ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-03-11
    Description: We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold-water coral and commercially important deep-sea fish species under present-day (1951-2000) environmental conditions and to forecast changes under severe, high emissions future (2081-2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean (from 18°N to 76°N and 36°E to 98°W). The VME indicator taxa included Lophelia pertusa , Madrepora oculata, Desmophyllum dianthus, Acanela arbuscula, Acanthogorgia armata, and Paragorgia arborea. The six deep-sea fish species selected were: Coryphaenoides rupestris, Gadus morhua, blackbelly Helicolenus dactylopterus, Hippoglossoides platessoides, Reinhardtius hippoglossoides, and Sebastes mentella. We used an ensemble modelling approach employing three widely-used modelling methods: the Maxent maximum entropy model, Generalized Additive Models, and Random Forest. This dataset contains: 1) Predicted habitat suitability index under present-day (1951-2000) and future (2081-2100; RCP8.5) environmental conditions for twelve deep-sea species in the North Atlantic Ocean, using an ensemble modelling approach.  2) Climate-induced changes in the suitable habitat of twelve deep-sea species in the North Atlantic Ocean, as determined by binary maps built with an ensemble modelling approach and the 10-percentile training presence logistic (10th percentile) threshold. 3) Forecasted present-day suitable habitat loss (value=-1), gain (value=1), and acting as climate refugia (value=2) areas under future (2081-2100; RCP8.5) environmental conditions for twelve deep-sea species in the North Atlantic Ocean. Areas were identified from binary maps built with an ensemble modelling approach and two thresholds: 10-percentile training presence logistic threshold (10th percentile) and maximum sensitivity and specificity (MSS). Refugia areas are those areas predicted as suitable both under present-day and future conditions. All predictions were projected with the Albers equal-area conical projection centred in the middle of the study area. The grid cell resolution is of 3x3 km.
    Keywords: ATLAS; A Trans-Atlantic assessment and deep-water ecosystem-based spatial management plan for Europe; Climate change; cold-water corals; Deep-sea; File format; File name; File size; fisheries; fishes; habitat suitability modelling; octocorals; scleractinians; species distribution models; Uniform resource locator/link to file; vulnerable marine ecosystems
    Type: Dataset
    Format: text/tab-separated-values, 384 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: 13C tracer experiments were conducted at sites spanning the steep oxygen, organic matter, and biological community gradients across the Arabian Sea oxygen minimum zone, in order to quantify the role that benthic fauna play in the short-term processing of organic matter (OM) and to determine how this varies among different environments. Metazoan macrofauna and macrofauna-sized foraminiferans took up as much as 56 +/- 13 mg of added C m**-2 (685 mg C m**-2 added) over 25 d, and at some sites this uptake was similar in magnitude to bacterial uptake and/or total respiration. Bottom-water dissolved oxygen concentrations exerted a strong control over metazoan macrofaunal OM processing. At oxygen concentrations 〉7 µmol/L (0.16 ml/L), metazoan macrofauna were able to take advantage of abundant OM and to dominate OM uptake, while OM processing at O2 concentrations of 5.0 µmol/L (0.11 ml/L) was dominated instead by (macrofaunal) foraminiferans. This led us to propose the hypothesis that oxygen controls the relative dominance of metazoan macrofauna and foraminifera in a threshold manner, with the threshold lying between 5 and 7 µmol/L (0.11 to 0.16 ml/L). Large metazoan macrofaunal biomass and high natural concentrations of OM were also associated with rapid processing of fresh OM by the benthic community. Where they were present, the polychaete Linopherus sp. and the calcareous foraminiferan Uvigerina ex gr. semiornata, dominated the uptake of OM above and below, respectively, the proposed threshold concentrations of bottom-water oxygen.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: The Pakistan Margin is characterised by a strong mid-water oxygen minimum zone (OMZ) that intercepts the seabed at bathyal depths (1501300 m). We investigated whether faunal abundance and diversity trends were similar among protists (foraminiferans and gromiids), metazoan macrofauna and megafauna along a transect (1401850 m water depth) across the OMZ during the 2003 intermonsoon (MarchMay) and late/post-monsoon (AugustOctober) seasons. All groups exhibited some drop in abundance in the OMZ core (250500 m water depth; O2: 0.100.13 mL/L=4.465.80 μM) but to differing degrees. Densities of foraminiferans 〉63 μm were slightly depressed at 300 m, peaked at 738 m, and were much lower at deeper stations. Foraminiferans 〉300 μm were the overwhelmingly dominant macrofaunal organisms in the OMZ core. Macrofaunal metazoans reached maximum densities at 140 m depth, with additional peaks at 850, 940 and 1850 m where foraminiferans were less abundant. The polychaete Linopherus sp. was responsible for a macrofaunal biomass peak at 950 m. Apart from large swimming animals (fish and natant decapods), metazoan megafauna were absent between 300 and 900 m (O2 〈0.140.15 mL/L=6.256.69 μM) but were represented by a huge, ophiuroid-dominated abundance peak at 1000 m (O2 0.150.18 mL/L=6.698.03 μM). Gromiid protists were confined largely to depths below 1150 m (O2 〉0.2 mL/L=8.92 μM). The progressively deeper abundance peaks for foraminiferans (〉63 μm), Linopherus sp. and ophiuroids probably represent lower OMZ boundary edge effects and suggest a link between body size and tolerance of hypoxia. Macro- and megafaunal organisms collected between 800 and 1100 m were dominated by a succession of different taxa, indicating that the lower part of the OMZ is also a region of rapid faunal change. Species diversity was depressed in all groups in the OMZ core, but this was much more pronounced for macrofauna and megafauna than for foraminiferans. Oxygen levels strongly influenced the taxonomic composition of all faunal groups. Calcareous foraminiferans dominated the seasonally and permanently hypoxic sites (136300 m); agglutinated foraminiferans were relatively more abundant at deeper stations where oxygen concentrations were 〉0.13 mL/L(=5.80 μM). Polychaetes were the main macrofaunal taxon within the OMZ; calcareous macrofauna and megafauna (molluscs and echinoderms) were rare or absent where oxygen levels were lowest. The rarity of larger animals between 300 and 700 m on the Pakistan Margin, compared with the abundant macrofauna in the OMZ core off Oman, is the most notable contrast between the two sides of the Arabian Sea. This difference probably reflects the slightly higher oxygen levels and better food quality on the western side.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3International Conference on the El Niño phenomenon and its global impact. Lecture, Guayaquil, Ecuador, May 16-25, 2005 p.
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: To a certain degree, Eastern Boundary Current (EBC) ecosystems are similar: Cold bottom water from moderate depths, rich in nutrients, is transported to the euphotic zone by a combination of trade winds, Coriolis force and Ekman transport. The resultant high primary production fuels a rich secondary production in the upper pelagic and nearshore zones, but where O2 exchange is restricted, it creates oxygen minimum zones (OMZs) at shelf and upper slope (Humboldt and Benguela Current) or slope depths (California Current). These hypoxic zones host a specifically adapted, small macro- and meiofauna together with giant sulphur bacteria that use nitrate to oxydise H2S. In all EBC, small polychaetes, large nematodes and other opportunistic benthic species have adapted to the hypoxic conditions and co-exist with sulphur bacteria, which seem to be particularly dominant off Peru and Chile. However, a massive reduction of macrobenthos occurs in the core of the OMZ. In the Humboldt Current area the OMZ ranges between 〈100 and about 600 m, with decreasing thickness in a poleward direction. The OMZ merges into better oxygenated zones towards the deep sea, where large cold-water mega- and macrofauna occupy a dominant role as in the nearshore strip. The Benguela Current OMZ has a similar upper limit but remains shallower. It also hosts giant sulphur bacteria but little is known about the benthic fauna. However, sulphur eruptions and intense hypoxia might preclude the coexistence of significant mega- und macrobenthos. Conversely, off North America the upper limit of the OMZ is considerably deeper (e.g., 500-600 m off California and Oregon), and the lower boundary may exceed 1000m.The properties described are valid for very cold and cold (La Niña and "normal") ENSO conditions with effective upwelling of nutrient-rich bottom water. During warm (El Niño) episodes, warm water masses of low oxygen concentration from oceanic and equatorial regions enter the upwelling zones, bringing a variety of (sub)tropical immigrants. The autochthonous benthic fauna emigrates to deeper water or poleward, or suffers mortality. However, some local macrofaunal species experience important population proliferations, presumably due to improved oxygenation (in the southern hemisphere), higher temperature tolerance, reduced competition or the capability to use different food. Both these negative and positive effects of El Niño influence local artisanal fisheries and the livelihood of coastal populations. In the Humboldt Current system the hypoxic seafloor at outer shelf depths receives important flushing from the equatorial zone, causing havoc on the sulphur bacteria mats and immediate recolonisation of the sediments by mega- and macrofauna. Conversely, off California, the intruding equatorial water masses appear to have lower oxygen than ambient waters, and may cause oxygen deficiency at upper slope depths. Effects of this change have not been studied in detail, although shrimp and other taxa appear to alter their distribution on the continental margin. Other properties and reactions of the two Pacific EBC benthic ecosystems to El Niño seem to differ, too, as does the overall impact of major episodes (e.g., 1982/1983(1984) vs. 1997/1998). The relation of the "Benguela Niño" to ENSO seems unclear although many Pacific-Atlantic ocean and atmosphere teleconnections have been described. Warm, low-oxygen equatorial water seems to be transported into the upwelling area by similar mechanisms as in the Pacific, but most major impacts on the eukaryotic biota obviously come from other, independent perturbations such as an extreme eutrophication of the sediments ensuing in sulphidic eruptions and toxic algal blooms.Similarities and differences of the Humboldt and California Current benthic ecosystems are discussed with particular reference to ENSO impacts since 1972/73. Where there are data available, the authors include the Benguela Current ecosystem as another important, non-Pacific EBC, which also suffers from the effects of hypoxia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, pp. 411-484, ISBN: 9781107641655
    Publication Date: 2017-01-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 128 (1997), S. 671-678 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mudball-building cirratulid polychaetes have been described previously only from the southern California margin. During a study of oxygen minimum-zone benthos in fall 1994, we observed dense aggregations of agglutinated mudballs at 840 to 875 m on the Oman margin in the northwest Arabian Sea. These were inhabited, and probably constructed, by a cirratulid polychaete species in the genus Monticellina. The mudballs were cigar-shaped, 4.5 to 25 mm long, and positioned vertically so as to protrude several millimeters above the sediment–water interface. Total mudball densities were ∼16 000 m−2. Occupied mudballs occurred at densities of 2 112 m−2; 89% were in the uppermost 2 cm of sediment, and no occupied mudballs were found below 10 cm. Organisms other than the cirratulid were present on 1.7% of the mudballs examined, and included epizoic polychaetes, agglutinated and calcareous Foraminifera. Various polychaetes, a nemertean and nematodes were found inside tests. Mudball abundance exhibited positive associations with densities of several paraonid polychaete species, and with densities of burrowing and subsurface-deposit-feeding polychaetes. Negative associations were observed between mudballs and three tube-building taxa (two polychaetes and an amphipod). Mudball-inhabiting cirratulids are abundant in at least two low-oxygen, margin settings. We expect further sampling of bathyal environments to yield additional systems in which cirratulid mudballs are common. Such observations are valuable because mudballs appear to represent a significant source of heterogeneity that can influence macrofaunal community structure in deep-sea sediments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...