilities for Germany for use in further research on CDR options, climate, and energy scenario development, as well as an effective decision support basis for various actors. Key Points: - More context-specific assessments of carbon dioxide removal (CDR) options are needed to guide national net-zero decision making - Ecosystem-based CDR options with comparably low implementation hurdles in Germany show relatively small CO2 removal potentials - High CDR potential options in Germany face high institutional, technological and societal hurdles linked in many ways to geological storage
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...