ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-10
    Description: Abstract
    Description: This dataset provides friction data from ring-shear tests (RST) on twice broken rice used in the GEC Laboratory in CY Cergy Paris University in stick-slip experiments. They were obtained by Sarah Visage as part of her doctoral training (funded by the ANR DISRUPT programme) during an invitation at the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. Like any granular material, the twice broken rice is characterized by several internal friction coefficients μ and cohesions C, classicaly qualified as dynamic, static, and reactivation coefficients. In adition, since the rice exhibits a stick slip behaviour, the various shear - velocity or shear-displacement curves exhibit high frequency oscillations and we therefore define maximum, minimum, and mean values corresponding respectively to the curve peaks, curve troughs and smoothed curve.
    Keywords: EPOS ; Multiscale laboratories ; analogue models of geologic processes ; property data of analogue modelling materials ; analogue modelling results ; software tools ; Cohesion ; deformation 〉 fracturing ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; fault ; Flour 〉 Rice ; Force sensor ; Friction coefficient ; Matlab (Mathworks) ; Rate-state parameters ; Ring-shear tester
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-11
    Description: Abstract
    Description: Stress maps show the orientation of the current maximum horizontal stress (SHmax) in the earth's crust. Assuming that the vertical stress (SV) is a principal stress, SHmax defines the orientation of the 3D stress tensor; the minimum horizontal stress Shmin is than perpendicular to SHmax. In stress maps SHmax orientations are represented as lines of different lengths. The length of the line is a measure of the quality of data and the symbol shows the stress indicator and the color the stress regime. The stress data are freely available and part of the World Stress Map (WSM) project. For more information about the data and criteria of data analysis and quality mapping are plotted along the WSM website at http://www.world-stress-map.org. The stress map of Taiwan 2022 is based on the WSM database release 2016. However, all data records have been checked and we added a large number of new data from earthquake focal mechanisms from the national earthquake catalog and from publications. The total number of data records has increased from n=401 in the WSM 2016 to n=6,498 (4,234 with A-C quality) in the stress map of Taiwan 2022 The update with earthquake focal mechanims is even larger since another 1313 earthquake focal mechanism data records beyond the scale of this map have been added to the WSM database. The digital version of the stress map is a layered pdf file generated with GMT (Wessel et al., 2019). It also provide estimates of the mean SHmax orientation on a regular 0.1° grid using the tool stress2grid (Ziegler and Heidbach, 2019). Two mean SHmax orientations are estimated with search radii of r=25 and 50 km, respectively, and with weights according to distance and data quality. The stress map and data are available on the landing page at https://doi.org/10.5880/WSM.Taiwan2022 where further information is provided. The earthquake focal mechanism that are used for this stress map are provided by the Taiwan Earthquake Research Center (TEC) available at the TEC Data Center (https://tec.earth.sinica.edu.tw).
    Description: Other
    Description: The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System. All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale.
    Type: Other , Other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-16
    Description: Abstract
    Description: The dataset presented here is an earthquake catalog for the central Sea of Marmara (Turkey) obtained by applying a traditional STA/LTA technique to the continuous waveforms. The magnitude of completeness of this catalog is MW = 1.4. The full description of the data processing and creation of the catalog is provided in the paper “Near - fault monitoring reveals combined seismic and slow activation of a fault branch within the Istanbul-Marmara seismic gap in NW Turkey” published by Martínez-Garzón et al., in Seismological Research Letters. The data are provided as the following two ASCII tables: The file 2021-004_Martinez-Garcon-et-al_Initial_seismicity_catalog contains the seismic events for which we could successfully calculate an earthquake location. The ASCII table has the following columns: columns: id, year, month, day, hour, minute, second, serial time, latitude, longitude, depth [km], magnitude, horizontal error [km], vertical error [km], RMS, maximum azimuthal gap [degree]. The table 2021-004_Martinez-Garcon-et-al_Relocated_seismicity_catalog contains the seismic events for which we could refine the initial location and obtain a double-difference refined location. The ASCII table has the following columns: id, latitude, longitude, depth [km], horizontal error [km], vertical error [km].
    Keywords: Earthquake catalog ; Marmara region ; near-fault monitoring ; SMARTnet ; GONAF ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 FAULTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE MAGNITUDE/INTENSITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-17
    Description: Abstract
    Description: Analysis of prehistoric lithic artefacts helps to answer a wide array of questions concerning archaeological contexts and prehistoric human behaviour. Typological studies allow for a chronological and partly also cultural attribution of the sites, while the analysis of raw materials used is fundamental for the reconstruction of mobility patterns, communication networks and land use of Stone Age communities. Within the framework of two projects funded by the German Research Foundation, and a regional initiative of Werner Schön, it was possible to determine the origin of the raw materials of 32 inventories from the Late Glacial and Early Holocene in northwest and southern Germany. The petrographic analysis was conducted by the geologist and petro-archaeologist Jehanne Affolter. In addition, data of more than 60 Stone Age assemblages from Switzerland as well as western and southern Germany were recorded, that had already been published elsewhere. The origin of the flint raw materials from most of these inventories was determined using the micro-facial method. Some inventories, where the raw material sources were determined exclusively macroscopically, are also tentatively mapped to complement the chronological sequence. GIS-based maps of the raw material sources from the aforementioned regions are compiled and raw material catchment areas of the Stone Age sites are mapped. The area calculations of the raw material catchments revealed a diachronic alternation of larger and smaller areas, which above all suggest culturally determined cycles in the range of mobility and communication networks.
    Keywords: Late and Final Palaeolithic ; Mesolithic ; Switzerland ; central europe ; lithic raw material catchments ; lithic raw material sources ; neolithic ; south-eastern France ; south-western Germany ; western germany
    Type: Dataset , dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-18
    Description: Abstract
    Description: The DFG Priority Program 1803 “EarthShape” (www.earthshape.net) investigates Earth surface shaping by biota. As part of this project, we present Light Detection and Ranging (LiDAR) data of land surface areas for the four core research sites of the project. The research sites are located along a latitudinal gradient between ~26 °S and ~38 °S in the Chilean Coastal Cordillera. From north to south, the names of these sites are: National Park Pan de Azúcar; Private Reserve Santa Gracia; National Park La Campana; and National Park Nahuelbuta. The three datasets contain raw 3D point cloud data captured from an airborne LiDAR system, and the following derivative products: a) digital terrain models (DTM, sometimes also referred to as DEM [digital elevation model]) which are (2.5D) raster datasets created by rendering only the LiDAR returns which are assumed to be ground/bare-earth returns and b) digital surface models (DSM) which are also 2.5D raster datasets produced by rendering all the returns from the top of the Earth’s surface, including all objects and structures (e.g. buildings and vegetation). The LiDAR data were acquired in 2008 (southernmost Nahuelbuta [NAB] catchment), 2016 (central La Campana [LC] catchment) and 2020 (central Santa Gracia [SGA] catchment). Except for Nahuelbuta (data already was available from the data provider from a previous project), the flights were carried out as part of the "EarthShape" project. The LiDAR raw data (point cloud/ *.las files) were compressed, merged (as *.laz files) and projected using UTM 19 S (UTM 18 S for the southernmost Nahuelbuta catchment, respectively) and WGS84 as coordinate reference system. A complementary fourth dataset for the northernmost site in the National Park Pan de Azúcar, derived from Uncrewed Aerial Vehicle (UAV) flights and Structure from Motion (SfM) photogrammetry, is expected to be obtained during the first half of 2022 and will be added to the above data set.
    Description: Other
    Description: The DFG Priority Program 1803 "EarthShape - Earth Surface Shaping by Biota" (2016-2022) explored between scientific disciplines and includes geoscientists and biologists to study from different viewpoints the complex question how microorganisms, animals, and plants influence the shape and development of the Earth’s surface over time scales from the present-day to the young geologic past. All study sites are located in the north-to-south trending Coastal Cordillera mountains of Chile, South America. These sites span from the Atacama Desert in the north to the Araucaria forests approximately 1300 km to the south. The site selection contains a large ecological and climate gradient ranging from very dry to humid climate conditions. For more information visit: www.earthshape.net
    Keywords: 3D point cloud ; LiDAR scanner ; Elevation Models ; EarthShape ; Chile ; Coastal Cordillera ; Private Reserve Santa Gracia ; National Park La Campana ; National Park Nahuelbuta ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Altimeters 〉 Lidar/Laser Altimeters 〉 AIRBORNE LASER SCANNER ; EARTH SCIENCE 〉 LAND SURFACE 〉 TOPOGRAPHY 〉 TERRAIN ELEVATION ; EARTH SCIENCE 〉 LAND SURFACE 〉 TOPOGRAPHY 〉 TOPOGRAPHICAL RELIEF ; EARTH SCIENCE 〉 SPECTRAL/ENGINEERING 〉 LIDAR ; EARTH SCIENCE SERVICES 〉 MODELS 〉 LAND SURFACE MODELS ; Models/Analyses 〉 DEM ; radiation 〉 laser
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-08-04
    Description: Abstract
    Description: The data set includes supporting tables and figures to the main text of the manuscript entitled “Quantifying tectonic and glacial controls on topography in the Patagonian Andes (46.5°S) from integrated thermochronometry and thermokinematic modeling”. The paper focuses on tectonic and glacial contributions to the erosion history and topography in the Patagonian Andes (46.5°S). The data set comprises (i) new bedrock thermochronometric ages (apatite and zircon (U-Th)/He, AHe and ZHe, respectively, and fission-track measurements, AFT and ZFT, respectively); (ii) published bedrock thermochronometric ages (AHe, AFT, ZHe and ZFT measurements), (iii) 3D thermo-kinematic model results and (iv) a table including parameters used in the modeling. The detailed analytical procedure is described in a description file (“2021-004_Andric-Tomasevic-et-al_Data-Description.pdf”).
    Keywords: Patagonian Andes ; thermochronology ; 3 D thermo-kinematic numerical modeling ; fold and thrust belt ; Glacial erosion ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-03
    Description: Abstract
    Description: The data set contains stress-strain data of Carrara marble experimentally deformed in triaxial compression at temperatures of 20 – 800°C, confining pressures of 30 – 300 MPa, and strain rates between 10-3 and 10-6 s-1. This range covers conditions, at witch marble deforms in the semi-brittle regime, i.e., strength depends on all parameters, but with different sensitivity. Semi-brittle deformation behavior is expected to be important in the mid continental crust. The experiments were conducted in the Experimental Rock Deformation Laboratory of the GFZ German Research Centre for Geosciences in Potsdam, Germany. The data are separated into 91 individual ASCII files, one for each sample. The corresponding temperature, pressure and strain rate conditions are listed in Tab. 1. of the data description and in the associated work by Rybacki et al. (submitted).
    Description: Methods
    Description: Cylindrical samples were prepared from Carrara marble (Bianco Lorano, Apuane Alps, Italy). Samples denoted CMxx, where xx is sample number, were 20 mm long and 10 mm in diameter; samples Mbxx were 60 mm long and 30 mm in diameter. Both set of samples were dry and deformed in two different deformation apparatuses using Argon gas as confining medium. Raw data were axial force and axial displacement, measured with a load cell and LVDT, respectively. Raw data (axial force and displacement) were converted to stress and strain assuming constant volume deformation. All data are corrected for system compliance and jacket strength.
    Keywords: marble ; semi-brittle deformation ; creep ; twinning-induced plasticity ; EPOS ; European Plate Observing System ; multi-scale laboratories ; rock and melt physical properties ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; Patterson Apparatus ; Strength 〉 Triaxial Compressive Strength
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    GFZ German Research Center for Geosciences
    Publication Date: 2021-08-03
    Description: Abstract
    Description: The 3D geomechanical-numerical modelling aims at a continuous description of the stress state in a subsurface volume. The model is fitted to the model-independent stress data records by adaptation of the displacement boundary conditions. This process is herein referred to as model calibration. Depending on the amount of available stress data records and the complexity of the model the calibration can be a lengthy process of trial-and-error to estimate the best-fit boundary conditions. The tool FAST Calibration (Fast Automatic Stress Tensor Calibration) is a Matlab script that facilitates and speeds up this calibration process. By using a linear regression it requires only three test model scenarios with different displacement boundary conditions to calibrate a geomechanical-numerical model on available stress data records. The differences between the modelled and observed stresses are used for the linear regression that allows to compute the displacement boundary conditions required for the best-fit estimation. The influence of observed stress data records on the best-fit displacement boundary conditions can be weighted. Furthermore, FAST Calibration provides a cross checking of the best-fit estimate against indirect stress information that cannot be used for the calibration process, such as the observation of borehole breakouts or drilling induced fractures.
    Description: Other
    Description: GNU General Public License, Version 3, 29 June 2007 Copyright © 2021 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany FAST Calibration is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. FAST Calibration is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.
    Keywords: geomechanical-numerical model ; stress ; in-situ stress ; model calibration ; stress tensor calibration ; modelling tool ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 NEOTECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION 〉 CRUSTAL MOTION DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-19
    Description: Abstract
    Description: The fiber optic cable was installed down to 832 m behind the production casing of a 9 5/8" (445-2932 m) and 9 7/8" (0 - 445 m) production casing in well RN-15/DEEPEGS/IDDP-2 in the Reykjanes geothermal field, SW Iceland (depth reference: surface). Fiber optic distributed temperature data was acquired (campaign based) during cementation (09/2016) of the production casing, at the end of the cold fluid injection (09/2018) as well during the onset of well stimulation (10/2019-04/2020).
    Keywords: permanent temperature monitoring ; cementation ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE 〉 TEMPERATURE PROFILES ; energy 〉 energy source 〉 renewable energy source ; industrial process 〉 drilling
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-08-19
    Description: Abstract
    Description: This data set is the 1st part of a mini-series assembling whole-rock chemical data for late-Variscan granites of the Erzgebirge-Vogtland metallogenic province in the German Erzgebirge, in the Saxothuringian Zone of the Variscan Orogen, which is dedicated to the group of P-F-rich Li-mica granites. Listed are data from the massifs/plutons of Eibenstock in the western Erzgebirge and Annaberg, Geyer, Pobershau, and Seiffen in the central Erzgebirge (Figure 1). All these occurrences represent composite bodies made-up of texturally and geochemically distinct, but cogenetic sub-intrusions, which are associated with intra- und perigranitic aplitic dykes, pegmatitic schlieren, and frequently mineralized quartz veins and greisens (Tables 1-3). These granites exhibit moderately to strongly elevated concentrations of P, F, Li, Rb, Cs, Ta, Sn, W and U, but are low to very low in Ti, Mg, V, Sc, Co, Ni, Sr, Ba, Y, Zr, Hf, Th, and the REEs. Crystal-melt fractionation was the dominant process controlling the evolution of bulk composition in the course of massif/pluton formation. However, metasomatic processes involving late-stage residual melts and high-T late- to postmagmatic fluids became increasingly more important in highly evolved units and have variably modified the abundances of mobile elements (P, F, Li, Rb, Cs, Ba, Sr). Interaction with the various country rocks and infiltration of meteoric low-T fluids have further disturbed the initial chemical patterns. The data set reports whole-rock geochemical analyses for granites, aplites, and endocontact rocks obtained for the massifs/plutons of Eibenstock, Pobershau, Satzung, Annaberg, and Geyer. Data are provided as separate excel and csv files. The content of the excel sheet and further information on the granites and regional geology are provided in the data description file.
    Keywords: granite ; rare-metal granite ; peraluminous granite ; aplite ; enclave ; fractional crystallization ; composite pluton ; alteration ; ore mineralization ; whole-rock geochemistry ; tin ; tungsten ; uranium ; lithium ; phosphorus ; fluorine ; Variscan orogen ; Saxothuringian Zone ; Erzgebirge ; Germany ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 ELEMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-08-19
    Description: Abstract
    Description: The southern Andes are regarded as a typical subduction orogen formed by oblique plate convergence. Despite decades of studies, there is considerable uncertainty as to how deformation is kinematically partitioned in the upper plate. Using scaled analogue experiments modelling, we test the concept of dextral transpression for this orogen. We advocate that the GPS velocity field portrays interseismic deformation related to deformation of strong crust north, and weak crust south, of 37°S. Contrary to the popular hypotheses that the Liquiñe-Ofqui Fault Zone, a prominent intra-arc deformation zone, takes up most of the plate boundary-parallel dextral strike-slip, we find that dextral transpression affects the entire model orogen through tectonic segmentation of crust. Moreover, prominent, regularly spaced sinistral oblique-slip thrust faults, interpreted as antithetic Riedel shears, developed spontaneously in all of our experiments and call into question the general believe that their NW-striking natural equivalents formed from pre-Andean discontinuities. Our experiments prompt us to reconsider the apparently well-established geodynamic concept that strain and margin-parallel displacement is localized on a few margin-parallel faults in the southern Andes.
    Keywords: GPS velocity field ; kinematic partitioning ; Strain partitioning ; Southern Andes ; Transpression ; oblique plate convergence ; analogue experiment ; modeling ; Liquiñe-Ofqui Fault Zone ; interseismic deformation ; Multibox ; EPOS ; European Plate Observing System ; multi-scale laboratories ; analogue models of geologic processes ; analog modelling results ; Digital Image Correlation (DIC) / Particle Image Velocimetry (PIV) 〉 StrainMaster (La Vision GmbH) ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS ; fault 〉 oblique slip fault ; fault 〉 strike-slip fault ; geologic process ; Glass/Plexiglas box 〉 Glass/Plexiglas box (meter scale) ; Microspheres 〉 Glassy ; normal fault ; Sand 〉 Corundum Sand ; Sand 〉 Quartz Sand ; Sandbox 〉 Sandbox (meter scale) ; Shear box ; Silicon/Silly putty/PDMS ; Squeeze box ; Surface image ; tectonic and structural features ; tectonic process 〉 orogenic process ; tectonic setting 〉 back arc setting ; tectonic setting 〉 plate margin setting 〉 active continental margin setting ; tectonic setting 〉 plate margin setting 〉 volcanic arc setting ; Time lapse camera
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-08-19
    Description: Abstract
    Description: We present a compilation and analysis of 1099 Holocene relative shore-level (RSL) indicators including 867 relative sea-level data points and 232 data points from the Ancylus Lake and the following transitional phase from 10.7 to 8.5 ka BP located around the Baltic Sea. The spatial distribution covers the Baltic Sea and near-coastal areas fairly well, but some gaps remain mainly in Sweden. RSL data follow the standardized HOLSEA format and, thus, are ready for spatially comprehensive applications in, e.g., glacial isostatic adjustment (GIA) modelling. Sampling method The data set is a compilation of rather different samples from geological, geomorphological and archaeological studies. Most of the data was already published in different formats. In this compilation we homogenized the meta information of the available information according to the HOLSEA database format, https://www.holsea.org/archive-your-data, which is a modification of the recommendations given in Hijma et al. (2015). In addition to the reformatting, the majority of samples with radiocarbon dating were recalibrated with oxcal-software using the calib13 and marine13 curves. Furthermore, all sample descriptions were critically checked for consistency in positioning, levelling and indicative meaning by experts of the respective geographic region see Supplement 2. Analytical method In principle, it is a compilation, recalibration and revision of already published data. Data Processing Data of individual compilations were revised and imported into a relational database system. Therein, the data was transferred into the HOLSEA format by specified rules. By this procedure, a homogeneous categorisation was achieved without losing the original data. Also this is stored in the relational database system allowing for later updates of the transfer procedure or a recalibration of the data. Description of data table HOLSEA-baltic-yymmdd.xlsx The workbook in excel format contains 5 sheets, see https://www.holsea.org/archive-your-data: · Long-form, containing the complete information available for each sample · Short-form, a subset of attributes of the Long-form sheet · Radiocarbon, containing the radiocarbon dating information of the respective samples · U-series, a corresponding table containing the respective information of Uranium dating · References, a complete reference list of the primary publications in which the individual data sampling is described. All online sources for the compilation are included in the metadata. A full list of source references is provided in the data description file.
    Keywords: Baltic Sea ; sea-level indicator ; relative sea level ; HOLSEA ; glacial isostatic adjustment ; ice history model ; mapping function ; postgreSQL ; compound material 〉 sedimentary material 〉 sediment ; EARTH SCIENCE 〉 OCEANS 〉 COASTAL PROCESSES 〉 SHORELINES ; environment 〉 natural environment 〉 coastal environment ; In Situ Land-based Platforms 〉 FIELD SURVEYS ; In Situ/Laboratory Instruments 〉 Corers 〉 CORING DEVICES ; Phanerozoic 〉 Cenozoic 〉 Quaternary 〉 Holocene
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-08-18
    Description: Abstract
    Description: The differences of atmospheric delays (Atmospheric ties) are theoretically affected by the height differences between antennas at the same site and the meteorological conditions. However, there is often a discrepancy between the expected zenith delay differences and those estimated from geodetic analysis. The purpose of this experiment is to investigate the possibility effects that could caused biases on GNSS atmospheric delays at co-location site.
    Description: Methods
    Description: We set up the experiment on the rooftop of the A20 building at Telegrafenberg, the campus of GFZ, Potsdam, Germany. This experiment used four Septentrio choke-ring antennas (SEPCHOKE B3E6) and Septentrio PolaRx5 receivers. We installed the antenna A201 at the highest place. A202 and A203 were placed lower than A201 with two meters and four meters height differences, respectively. Antenna A204 was installed on the same level as A203 but installed with radome (SPKE). Moreover, the meteorological sensor (Vaisala WXT530) was installed to record air pressure, temperature, and relative humidity. The GNSS data were processed by using EPOS.P8 software with Precise Point Positioning (PPP) approach. The GFZ Final orbits and clock products were used in the processing. The zenith total delays and total gradients were hourly estimated. The station coordinates were estimated daily. Results of an experiment are reported in Kitpracha et al. (2021).
    Keywords: Atmospheric ties ; GNSS co-location experiment ; Atmospheric delays ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GNSS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-08-18
    Description: Abstract
    Description: This data publication includes stacked paleomagnetic data, inclinations, declinations, and relative paleointensities, for the time interval 120 to 180 ka, comprising data from twelve sediment cores recovered from the Arkhangelsky Ridge in the Southeastern Black Sea; German RV Meteor expedition M72/5 in 2007: M72/5-22GC6, M72/5-22GC8; German RV Maria S. Merian expedition MSM33 in 2013: MSM33-51-3, MSM33-52-1, MSM33-54-3, MSM33-56-1, MSM33-57-1, MSM33-60-1, MSM33-61-1, MSM33-62-2, MSM33-63-1, MSM33-64-1. The data are also described in Nowaczyk et al. (2021). Sediment cores were recovered using gravitiy and piston corers. For paleo- and mineral-magnetic analyses clear plastic boxes of 20×20×15 mm were pressed into the split halves of the generally 1 m long sections of the sediment cores. Data are provided as six ASCII files (.dat, one for each core) with metadata header, followed by 12 data columns and are decribed in the associated data description file (pdf).
    Keywords: sediment magnetization ; Black Sea ; Palaeomagnetism ; Magnetic properties ; Palaeointensity ; Magnetic fabrics and anisotropy ; EPOS ; multi-scale laboratories ; paleomagnetic and magnetic data ; paleomagnetic data ; Core ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD 〉 MAGNETIC DECLINATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD 〉 MAGNETIC INCLINATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD 〉 MAGNETIC INTENSITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 PALEOMAGNETISM ; remanent magnetisation 〉 demagnetisation type AF ; Sedimentary
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-08-18
    Description: Abstract
    Description: This data publication includes standard rock magnetic data related to concentration, coercivity and magneto-mineralogy versus depth from twelve sediment cores recovered from the Arkhangelsky Ridge in the Southeastern Black Sea, German RV Maria S. Merian expedition MSM33 in 2013: MSM33-51-3, MSM33-52-1, MSM33-53-1, MSM33-54-3, MSM33-55-1, MSM33-56-1, MSM33-57-1, MSM33-60-1, MSM33-61-1, MSM33-62-2, MSM33-63-1, MSM33-64-1. The data are related to publications by Liu et al. (2018, 2019, 2020), Liu (2019) and Nowaczyk et al. (2012, 2013, 2018, 2021a, b). Sediment cores were recovered using gravitiy and piston corers. For paleo- and rock magnetic analyses clear plastic boxes of 20×20×15 mm were pressed into the split halves of the generally 1 m long sections of the sediment cores. Data are provided as 12 ASCII files (.dat, one for each core) with metadata header and are decribed in the associated data description file (pdf).
    Keywords: sediment magnetization ; Black Sea ; Palaeomagnetism ; Magnetic properties ; Palaeointensity ; Magnetic fabrics and anisotropy ; EPOS ; multi-scale laboratories ; paleomagnetic and magnetic data ; paleomagnetic data ; Core ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD 〉 MAGNETIC DECLINATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD 〉 MAGNETIC INCLINATION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 MAGNETIC FIELD 〉 MAGNETIC INTENSITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMAGNETISM 〉 PALEOMAGNETISM ; remanent magnetisation 〉 demagnetisation type AF ; Sedimentary
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-08-17
    Description: Abstract
    Description: This dataset is supplemental to the paper Wallis et al. (2020) and contains data derived from syn-chrotron X-ray diffraction, electron backscatter diffraction (EBSD), high-angular resolution electron backscatter diffraction (HR-EBSD), and scanning transmission electron microscopy (STEM). The da-taset consists primarily of measurements of the effect of annealing on stress heterogeneity meas-ured by X-ray diffraction; maps of lattice orientation measured by EBSD; maps of lattice rotations, densities of geometrically necessary dislocations (GNDs), and heterogeneity in residual stress measured by HR-EBSD; and images of dislocations obtained by STEM. Data are provided as 66 tab delimited text files organised and labelled by the figure in which they first appear within Wallis et al. (2020). Table 1 of the data description file presents an overview of the datasets and Table 2 provides a description of each data file. Data types are also indicated in the file names.
    Keywords: Low-temperature plasticity ; olivine ; synchrotron X-ray diffraction ; electron backscatter diffraction ; EBSD ; high-angular resolution electron backscatter diffraction ; HR-EBSD ; scanning transmission electron microscopy ; STEM ; geometrically necessary dislocation ; GND ; residual stress ; EPOS ; multi-scale laboratories ; rock and melt physical properties ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS 〉 IGNEOUS ROCK PHYSICAL/OPTICAL PROPERTIES 〉 HARDNESS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS 〉 MINERAL PHYSICAL/OPTICAL PROPERTIES 〉 COMPOSITION/TEXTURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS 〉 MINERAL PHYSICAL/OPTICAL PROPERTIES 〉 HARDNESS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; Hardness ; Multi Anvil ; olivine ; Strength 〉 Yield Strength ; Triaxial
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-08-17
    Description: Abstract
    Description: We have installed 19 new Global Navigation Satellite System (GNSS) markers in the Hindu Kush (NE-Afghanistan) and the North Pamir front (Alai valley) and measured a total of 25 new and existing markers, if possible annually between 2014 and 2020 in survey mode. The stations are positioned along three profiles crossing the NE-striking Panjsheer fault and N-striking Badakhshan fault in the Hindu Kush, and the E-striking Pamir thrust system at the Trans Alai Range. The Hindu Kush survey data are the first of their kind in Afghanistan. The Pamir profile densifies a 1 Hz-GNSS profile that was installed in the Altyndara valley in 2013-2015; the GNSS time-series are affected by the 2015 Mw7.2 Sarez, Central Pamir, earthquake and probably the 2016 Mw6.4 Sary-Tash earthquake. The data are presented in receiver independent exchange (RNX) format and complemented by logsheets, field photos and a technical report describing the surveys in more detail.
    Description: Methods
    Description: The markers are 100 mm long stainless steel rods of 8 mm diameter drilled and glued into bedrock. Marker positions were measured for nearly 48 hrs per measurements at a sampling rate of 30 s. For each profile, we collected data roughly in the same time of the year to minimize seasonal signal contributions. In Afghanistan, we used Trimble NetR9 receiver and Trimble Zephyr Geodetic 2 antenna (TRM57971.00 ) on a leveled spike mount with a fixed height of 12.2 cm. In the Pamir, we used a Topcon GP-1000 receiver and a Topcon TPSPG_A1 antenna on a 15 cm long spike mount that was leveled by three additional screws, providing horizontal adjustment for the table embracing the central spike. In all surveys the antenna cable plug was oriented towards North whenever possible. Measurement conditions were archived on paper log sheets and photographs. Trimble and Topcon proprietary data formats were converted to ASCII-files using the Trimble software "runpkr00", and then into exchangeable RINEX data using the software "TEQC" (https://doi.org/10.1007/PL00012778), which can be downloaded from the UNAVCO webpage. At a last stage, mandatory metadata - e.g. antenna and receiver types, marker names, antenna offsets - were added to the header information of the RINEX files.
    Description: TechnicalInfo
    Description: The presented data include daily observations in Receiver INdependent EXchange (RINEX) format. These are organized in yearly and daily folders ("RNX/YYYY/DOI/"). Further documentation is found in the technical report ("ReportFieldWork.pdf") with additional details regarding the installation and (re-)measurement of the network, logsheets documenting additional survey parameters ("logsheets") and example pictures taken during data acquisition ("photos").
    Keywords: survey mode measurements ; Panjsheer fault ; Badakhshan fault ; Main Pamir Thrust ; Altyndara ; Alai valley ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS RECEIVER ; EARTH SCIENCE 〉 OCEANS 〉 MARINE GEOPHYSICS 〉 PLATE TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 OROGENIC MOVEMENT ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC PROCESSES 〉 SUBDUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 NEOTECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 CRUSTAL MOTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 LITHOSPHERIC PLATE MOTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 GLOBAL POSITIONING SYSTEMS ; land 〉 world 〉 Asia 〉 Central Asia
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-08-24
    Description: Abstract
    Description: These datasets were used to evaluate the main controls on last ~6 million years erosion rate variability of the northwestern Himalaya. The Earth’s climate has been cooling during the last ~15 million years and started fluctuating between cold and warm periods since ~2-3 million years ago. Many researchers think that these long-term climatic changes were accompanied by changes in continental erosion. However, quantifying erosion rates in the geological past is challenging, and previous studies reached contrasting conclusions. In this study, we quantified erosion rates in the north-western Indian Himalaya over the past 6 million years by measuring in situ-produced cosmogenic 10Be in exhumed older foreland basin sediments. The 10Be is produced by cosmic rays in minerals at the Earth's surface, and its abundance indicates erosion rates. Our reconstructed erosion rates show a quasi-cyclic pattern with a periodicity of ~1 million year and a gradual increase towards the present. We suggest that both patterns—cyclicity and gradual increase—are unrelated to climatic changes. Instead, we propose that the growth of the Himalaya by repeatedly scraping off rocks from the Indian plate (basal accretion), resulted in changes of its topography that were accompanied by changes in erosion rates. In this scenario, basal accretion episodically changes rock-uplift patterns, which brings landscapes out of equilibrium and results in quasi-cyclic variations in erosion rates. We used numerical landscape evolution simulations to demonstrate that this hypothesis is physically plausible. Datasets provided here includes summary of the location, depositional age, and stratigraphic position of 41 Siwalik sandstone samples collected from the Haripur section in Himachal Pradesh, India (Dataset S1); 10Be analysis results of Siwalik samples (2021-006_Mandal-et-al_Dataset-S1); sample location and 10Be analysis results of modern river sands from the Yamuna River and its tributaries near the Dehradun Basin (2021-006_Mandal-et-al_Dataset-S2); input parameters for the calculation of paleoerosion rates (2021-006_Mandal-et-al_Dataset-S3); and reconstructed 10Be paleoconcentrations and paleoerosion rates (Dataset S4). Moreover, the data include a compilation of published magnetostratigraphy-derived sediment accumulation rates in the late Cenozoic Himalayan foreland basin (2021-006_Mandal-et-al_Dataset-S5). We also include a movie (2021-006_Mandal-et-al_Movie-S1) that is a complete numerical landscape evolution model run with four consecutive accretion cycles of equal magnitude. For more information (for e.g., sampling method, analytical procedure, and data processing) please refer to the associated data description file and the main article (Mandal et al., 2021).
    Keywords: Himalaya ; cosmogenic 10Be ; paleoerosion rate ; EARTH SCIENCE 〉 CLIMATE INDICATORS 〉 PALEOCLIMATE INDICATORS 〉 BERYLLIUM-10 ANALYSIS ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 SEDIMENTS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-08-26
    Description: Abstract
    Description: The data set comprises new thermochronologic data along the TRANSALP geophysical transect in the Eastern Alps, i.e. (i) apatite and (ii) zircon (U-Th)/He measurements (Tables S1, S2 and S3), and (iii) HeFTy inverse thermal time-temperature-path models ('HeFTy_Models.zip') including a table of parameters used (Table S4). Individual model files can be opened using the HeFTy software (Ketcham et al., 2007).
    Description: Methods
    Description: Sampling method Bedrock samples were taken along the TRANSALP geophysical transect (e.g., Lüschen et al., 2004; 2006) with the main purpose of relating new (and existing) thermochronological data to previously identified mantle geometries and to gain orogen-scale insights into the evolution of the eastern European Alps since initialization of collision in the Eocene/Oligocene. Apatite and zircon (U-Th)/He analyses were the method of choice for two reasons: (i) these systems are considered most suitable to detect periods and locations of increased exhumation that are related to the Neogene evolution of the European Alps including changes in mantle geometries, and (ii) these systems systematically complement existing thermochronology data along the transect, which are predominantly comprised of fission-track data. Detailed analytical procedure is described in the dateset description file ("2020-48_Eizenhöfer-et-al_Data Description.pdf").
    Keywords: European Alps ; Thermochronology ; TRANSALP ; 4DMB ; Mountain Building Processes in 4D ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; tectonics ; thermochronology
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-08-13
    Description: Abstract
    Description: We provide geochemical data for three sites that define a gradient of erosion rates – an “erodosequence”. These sites are the Swiss Central Alps, a rapidly-eroding post-glacial mountain belt; the Southern Sierra Nevada, USA, eroding at moderate rates; and the slowly-eroding tropical Highlands of central Sri Lanka. Specifically, we provide silicon isotope ratios and germanium/silicon ratios and the major element composition of 1) rock, 2) saprolite, 3) soil, 4) plants, 5) river dissolved loads, 6) the soil and saprolite amorphous silica fraction (accessed with a NaOH leach), and 7) the soil and saprolite clay-size fraction (isolated with a differential settling protocol). These data serve two purposes. First, they allow us to improve understanding of the controls on silicon isotopes and germanium/silicon ratios in the 'Critical Zone'. Specifically, we can quantify the fractionation factors (for silicon isotopes) and the exchange coefficients (for germanium/silicon ratios), for secondary mineral precipitation and for biological uptake. Secondly, we can use mass-balance approaches to quantify the partitioning of silicon - a nutrient, and a major rock-forming element - among secondary minerals, plant material, and solutes. All samples are assigned with International Geo Sample Numbers (IGSN), a globally unique and persistent Identifier for physical samples. The IGSNs are provided in the data tables and link to a comprehensive sample description.
    Description: TableOfContents
    Description: This dataset consists of five tables: S1. Analyses of soil, saprolite, and rock from the Swiss Alps study site S2. Analyses of soil, saprolite, and rock from the Sierra Nevada study site S3. Analyses of soil, saprolite, and rock from the Sri Lanka study site S4. Analyses of stream water from the Swiss Alps, Sierra Nevada, and Sri Lanka study sites S5. Analyses of plant material from the Swiss Alps, Sierra Nevada, and Sri Lanka study sites
    Keywords: silicon isotopes ; germanium ; EARTH SCIENCE 〉 BIOSPHERE 〉 TERRESTRIAL ECOSYSTEMS 〉 FORESTS ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION 〉 NUTRIENTS ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 CHEMICAL WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 DECOMPOSITION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 MINERAL DISSOLUTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPE RATIOS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL PROCESSES 〉 WEATHERING
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-09-03
    Description: Abstract
    Description: The data set comprises Sentinel-1 scene pair-velocity fields, as well as monthly and annually averaged velocity mosaics over Svalbard for the period January 2015 - November 2020. The data are provided as GeoTIFF rasters in UTM (scene-pair velocity fields) and polar stereographic north (mosaics) coordinate reference systems at a spatial resolution of 200 m and were derived by applying a well-established intensity offset tracking algorithm (Strozzi et al., 2002; Wegmüller et al., 2016; Friedl et al., 2018; Wendleder et al., 2018; Seehaus et al., 2018). For tracking, we used consecutive pairs of single or dual polarized Sentinel-1 SLC (Single Look Complex) TOPS (Terrain Observation with Progressive Scans in azimuth) SAR (Synthetic Aperture Radar) images recorded in IW (Interferometric Wide swath) mode at a pixel spacing of ~14 m in azimuth (az) and ~3 m in range (r), and a spatial coverage of ~250 x 250 km. For the time from 2015 to 2016, Sentinel-1 imagery is available at a minimum repeat cycle of 12 days and from 2016 onward at a minimum repeat cycle of 6 days. The Sentinel-1 data were obtained from the ASF (Alaska Satellite Facility) DAAC (Distributed Active Archive Center), https://search.asf.alaska.edu. In case of dual polarized acquisitions (HH+HV or VV+VH), we only used the HH or VV channels for the processing.
    Description: Methods
    Description: Scene pair-velocity fields were generated by applying intensity offset tracking (feature tracking and speckle tracking) on two subsequent Sentinel-1 images (master and slave scene), using a window size of 250 x 50 pixels and a step size of 50 x 10 pixels. The results were (1) UTM-geocoded and orthorectified with the help of an external digital elevation model (3 arc second TanDEM-X Global DEM, Wessel et al., 2018), (2) filtered with an effective three-step filter approach (Lüttig et al., 2017) that removes 〉 99% of erroneous measurements and (3) corrected for remaining coregistration errors based on the median of the filtered range- and the azimuth-velocities measured over ice-free ground. The effective time stamp of each velocity field is derived as the mean date of the acquisition dates of the master and the slave scene. Annual and monthly mosaics were derived from all filtered and corrected scene pair-velocity products that have a time stamp between 1 January–31 December of a year and between the first and the last day of a month, respectively. Before mosaicking, all scene-pair velocity fields were reprojected to polar stereographic north. We calculated the weighted means of the x- and y-velocity components, the velocity magnitude, the acquisition date, the time separation between the images, the displacement angle relative to true north, as well as the number of measurements per pixel. Additionally, we calculated the weighted standard deviation and the weighted standard error for the x and y velocity components, as well as the velocity magnitude. For averaging we took the SNR (Signal to Noise Ratio) of each velocity measurement pixel as weight. Scene pair-velocity products and mosaics are provided as GeoTIFF rasters. The coverage files, containing the footprints of the Sentinel-1 scenes, are provided as shapefiles (.shp). The corresponding metadatafiles are text files (.txt). Quicklooks of the scene pair-velocities and the mosaics magnitudes (m d-1) are in .png format.
    Keywords: ice velocity ; remote sensing ; feature tracking ; speckle tracking ; Sentinel-1 ; SAR ; Earth Observation Satellites 〉 Sentinel GMES 〉 SENTINEL-1A ; Earth Observation Satellites 〉 Sentinel GMES 〉 SENTINEL-1B ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Imaging Radars 〉 SENTINEL-1 C-SAR ; EARTH SCIENCE 〉 CRYOSPHERE 〉 GLACIERS/ICE SHEETS 〉 GLACIER MOTION/ICE SHEET MOTION ; EARTH SCIENCE 〉 CRYOSPHERE 〉 GLACIERS/ICE SHEETS 〉 GLACIERS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-09-09
    Description: Abstract
    Description: Reflected signals of Global Navigation Satellite Systems (GNSS) have been investigated for various applications in remote sensing over the last three decades. The overall research field of GNSS reflectometry includes the retrieval of sea ice parameters as an important application. For this purpose, GNSS reflectometry data have been recorded over the Arctic Ocean with a dedicated receiver setup during the MOSAiC expedition (Multidisciplinary drifting Observatory for the Study of Arctic Climate). The setup was mounted on the German research icebreaker Polarstern (AWI, 2017) that drifted during nine months of the expedition with the Arctic sea ice. The here described data set comprises the expedition’s first leg in autumn 2019. It includes the drift period of the ship from 27th September until 14th December at about 82°N to 87°N in the Siberian Sector of the Arctic. The data set is based on essential contributions of setup & data recording (by GFZ), maintenance & data transfer (by AWI and MOSAiC partners), processing to data level 1 & documentation (by DLR-SO). The level 1 data consist of GNSS signal power estimates of the direct and reflected signal. Data appear in event files (netcdf format) sorted into day folders. Each event includes observations of a satellite on a continuous track, here, in a satellite elevation range from min. 1° to max. 45°. A dedicated GNSS reflectometry receiver, of GORS (GNSS Occultation Reflectometry Scatterometry) type, was used for the measurements. It is equipped with four antenna front-ends. A master channel and two slave channels are assigned to the front-ends. The master channel tracks the GNSS signal on the direct link. The slave channels are dedicated for observations of reflection events: one at left-handed (LH) and another one at right-handed (RH) circular polarization. The respective up-looking master antenna and port-side looking slave antenna (dual-polarization) are set up with a short baseline on the ship’s observation deck, about 22 m above the water level. The given ship-based geometry results in events with rather short excess paths of the reflected signal relative to the direct signal, much less than the range of a code chip (about 300 m for GPS L1 C/A). Interferometric pattern of direct and reflected signal contributions are observed in the channel. A separation step is required in further processing.
    Keywords: GNSS Reflectometry ; Sea Ice ; relative Permittivity ; MOSAiC ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Positioning/Navigation 〉 GPS 〉 GNSS RECEIVER
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-09-08
    Description: Abstract
    Description: Depth profiles of stable water isotopes in the soil provide important information on flow and transport processes in the subsurface. We sampled depth profiles of stable water isotopes (2H and 18O) in the pore waters on two occasions at 46 sites in the Attert catchment, Luxembourg and are partly located in mixed deciduous forest and partly on grassland. These sites correspond to the sensor cluster sites of the DFG research unit CAOS. Sampling took place once between February 2012 and October 2013 and once in June 2014. Sampling procedure: We took 1-3 soil cores of 8 cm diameter in close proximity with a percussion drill (Atlas Copco Cobra, Stockholm, Sweden) at each study site within a radius of 5 m from the soil moisture sensor profiles. We drilled as deep as possible and divided the extracted soil cores into subsamples of 5 to 10 cm length and sealed the material in air tight bags (Weber Packaging, Güglingen, Germany). The soil sample depths were corrected for compaction during the drilling pro-cess and are provided as the mean depth of 5 or 10 cm soil core subsamples. For isotope analyses of the pore water, we used the direct equilibration method (Wassenaar et al., 2008). Analyses were carried out at the Chair of Hydrology, University of Freiburg. We provide detailed information about the laboratory analyses in Sprenger et al. (2015) and Sprenger et al. (2016) and the data description associated with the data.
    Keywords: Stable isotopes ; Vadose zone ; Pore water ; Soil hydraulic parameter ; Soil hydraulic modelling ; Soil Hydrology ; CAOS ; Catchments as Organised Systems ; EARTH SCIENCE 〉 LAND SURFACE 〉 SOILS 〉 HYDRAULIC CONDUCTIVITY ; EARTH SCIENCE 〉 LAND SURFACE 〉 SOILS 〉 SOIL HORIZONS/PROFILE ; EARTH SCIENCE 〉 LAND SURFACE 〉 SOILS 〉 SOIL TEXTURE ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 WATER QUALITY/WATER CHEMISTRY 〉 STABLE ISOTOPES ; EARTH SCIENCE SERVICES 〉 MODELS 〉 HYDROLOGIC AND TERRESTRIAL WATER CYCLE MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-09-13
    Description: Abstract
    Description: Neogene indentation of the Adriatic plate into Europe led to major modifications of the Alpine orogenic structures and style of deformation in the Eastern Alps. Especially, the offset of the Periadriatic Fault by the Northern Giudicarie Fault marks the initiation of strike-slip faulting and lateral extrusion of the Eastern Alps. Questions remain on the exact role of this fault zone in changes of the Alpine orogen at depth. This necessitates quantitative analysis of the shortening, kinematics and depth of decoupling underneath the Northern Giudicarie Fault and associated fold-and thrust belt in the Southern Alps. Tectonic balancing of a network of seven cross sections through the Giudicarie Belt parallel to the local shortening direction reveals that it comprises two kinematic domains with different amounts and partly overlapping ages of shortening. This data publication provides the cross sections that were not shown within Verwater et al. (2021, submitted to Solid Earth) (see figure A1.1 for section traces) but show lateral variations in shortening in present-day cross-sections across the study area (section A1.1). Cross sections 1, 5 and 6, which are discussed within the manuscript, will be described in more detail within section A1.2 (cross section 1), A1.3 (cross section 5) and A1.4 (cross section 6). In addition, the approach used for forward modelling in Move will be shown within section A2, as well as alternative kinematic scenarios that were tested for Cross sections 6. Section B describes the methods and datasets used for obtaining the location and depth of seismicity plotted along cross sections 1, 5 and 6 in Verwater et al. (submitted).
    Keywords: Structural Geology ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT DIRECTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FAULT MOVEMENT 〉 FAULT MOVEMENT RATE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 FOLDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; lithosphere 〉 earth's crust 〉 fault
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-09-14
    Description: Abstract
    Keywords: geospatial data ; machine learning ; predictive modelling ; site probability
    Type: Dataset , dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-09-15
    Description: Abstract
    Description: We provide geochemical background data on the partitioning and cycling of elements between rock, saprolite, soil, plants, and river dissolved and solid loads from at three sites along a global transect of mountain landscapes that differ in erosion rates – an “erodosequence”. These sites are the Swiss Central Alps, a rapidly-eroding post-glacial mountain belt; the Southern Sierra Nevada, USA, eroding at moderate rates; and the slowly-eroding tropical Highlands of Sri Lanka. The backbone of this analysis is an extensive data set of rock, saprolite, soil, water, and plant geochemical data. This set of elemental concentrations is converted into process rates by using regolith production and weathering rates from cosmogenic nuclides, and estimates of biomass growth. Combined, they allow us to derive elemental fluxes through regolith and vegetation. The main findings are: 1) the rates of weathering are set locally in regolith, and not by the rate at which entire landscapes erode; 2) the degree of weathering is mainly controlled by regolith thickness. This results in supply-limited weathering in Sri Lanka where weathering runs to completion, and kinetically-limited weathering in the Alps and Sierra Nevada where soluble primary minerals persist; 3) these weathering characteristics are reflected in the sites’ ecosystem processes, namely in that nutritive elements are intensely recycled in the supply-limited setting, and directly taken up from soil and rock in the kinetically settings; 4) contrary to common paradigms, the weathering rates are not controlled by biomass growth; 5) at all sites we find a deficit in river solute export when compared to solute production in regolith, the extent of which differs between elements but not between erosion rates. Plant uptake followed by litter erosion might explain this deficit for biologically utilized elements of high solubility, and rare, high-discharge flushing events for colloidal-bound elements of low solubility. Our data and the new metrics have begun to serve for calibrating metal isotope systems in the weathering zone, the isotope ratios of which depend on the flux partitioning between the compartments of the Critical Zone. We demonstrate this application in several isotope geochemical companion papers with associated datasets from the same samples. All samples are assigned with International Geo Sample Numbers (IGSN), a globally unique and persistent Identifier for physical samples. The IGSNs are provided in the data tables and link to a comprehensive sample description in the internet.
    Description: Other
    Description: Part 1: Tables included in this data publication (All tables are included in 2021-001_vonBlanckenburg-et-al_ASS_Data_part-1.xlsx and additionally provided in tab delimited text version): Table A1. Swiss Alps analyses of soil, saprolite, rock Table A2. Swiss Alps analyses of water samples Table A3. Swiss Alps analyses of plant samples from the Swiss Alps Table SN1. Sierra Nevada analyses of soil, saprolite, rock Table SN2. Sierra Nevada analyses of water samples Table SN3. Sierra Nevada analyses of plant samples Table SL1. Sri Lanka analyses of soil, saprolite, rock Table SL2. Sri Lanka analyses of water samples. Element concentration analyses and pH Table SL3. Sri Lanka analyses of plant samples Table C1. Summary of principle ASS site characteristics Table C2. Compilation of Denudation rates from river cosmogenic nuclides in river sediment and soil associated production rates Table C3. Compilation of soil production rates, CDF, and chemical weathering rates of ASS sites Table C4. Fractional contributions of endmembers from a inversion of dissolved elements in streams Table C5. Flux Summary: Plant uptake rates, recycling ratios, and dissolved export efficiency Table C6. Data quality control for plant concentration analyses Part 2: Supplementary Data included in this data publication (file: 2021-001_vonBlanckenburg-et-al_ASS_Data_part-2.pdf): 1. Sources of River Solutes from End Member Mixing Analysis (EMMA) 2. Reassessment of Dust Input in the Sierra Nevada 3. Rock and Regolith Mineralogical Composition from X_Ray Diffraction ((XRD)
    Keywords: river water ; vegetation ; vegetation chemical composition ; EARTH SCIENCE 〉 BIOSPHERE 〉 AQUATIC ECOSYSTEMS 〉 RIVERS/STREAM HABITAT ; EARTH SCIENCE 〉 BIOSPHERE 〉 ECOLOGICAL DYNAMICS 〉 ECOSYSTEM FUNCTIONS 〉 NUTRIENT CYCLING ; EARTH SCIENCE 〉 BIOSPHERE 〉 TERRESTRIAL ECOSYSTEMS 〉 FORESTS ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION 〉 NUTRIENTS ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION 〉 PHOSPHORUS ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 CHEMICAL WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 DECOMPOSITION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 MINERAL DISSOLUTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPE RATIOS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL PROCESSES 〉 WEATHERING
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-09-20
    Description: Abstract
    Description: The 'Earthquake Network’ (EQN) is an app which detects earthquakes by creating an ad-hoc network of smartphones' accelerometer sensors and provides early warnings for earthquakes via the same smartphone app. Detections are not due to individual smartphone measurements but due to near-simultaneous trigger signals from clusters of smartphones running the app. Therefore detections are normally located in the closest populated regions to an earthquake's epicentre. These datasets compare sets of detections with the earthquake parameters published by seismic institutes in order to analyse the performance of the EQN network. One dataset contains 550 detections made by EQN between 2017-12-15 and 2020-01-31 in Chile, USA and Italy. Wherever possible, each detection was associated with an earthquake from the parameter catalogue of each country's seismic institute (CSN for Chile, USGS for USA and INGV for Italy). Associations were carried out automatically but also checked manually. The other dataset contains 134 detections from around the world that could be associated to earthquakes with magnitude ≥ M5 or magnitude ≥ M4.5 in Italy and the USA. There are 68 detections that are common to the first dataset. All detections were associated to parameters from the the USGS earthquake parameter catalogue for consistency.
    Description: Methods
    Description: Earthquake parameters were retrieved from the seismic institutes via the FDSN protocol. The two datasets are encoded in csv files using ',' delimiters and with headers on the first row. Additional material is included to explain the contents of each column.
    Description: TableOfContents
    Description: 2021_xxxx_steed-et-al_D1_usa_chl_ita.csv 2021_xxxx_steed-et-al_D2_mag_gt_4.5.csv
    Keywords: Earthquake Network ; earthquakes ; strong motion ; seismic waves ; smartphone ; citizen science ; seismic surface waves ; accelerometry ; ground motion ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC SURFACE WAVES ; geological process 〉 seismic activity 〉 earthquake ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 FDSN ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 IRIS-GSN ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; monitoring 〉 seismic monitoring ; safety 〉 safety system 〉 warning system 〉 early warning system
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-09-20
    Description: Abstract
    Description: The data set contains VNIR and SWIR raw and reference hyperspectral imaging data of the Apliki mine open cut and of samples from the surface of the mine measured in the laboratory. It is con-nected to the published spectral library and chemical analyses of 37 different surface materials from the copper-gold-pyrite mine Apliki in the Republic of Cyprus (Koerting et al., 2019). The field outcrop scan was acquired in March 2018 in cooperation with the Geological Survey Department of the Republic of Cyprus (GSD) and the German Research Centre for Geosciences (GFZ). The laboratory sample scan presented in this document is a collection of hyperspectral scans compiled in one large dataset. The hyperspectral data in the field and the lab were acquired with the HySpex sys-tem in a range of 414 – 2498 nm. The field data is shared as one VNIR and one SWIR radiance and reflectance data cube each. The laboratory data is shared as one full VNIR-SWIR (414 – 2450nm) reflectance data cube that was processed and corrected for the detector jump, data spikes and the last 8 SWIR bands were clipped due to a low signal to noise ratio (SNR). The data and the samples originate from fieldwork in the Republic of Cyprus and laboratory work at the GFZ Potsdam. A detailed description of the data acquisition and processing can be found in Koerting (2021).
    Keywords: copper mining ; mine surface weathering ; hyperspectral ; spectral library ; copper minerals ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Spectrometers/Radiometers 〉 Imaging Spectrometers/Radiometers ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS 〉 IGNEOUS ROCK PHYSICAL/OPTICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METALS 〉 METALS PHYSICAL/OPTICAL PROPERTIES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-09-20
    Description: Abstract
    Description: The 'Earthquake Network’ (EQN) is an app which detects earthquakes by creating an ad-hoc network of smartphone's accelerometer sensors and provides early warnings of earthquakes via the same smartphone app. The EMSC (Euro-Mediterranean Seismological Centre) and the University of Bergamo conducted an online survey, following an earthquake of magnitude M8 on 2019-05-26 07:41:13.6 UTC in Northern Peru with epicentre (5.81S, 75.27W). This survey targeted EQN users in the felt area of the earthquakes and was conducted from 2019-07-23 to 2019-08-18. It aimed at assessing users’ understanding and reaction to the EQN early warning for this specific earthquake. The questionnaire was written in Spanish since it is the most commonly spoken language in the studied area. Individuals who use the app in Spanish were invited to complete the survey via an advertisement on the Earthquake Network app. A PDF containing the questionnaire and the relationship between the questions is included in this archive. 3805 respondents took the survey, including 2 719 that were actually in the area at the time. The analysis Results derived from this dataset will be included as part of a submitted Science article (Bossu et al. '“Shaking in 5 seconds!” A Voluntary Smartphone-based Earthquake Early Warning System', 2021) to show that respondents received notifications from the Earthquake Network App before feeling the shaking but also that many did not immediately “drop, hold and cover' and were too intent on warning those close to them of the impending danger. All respondents consented that their data could be used for research purposes. The EMSC and University of Bergamo made sure not to collect or diffuse personal data. The dataset is a zip-file that contains the questionnaire responses as a comma-separated text file (csv) and a pdf containing a representation of the questionnaire that was presented to respondents.
    Keywords: earthquake early warning ; seismology ; social ; risk communication ; survey ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; geological process 〉 seismic activity 〉 earthquake ; safety 〉 risk assessment 〉 risk communication ; safety 〉 risk assessment 〉 risk perception ; safety 〉 risk assessment 〉 risk reduction ; safety 〉 safety system 〉 warning system 〉 early warning system ; science 〉 human science 〉 social science 〉 sociology
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-09-20
    Description: Abstract
    Description: The 'Earthquake Network’ (EQN) is an app which detects earthquakes by creating an ad-hoc network of smartphones' accelerometer sensors and provides early warnings for earthquakes via the same smartphone app. Detections are not due to individual smartphone measurements but due to near-simultaneous trigger signals from clusters of smartphones running the app. Therefore detections are normally located in the closest populated regions to an earthquake's epicentre. In order to investigate the mechanisms of EQN's earthquake detection system, we searched for seismic accelerometer stations with publically available data that were close to the EQN detection locations (rather than close to the epicentre). This confirmed that EQN's detections followed strong shaking motions but that detections could follow both P-phase or S-phase rather than consistantly being sensitive to only one particular phase. It also showed that detections generally occurred between 0 - 5 seconds after the peak ground acceleration measured by the seismic station. Analysis was conducted on 550 detections made by the EQN system between 2017-12-15 and 2020-01-31 in Chile, Italy and the USA. Strong motion accelerometer data was collected from seismic stations via the FDSN protocol. The data was calibrated, detrended and a small time shift was applied to correct for differences in distances from the epicentre between the EQN detection and the strong motion seismic station. Calibrated waveform data was obtained for 410 EQN detections. Plots were made for each event and an analysis was carried out on the dataset to compare EQN detection times with the peak ground acceleration measured by the nearest seismic station. The dataset consists of a zip-file containing a table of results and some summary graphs derived from it as well as a set of 410 graphs of strong motion files that are presented as image files (png-files). The graphs show the waveform data for a seismic station within 20 km of each EQN detection.
    Description: Methods
    Description: Ground motion data was retrieved from seismic networks via the FDSN protocol via the IRIS and ORFEUS institutes. This data was calibrated using station inventory files also downloaded via FDSN and filtered between 0.5 - 12 Hz. A small time shift was applied to correct for differences in distances from the epicentre between the EQN detection and the strong motion seismic station. This time shift assumed a seismc phase velocity of 8.04km/s.
    Keywords: Earthquake Network ; earthquakes ; strong motion ; seismic waves ; smartphone ; citizen science ; seismic surface waves ; accelerometry ; ground motion ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC SURFACE WAVES ; geological process 〉 seismic activity 〉 earthquake ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 FDSN ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 IRIS-GSN ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; monitoring 〉 seismic monitoring ; safety 〉 safety system 〉 warning system 〉 early warning system
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-09-24
    Description: Abstract
    Description: This dataset is supplementary material to "What controls the presence and characteristics of aftershocks in rock fracture in the lab?" by Joern Davidsen, Thomas H. W. Goebel, Grzegorz Kwiatek, Sergei Stanchits, Jordi Baro and Georg Dresen (Davidsen et al., 2021). The dataset contains source parameters of acoustic emission events recorded during triaxial fracture and friction (stick-slip) experiments performed on two Westerly Granite samples, Aue Granite and Flechtigen Sandstone. Basic seismic catalog associated with each experiment contains origin time, hypocentral location in local Cartesian coordinate system of the sample, acoustic-emission derived magnitude and polarity coefficient (a simplified measure of mechanism type: shear, pore opening or collapse). Extended catalog information is available for selected experiments including information whether event is background seismicity, trigger of following events or triggered by preceding events. In addition, we provide information on focal mechanisms calculated in each experiment using full moment tensor inversion. Focal mechanism catalogs include information on strike, dip and rake of two nodal planes, and percentage of isotropic, clvd and double-couple components of the full moment tensor. The detailed description of catalog is provided in the data description file which is also included in the zip folder of the data.
    Keywords: earthquake triggering ; rock mechanics ; acoustic emission ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC BODY WAVES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRESS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 PHYSICAL/LABORATORY MODELS ; In Situ/Laboratory Instruments ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers 〉 SEISMOMETERS ; physical property 〉 rock mechanics
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-09-27
    Description: Abstract
    Description: Faults and fractures form the largest contrast of fluid flow in the subsurface, while their permeability is highly affected by effective pressure changes. In this experimental study, fractured low-permeability Flechtingen (Rotliegend) sandstones were cyclically loaded in a MTS tri-axial compression cell. Two different loading scenarios were considered: “continuous cyclic loading” (CCL) and “progressive cyclic loading” (PCL). During continuous cyclic loading, a displaced tensile fracture was loaded hydrostatically from 2 to 60 MPa in several repeated cycles. During progressive cyclic loading, the load was increased with a step-wise function (15, 30, 45 and 60 MPa) and unloaded after every loading step. For full elasticity of rock matrix deformation each rock sample has been preconditioned up to 65 MPa. After that, an artificial tensile fracture was introduced into the sample using the Brazilian Disk test. The fractured sample was installed into the MTS triaxial cell at a given offset of 0.5 mm and hydrostatic loading was applied accordingly. The fracture permeability was measured continuously using the cubic law calculated from the hydraulic aperture. Fracture closure was measured using LVDT extensometers during the entire experiment and the resulting fracture closure and stiffness was calculated accordingly. The total deformation of the sample was corrected by the amount of elastic deformation of the rock matrix to obtain the fracture closure only. Potential changes to the fracture surface topography before and after the experiments were analysed from high-resolution surface scans obtained by a 3D profilometer using the fringe pattern projection. The scale-independent roughness exponent was calculated using power spectral density method assuming self-affinity. The fracture aperture distribution and contact-area ratio was calculated by matching the best fitting principal planes of the bottom and top surface and applying a grid search algorithm. The results showed a “stress-memory” effect of fracture stiffness during progressive loading that can be used to identify previous stress states in fractures. This effect is characterized by a transition from a non-linear to a linear (reversible to non-reversible) behaviour of specific fracture stiffness when a previous stress-maximum is exceeded. Furthermore, the evolution of fracture permeability shows less reduction during progressive cyclic loading compared to continuous cyclic loading. The data measured during the flow-through experiment under varying effective pressure are provided in the file “MTS_data.zip”. The data are provided as separate text-files as well as in Excel format with different spreadsheets, such that each figure in the paper can be recalculated and that the underlying data is comprehensive. The name of all three rock samples is given in the file name including the type of the experiment (CCL or PCL). The fracture surfaces and the fracture aperture distributions are found within the file “Surface_data.zip”. This file contains the fracture data of each of the three rock samples as point cloud data (text-files), as well the data calculated from the surfaces.
    Keywords: laboratory testing ; fracture ; permeability ; stiffness ; cyclic loading ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTARY ROCKS 〉 SEDIMENTARY ROCK PHYSICAL/OPTICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-09-27
    Description: Abstract
    Description: The profile 2N was recorded in 1986 as part of the DEKORP project, the German deep seismic reflection program. The seismic survey of the ca. 220 km long line 2N was conducted to investigate the deep crustal structure of the eastern Rhenish Massif and the Muensterland Basin with high-fold near-vertical incidence vibroseis acquisition. The objectives of the survey were to image the Variscan structures in detail with respect to their specific transitions, to obtain evidence about vertical tectonic processes during the Variscan orogenesis, to understand the causes of observed gravity and magnetic anomalies and to recognize and define the Variscan front to the north. In addition, the line contributed to the International Lithosphere Program (ILP) and the former European Geotraverse (EGT). The first outcomes of the survey were presented by Reichert (1988). A detailed description of seismic results is provided by Franke et al. (1990) as well as by DEKORP Research Group (1990) and supplemented by many other researches. The Technical Report of line 2N gives complete information about acquisition and processing parameters. The European Variscides, extending from the French Central Massif to the East European Platform, originated during the collision between Gondwana and Baltica in the Late Palaeozoic. Due to involvement of various crustal blocks in the orogenesis, the mountain belt is subdivided into distinct zones. The external fold-and-thrust belts of the Rhenohercynian and Saxothuringian as well as the predominantly crystalline body of the Moldanubian dominate the central European segment of the Variscides. Polyphase tectonic deformation, magmatism and metamorphic processes led to a complex interlinking between the units. The nearly S-N striking DEKORP 2N line reveals an almost complete cross-section through the Rhenohercynian Zone. The profile runs from the Taunus Mountains, i.e. the southeastern rim of the Rhenish Massif over the Lahn-Dill Trough, through the Ebbe Mountains to the borehole Muensterland 1 in the Muensterland Basin, which belongs to the sub-Variscan Foredeep. The profile is the northern prolongation of DEKORP 2S. Line DEKORP 2Q crosses line 2N perpendicularly in its northern part extending northeastwards to the borehole Versmold 1.
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 – 1999 as the German national reflection seismic program funded by the Federal Ministry of Research and Technology (BMFT), Bonn [now: the Federal Ministry of Education and Research (BMBF)]. DEKORP was administrated by the former Geological Survey of Lower Saxony (NLfB), Hannover [now: the State Authority for Mining, Energy and Geology (LBEG)]. In 1994 the DEKORP management was taken over by the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. The aim of DEKORP was to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence (mostly vibro)seismic acquisition, supplemented by wide-angle seismic and other target-oriented piggy-back experiments, all complemented by optimized methods of data processing and interpretation. The DEKORP project was closely linked with the KTB (German continental deep-drilling program) and was an equivalent to many other deep-seismic programs world-wide such as COCORP, BIRPS, LITHOPROBE, ECORS, CROP, BELCORP, IBERSEIS and many more. The DEKORP-Atlas (Meissner & Bortfeld, 1990) gives a detailed overview about most of the different campaigns and results. In sum, the resulting DEKORP database includes approximately 40 crustal-scale 2D-seismic reflection lines covering a total of ca. 4 700 km and one 3D-seismic reflection survey covering ca. 400 km². Each DEKORP survey is provided with all datasets that are necessary for either a re-processing (i.e. raw unstacked field records in SEGY) or a re-interpretation (i.e. finally processed sections in SEGY or PNG). The raw data are sorted by records or by CDPs. The final data are available as unmigrated or migrated stacks without or with coherency enhancement. Automatical line-drawings are also included. All data come with additional meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment. Furthermore, all metadata originating from paper copies are made available as scanned files in PNG or PDF, e.g. field and observer reports, location maps in different scales, near-surface profile headers and others. The DEKORP datasets provide unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle and are increasingly requested by academic institutions and commercial companies. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; deep crustal structure ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; Vibroseis acquisition ; Rhenish Massif ; Muensterland Basin ; Variscan Orogenic Belt ; Rhenohercynian ; sub-Variscan Foredeep ; Taunus Mountains ; Lahn-Dill Trough ; Ebbe Mountains ; Mohorovičić discontinuity ; coal exploration ; mineral resources ; geothermal resources ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-09-28
    Description: Abstract
    Description: The 208 km long profile 3B/MVE (West) was recorded in 1990 as part of the joint seismic reflection venture DEKORP 1990-3/MVE (Muenchberg-Vogtland-Erzgebirge) between the two former German Republics shortly before their unification. The aim of DEKORP 1990-3/MVE was to explore the structure of the crust from the Rhenish Shield through the Bohemian Massif to the Ore Mountains. The entire profile consists of DEKORP 3A, DEKORP 3B/MVE (West) and its prolongation to the east DEKORP 3B/MVE (East). Its total length amounts to about 600 km. 24 short seismic cross lines and associated 3D blocks with single fold coverage were also recorded. The seismic survey of 3B/MVE (West) was performed to investigate the deep crustal structure and the transition zone between the Rhenohercynian and Saxothuringian units with high-fold near-vertical incidence vibroseis acquisition. The results were compared with the results from the surveys DEKORP 1 and DEKORP 2, running nearly parallel to the line 3B/MVE (West). Details of the 3B/MVE (West) experiment, its preliminary results and interpretations may be obtained from DEKORP Research Group (A) et al. (1994) and DEKORP Research Group (C) et al. (1994). The Technical Report of line 3B/MVE (West) gives complete information about acquisition and processing parameters. The European Variscides, extending from the French Central Massif to the East European Platform, originated during the collision between Gondwana and Baltica in the Late Palaeozoic. Due to involvement of various crustal blocks in the orogenesis, the mountain belt is subdivided into distinct zones. The external fold-and-thrust belts of the Rhenohercynian and Saxothuringian as well as the predominantly crystalline body of the Moldanubian dominate the central European segment of the Variscides. Polyphase tectonic deformation, magmatism and metamorphic processes led to a complex interlinking between the units. The mainly NW-SE running DEKORP 3B/MVE (West) runs perpendicular to the Variscan strike direction and traverses the southern part of the Rhenohercynian unit with the Northern Phyllite Zone and the northern part of the Saxothuringian unit including the Mid-German Crystalline High. Starting in the Kellerwald the profile crosses the Hessian Depression, the Tertiary volcanic Rhoen Mountains and the Mesozoic of the Franconian Basin (DEKORP Research Group (C) et al., 1994). East of Staffelstein the profile turns to the east and ends on the Franconian Line, the southwestern boundary fault zone of the Bohemian Massif. The line 3B/MVE (West) is intersected by ten cross lines along the profile and by DEKORP 3A at its northwestern end. To the east the profile is extended by DEKORP 3B/MVE (East).
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 – 1999 as the German national reflection seismic program funded by the Federal Ministry of Research and Technology (BMFT), Bonn [now: the Federal Ministry of Education and Research (BMBF)]. DEKORP was administrated by the former Geological Survey of Lower Saxony (NLfB), Hannover [now: the State Authority for Mining, Energy and Geology (LBEG)]. In 1994 the DEKORP management was taken over by the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. The aim of DEKORP was to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence (mostly vibro)seismic acquisition, supplemented by wide-angle seismic and other target-oriented piggy-back experiments, all complemented by optimized methods of data processing and interpretation. The DEKORP project was closely linked with the KTB (German continental deep-drilling program) and was an equivalent to many other deep-seismic programs world-wide such as COCORP, BIRPS, LITHOPROBE, ECORS, CROP, BELCORP, IBERSEIS and many more. The DEKORP-Atlas (Meissner & Bortfeld, 1990) gives a detailed overview about most of the different campaigns and results. In sum, the resulting DEKORP database includes approximately 40 crustal-scale 2D-seismic reflection lines covering a total of ca. 4 700 km and one 3D-seismic reflection survey covering ca. 400 km². Each DEKORP survey is provided with all datasets that are necessary for either a re-processing (i.e. raw unstacked field records in SEGY) or a re-interpretation (i.e. finally processed sections in SEGY or PNG). The raw data are sorted by records or by CDPs. The final data are available as unmigrated or migrated stacks without or with coherency enhancement. Automatical line-drawings are also included. All data come with additional meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment. Furthermore, all metadata originating from paper copies are made available as scanned files in PNG or PDF, e.g. field and observer reports, location maps in different scales, near-surface profile headers and others. The DEKORP datasets provide unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle and are increasingly requested by academic institutions and commercial companies. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; deep crustal structure ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; Vibroseis acquisition ; Variscan Orogenic Belt ; Rhenohercynian ; Saxothuringian ; Northern Phyllite Zone ; Mid-German Crystalline High ; Kellerwald ; Hessian Depression ; Rhoen Mountains ; Franconian Basin ; Franconian Line ; Bohemian Massif ; Mohorovičić discontinuity ; geothermal resources ; seismic risks ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
  • 36
    Publication Date: 2021-09-29
    Description: Abstract
    Description: The 128 km long profile 3A was recorded in 1990 as part of the joint seismic reflection venture DEKORP 1990-3/MVE (Muenchberg-Vogtland-Erzgebirge) between the two former German Republics shortly before their unification. The aim of DEKORP 1990-3/MVE was to explore the structure of the crust from the Rhenish Shield through the Bohemian Massif to the Ore Mountains. The entire profile consists of DEKORP 3A, DEKORP 3B/MVE (West) and its prolongation to the east DEKORP 3B/MVE (East). Its total length amounts to about 600 km. 24 short cross lines and associated 3D blocks with single fold coverage were also recorded. The seismic survey of 3A was conducted to investigate the deep crustal structure of the Hessian Depression with high-fold near-vertical incidence vibroseis acquisition, and thus to connect DEKORP 3B/MVE (West) to oil industry seismic profiles in the Leinegraben area. Details of the experiment, preliminary results and interpretations may be obtained from DEKORP Research Group (A) et al. (1994) and DEKORP Research Group (C) et al. (1994). The Technical Report of line 3A gives complete information about acquisition and processing parameters. The European Variscides, extending from the French Central Massif to the East European Platform, originated during the collision between Gondwana and Baltica in the Late Palaeozoic. Due to involvement of various crustal blocks in the orogenesis, the mountain belt is subdivided into distinct zones. The external fold-and-thrust belts of the Rhenohercynian and Saxothuringian as well as the predominantly crystalline body of the Moldanubian dominate the central European segment of the Variscides. Polyphase tectonic deformation, magmatism and metamorphic processes led to a complex interlinking between the units. The N-S trending DEKORP 3A line aimed at a seismic characterisation of the crust beneath the Permo-Mesozoic to Tertiary Hessian Depression. Running from the Solling Dome in the Rhenohercynian through the Kassel Graben and the late Tertiary volcanic fields of the Reinhardswald and Soehrewald, the 3A line ends in the Northern Phyllite Zone north of the Vogelsberg Volcano, the largest of the Cenozoic volcanoes in Europe (DEKORP Research Group (C) et al., 1994). DEKORP 3A is intersected by six short cross lines along the profile and by DEKORP 3B/MVE (West) at its southern end.
    Description: Other
    Description: The German Continental Seismic Reflection Program DEKORP (DEutsches KOntinentales Reflexionsseismisches Programm) was carried out between 1984 – 1999 as the German national reflection seismic program funded by the Federal Ministry of Research and Technology (BMFT), Bonn [now: the Federal Ministry of Education and Research (BMBF)]. DEKORP was administrated by the former Geological Survey of Lower Saxony (NLfB), Hannover [now: the State Authority for Mining, Energy and Geology (LBEG)]. In 1994 the DEKORP management was taken over by the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences. The aim of DEKORP was to investigate the deep crustal structure of Germany with high-resolution near-vertical incidence (mostly vibro)seismic acquisition, supplemented by wide-angle seismic and other target-oriented piggy-back experiments, all complemented by optimized methods of data processing and interpretation. The DEKORP project was closely linked with the KTB (German continental deep-drilling program) and was an equivalent to many other deep-seismic programs world-wide such as COCORP, BIRPS, LITHOPROBE, ECORS, CROP, BELCORP, IBERSEIS and many more. The DEKORP-Atlas (Meissner & Bortfeld, 1990) gives a detailed overview about most of the different campaigns and results. In sum, the resulting DEKORP database includes approximately 40 crustal-scale 2D-seismic reflection lines covering a total of ca. 4 700 km and one 3D-seismic reflection survey covering ca. 400 km². Each DEKORP survey is provided with all datasets that are necessary for either a re-processing (i.e. raw unstacked field records in SEGY) or a re-interpretation (i.e. finally processed sections in SEGY or PNG). The raw data are sorted by records or by CDPs. The final data are available as unmigrated or migrated stacks without or with coherency enhancement. Automatical line-drawings are also included. All data come with additional meta information for each domain (source, receiver, CDP) like coordinates, elevations, locations and static corrections combined in ASCII-tables for geometry assignment. Furthermore, all metadata originating from paper copies are made available as scanned files in PNG or PDF, e.g. field and observer reports, location maps in different scales, near-surface profile headers and others. The DEKORP datasets provide unique and deep insights into the subsurface below Germany covering the earth’s crust from the surface to the upper mantle and are increasingly requested by academic institutions and commercial companies. Fields of applications are geothermal development, hazard analysis, hydrocarbon/shale gas exploration, underground gas storage, tunnel construction and much more.
    Keywords: DEKORP ; Deutsches Kontinentales Reflexionsseismisches Programm ; deep crustal structure ; crustal-scale seismic survey ; near-vertical incidence seismic reflection ; Vibroseis acquisition ; Variscan Orogenic Belt ; Rhenohercynian ; Northern Phyllite Zone ; Hessian Depression ; Solling Dome ; Kassel Graben ; Tertiary volcanic fields ; Vogelsberg Volcano ; Mohorovičić discontinuity ; geothermal resources ; hydrocarbon exploration ; seismic risks ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; In Situ/Laboratory Instruments 〉 Profilers/Sounders 〉 SEISMIC REFLECTION PROFILERS ; lithosphere 〉 earth's crust
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-09-30
    Description: Abstract
    Description: gravityInf is a small R-package which aims at supporting the anaylsis of a sprinkling (infiltration) experiment in combination with simultaneous and continious gravity measurements, presented in the above mentioned paper. With this package you can easily walk through the necessary steps in order to set up an infiltration scenario, maybe based on your own sprinkling / irrigation experiment and carry out simple hydrological modelling of water distribution in 3D in the subsurface. An observed gravity time series is needed for the model in order to fit and thus identify the dominant infiltration process for your research area. A model functionality and limitations can be found in Reich et al. (2021), the associtated data was published by Reich et al. (2021, https://doi.org/10.5880/GFZ.4.4.2021.001).
    Keywords: R ; Hydrogravimetry ; iGrav ; terrestrial gravimetry ; electrical resistivity tomography ; sub surface processes ; soil moisture ; inverse modelling ; EARTH SCIENCE 〉 LAND SURFACE 〉 SOILS 〉 SOIL MOISTURE/WATER CONTENT ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-09-30
    Description: Abstract
    Description: A sprinkling experiment was conducted at the geodetic observatory Wettzell (Bavaria, Germany) with the intention to combine classical hydrological field observations of soil moisture with gravity data and electrical resistivity tomography (ERT). The setup consisted of 8 sprinkling units installed around a gravimeter in field enclosure. Artificial rainfall was applied for 6 hours. The sprinkling area of 15 x 15 m was equipped with 3 vertical soil moisture sensor profiles, 1 horizontal soil moisture transect, near-surface soil moisture sensors and 3 ERT profiles. The non-invasive gravity data and the ancillary monitoring data were used to infer water transport processes in the subsurface during the sprinkling experiment. To this end, the gravity data were used to identify the structure and the parameters of a subsurface flow model in an inverse modelling approach by optimizing the simulated gravity response with respect to the observations. The ancillary soil moisture and ERT data were used to evaluate the model outputs in terms of adequacy and dominant subsurface flow processes. Model data cover the following subtopics: • virtual experiments to show the theoretical relationships between subsurface water re-distribution processes and their corresponding gravity responses • an uncertainty analysis of the sprinkling experiment, e.g., with respect to water volumes and their spatial distribution, and the impact on the expected gravity response • inverse modelling to identify dominant subsurface water re-distribution processes • a synthetical model setup based on the ancillary datasets of soil moisture and ERT Monitoring and model output data used for this investigation is provided within this data repository. A detailed description and discussion can be found in Reich et al. (2021). The inverse modelling was carried out using the R-package gravityInf (Reich, 2021).
    Description: Methods
    Description: The gravity data were processed with a standard procedure of terrestrial gravimetry that included the reduction of non-hydrological mass change signals (e.g., tides, air pressure, see the linked publication for details). Electrical resistivity data were inverted using the software BERT with standard settings. Soil moisture data and sprinkling volume measurements were linearly interpolated in space where needed.
    Keywords: Hydrogravimetry ; iGrav ; terrestrial gravimetry ; electrical resistivity tomography ; sub surface processes ; soil moisture ; inverse modelling ; EARTH SCIENCE 〉 LAND SURFACE 〉 SOILS 〉 SOIL MOISTURE/WATER CONTENT ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-09-30
    Description: Abstract
    Description: This dataset is composed of three-season simulated EnMAP mosaics for the Lake Tahoe region, USA. HyspIRI Airborne Campaign AVIRIS imagery from spring, summer and fall formed the basis for simulating EnMAP data with 30 m spatial resolution and 195 spectral bands ranging from 420 to 2450 nm. The mosaics are provided as Analysis-Ready-Datasets (tiled surface reflectance products) to be used for regional-scale and multi-season hyperspectral image analysis of California’s diverse ecoregions. The dataset primarily intends to support the development of processing algorithms and to demonstrate spaceborne hyperspectral data capabilities during the pre-launch activities of the forthcoming EnMAP mission. This dataset was processed in line with companion simulated EnMAP mosaics for the San Francisco Bay Area and for the Santa Barbara region.
    Description: Other
    Description: The Environmental Mapping and Analysis Program (EnMAP) is a German hyperspectral satellite mission that aims at monitoring and characterizing the Earth’s environment on a global scale. EnMAP serves to measure and model key dynamic processes of the Earth’s ecosystems by extract-ing geochemical, biochemical and biophysical parameters, which provide information on the status and evolution of various terrestrial and aquatic ecosystems. In the frame of the EnMAP preparatory phase, pre-flight campaigns including airborne and in-situ measurements in different environments and for several application fields are being conducted. The main purpose of these campaigns is to support the development of scientific applications for EnMAP. In addition, the acquired data are input in the EnMAP end-to-end simulation tool (EeteS) and are employed to test data pre-processing and calibration-validation methods. The campaign data are made freely available to the scientific community under a Creative Commons Attribution 4.0 International License. An overview of all available data is provided in in the EnMAP Flight Campaigns Metadata Portal (http://www.enmap.org/?q=flights).
    Keywords: Imaging Spectroscopy ; EnMAP ; Terrestrial Ecosystems ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Spectrometers/Radiometers 〉 Imaging Spectrometers/Radiometers ; EARTH SCIENCE 〉 BIOSPHERE 〉 TERRESTRIAL ECOSYSTEMS ; EARTH SCIENCE 〉 LAND SURFACE 〉 LAND USE/LAND COVER
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-09-30
    Description: Abstract
    Description: The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project focuses on mountain building processes in a major mid-Paleozoic orogen in western Scandinavia and its comparison with modern analogues. The transport and emplacement of subduction-related highgrade continent-ocean transition (COT) complexes onto the Baltoscandian platform and their influence on the underlying allochthons and basement is being studied in a section provided by two fully cored 2.5 km deep drill holes. These operational data sets concern the second drill site, COSC-2 (boreholes ICDP 5054-2-A and 5054-2-B), drilled from mid April to early August 2020. COSC-2 is located approximately 20 km eastsoutheast of COSC-1, close to the southern shore of Lake Liten between Järpen and Mörsil in Jämtland, Sweden. COSC-2 drilling started at a tectonostratigraphic level slightly below that at COSC-1’s total depth. It has sampled the Lower Allochthon, the main Caledonian décollement and the underlying basement of the Fennoscandian Shield, including its Neoproterozoic and possibly older sedimentary cover. COSC-2 A reached 2276 m driller's depth with nearly 100 % core recovery between 100 m and total depth. COSC-2 B, with a driller’s depth of 116 m, covers the uppermost part of the section that was not cored in COSC-2 A. The operational data sets include the drill core documentation from the drilling information system (mDIS), full round core scans, MSCL data sets, a preliminary core description and the geophysical downhole logging data that were acquired during and subsequent to the drilling operations. All downhole logs and core depth were subject to depth correction to a common depth master (cf. operational report for detailed information). The COSC-2 drill core is archived at the Core Repository for Scientific Drilling at the Federal Institute for Geosciences and Natural Resources (BGR), Wilhelmstr. 25–30, 13593 Berlin (Spandau), Germany.
    Keywords: scientific drilling ; ICDP ; Caledonides ; orogeny ; mountain building ; core drilling ; Collisional Orogeny in the Scandinavian Caledonides ; COSC ; compound material 〉 igneous material ; compound material 〉 sedimentary material ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; industrial process 〉 drilling ; Phanerozoic 〉 Paleozoic ; Precambrian 〉 Proterozoic ; science 〉 natural science 〉 earth science ; science 〉 natural science 〉 earth science 〉 geology ; science 〉 natural science 〉 earth science 〉 geology 〉 hydrogeology ; science 〉 natural science 〉 earth science 〉 geology 〉 tectonics ; science 〉 natural science 〉 earth science 〉 geophysics
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-10-01
    Description: Abstract
    Description: The data set contains LIBS (Laser-Induced Breakdown Spectroscopy) emission spectra of 18 lithium-bearing minerals and their corresponding hyperspectral reflectance spectra. The data were collected within the research project LIGHTS (Lightweight Integrated Ground and Airborne Hyperspectral Topological Solutions, http://lights.univ-lorraine.fr/) which aims at developing a new exploration process for Li targets combining drone-borne hyperspectral data and field observations. Hyperspectral data were acquired with the HySpex system in a wavelength range of 414 - 2498 nm and are presented in a spectral library. Detailed information about the samples and area of spectral retrieval is presented in the data sheet below. The spectral library presented here expands the collection of spectral libraries including samples from rare-earth minerals, rare-earth-oxides (Koerting et al., 2019a) and copper-bearing minerals (Koellner et al., 2019) which are fully described in Koerting et al. (2021). These libraries aim to give a spectral overview of important resources and deposit mineralizations. 18 samples taken partly from the collections of the University of Potsdam (UP) and the Federal Institute for Geosciences and Natural Resources (BGR) and partly in the field during previous measurement campaigns were hyperspectrally measured and geochemically analysed by using a LIBS handheld analyzer. A description of the HySpex system in lab use can be found in Koerting et al. (2021). The lithium-bearing mineral samples were measured without prior sample preparation as the surface of the minerals and the influence of the mineral structure were of interest (Figure 1). Figure 1 shows one HySpex scan of four lepidolite samples (Lep1, Lep2, Lep3, Lep4) displayed as a true color RGB image in order to show the untreated samples and the white reflectance (WR) panel needed for the hyperspectral measurements (WR 90%).
    Keywords: hyperspectral ; spectral library ; geochemical ; Li-bearing minerals ; LIBS ; Laser-Induced Breakdown Spectroscopy ; Earth Remote Sensing Instruments 〉 Passive Remote Sensing 〉 Spectrometers/Radiometers ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS 〉 IGNEOUS ROCK PHYSICAL/OPTICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTARY ROCKS 〉 SEDIMENTARY ROCK PHYSICAL/OPTICAL PROPERTIES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-10-06
    Description: Abstract
    Description: This dataset provides risk estimates from the long-term (5000-year) simulations of the process-based Regional Flood Model chain (RFM) developed for Germany (Falter et al. 2015). The 5000-year simulation is run as an ensemble of 50 100-year simulations. Each of those 100-year simulations is referred to as a scenario. The risk estimates are derived in Euros adjusted to prices as of 2018 for all major catchments in Germany – Elbe, Danube, Rhine, Weser and Ems. The dataset consists of the risk estimates for every simulated event at the catchment-level classified according to the sector – private sector (ps), commercial (com) and agriculture (agr). Losses to buildings and contents are estimated for private and commercial sectors. Crop losses are estimated for the agriculture sector. The full description of the RFM along with the derivation of the risk estimates and uncertainty measurement is provided in Sairam et al. (2021).
    Keywords: risk model chain ; continuous simulation ; multi-sector risk ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 SURFACE WATER 〉 FLOODS ; EARTH SCIENCE SERVICES 〉 MODELS ; safety 〉 risk assessment
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-10-07
    Description: Abstract
    Description: This repository contains spatially distributed ground motion fields (GMF) for six determinist subduction earthquake scenarios for Metropolitan Lima and Callao (Peru). They have moment magnitudes between Mw 8.5 to 9.0 and emulate the historical earthquake that occurred in 1746 and caused extensive damage to that area. 1000 ground motion realisations in .XML format are generated using a single ground motion prediction equation per earthquake rupture with uncorrelated and cross-correlated residuals.
    Keywords: RIESGOS ; Scenario-based multi-risk assessment in the Andes region ; ground motion ; seismic ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 TSUNAMIS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-10-07
    Description: Abstract
    Description: This data publication is composed by two main folders: (1) “Focus_map_construction” and (2) “CVT_models”. The first one contains the individual raster inputs (tsunami inundation and population distribution) that are combined to construct two different focus maps for the cities of Lima and Callao (Peru). The reader can find a more complete description about the focus map concept in Pittore (2015). These raster focus maps are used as inputs to generate variable-resolution CVT (Central Voronoi Tessellation) geocells following the method presented in Pittore et al., (2020). They are vector-based data (ESRI shapefiles) that are stored in the second folder. These resultant CVT-geocells are used by Gomez-Zapata et al., (2021) as spatial aggregation boundaries to represent the residential building portfolio for the cities of Lima and Callao (Peru).
    Keywords: spatial aggregation areas ; CVT ; Central Voronoi Tessalations ; focus map ; geocells ; raster ; RIESGOS ; Scenario-based multi-risk assessment in the Andes region ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 TSUNAMIS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-10-07
    Description: Abstract
    Description: The software component DEUS (Damage-Exposure-Update-Service) is a Python3 script to evaluate/ update the physical damage and the structural vulnerability of a given building stock classified in terms of hazard-dependent classes (i.e. exposure model). This is obtained by estimating the damage evolution of the building stock given their initial damage state; the location of the scenario-based IM; and the use of selected fragility functions that must be compatible with the predefined building classes and IM. It can be run locally on your computer as well as a WPS (Web Processing Service). This version can handle single or consecutive deterministic hazard scenarios with spatially distributed Intensity Measures (IM). For single hazard scenarios, the process requires a single execution. In the case of consecutive deterministic hazard scenarios, the executions are proportional to the number of consecutive risk scenario (events) of interest.
    Description: Other
    Description: Apache License, Version 2.0 (January 2004) Copyright © 2021 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
    Keywords: RIESGOS ; Scenario-based multi-risk assessment in the Andes region ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 TSUNAMIS ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 VOLCANIC ERUPTIONS
    Type: Software , Software
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-10-07
    Description: Abstract
    Description: This data publication is composed by two main folders: (1) “Top-down_exposure_modelling_Lima” and (2) “Vulnerability_models_Lima/”. The first one contains a complete collection of data models used to represent the residential building portfolio of Lima and Callao (Peru) using a top-down approach (census-based desktop study). Therein, the reader can find a comprehensive description of the procedure of how the exposure models were constructed. This includes python scripts and postprocessed geodatasets to represent these building stock into predefined and separate classes for earthquake and tsunami physical vulnerabilities. The second folder contains sets of fragility functions for these building classes and the assumed economic consequence model. These models are suplement material of a submitted paper (Gomez-Zapata et al., 2021b). Please note it is an unpublished preprint version at the time of writing this document. The reader is strongly advised to look for the definitive version once (if so) it is accepted and published.
    Keywords: exposure modelling ; physical vulnerability ; consequence model ; fragility function ; earthquake vulnerability ; tsnami vulnerability ; occupancy types ; residential building ; RIESGOS ; Scenario-based multi-risk assessment in the Andes region ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 TSUNAMIS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-10-07
    Description: Abstract
    Description: This data collection contains six inundation maps in Lima and Callao (Peru) based on tsunami simulations with the wave propagation and run-up model TsunAWI (see Rakowsky et al. 2015). The simulations were carried out in the framework of the RIESGOS project (see riesgos.de). The sources are hypothetical earthquake events in the magnitude range Mw 8.5 to Mw 9.0 offshore Lima. The source area of the events is based on the historical event from October 1746, the parameters are derived from the study Jimenez et al. (2013). The sources are considerably simplified since we aim at a systematic investigation of the tsunami impact and restrict the parameter variation between scenarios to one parameter only, the slip value. The source area is split into five subfaults, however we use a constant slip distribution. The corresponding tsunami simulations are carried out in a triangular mesh with resolution ranging from 7km in the deep ocean to a finest value of about 7m in the coastal land part of the pilot area Lima/Callao. The flow depth distribution in Lima/Callao obtained from the simulation is interpolated to a raster file and provided as Golden Software Binary Grids. The numerical results are obtained from simulations with the finite element model TsunAWI (Rakowsky et al. 2015). The mesh resolution in the pilot area Lima/Callao is approximately 20m, the smallest edge length is about 7m. The main model parameters are listed in Table 1. Concerning the bottom roughness, we use a constant Manning coefficient of 0.02 in all of the model domain.
    Keywords: tsnami vulnerability ; RIESGOS ; Scenario-based multi-risk assessment in the Andes region ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 TSUNAMIS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-10-07
    Description: Abstract
    Description: This data repository contains the spatial distribution of the direct financial loss computed expected for the residential building stock of Metropolitan Lima (Peru) after the occurrence of six decoupled earthquake and tsunami risk scenarios (Gomez-Zapata et al., 2021a; Harig and Rakowsky, 2021). These risk scenarios were independently calculated making use of the DEUS (Damage Exposure Update Service) available in https://github.com/gfzriesgos/deus. The reader can find documentation about this programme in (Brinckmann et al, 2021) where the input files required by DEUS and outputs are comprehensively described. Besides the spatially distributed hazard intensity measures (IM), other inputs required by DEUS to computed the decoupled risk loss estimates comprise: spatially aggregated building exposure models classified in every hazard-dependent scheme. Each class must be accompanied by their respective fragility functions, and financial consequence model (with loss ratios per involved damage state). The collection of inputs is presented in Gomez-Zapata et al. (2021b). The risk estimates are computed for each spatial aggregation areas of the exposure model. For such a purpose, the initial damage state of the buildings is upgraded from undamaged (D0) to any progressive damage state permissible by the fragility functions. The resultant outputs are spatially explicit .JSON files that use the same spatial aggregation boundaries of the initial building exposure models. An aggregated direct financial loss estimate is reported for each cell after every hazard scenario. It is reported one seismic risk loss distribution outcome for each of the 2000 seismic ground motion fields (GMF) per earthquake magnitude (Gomez-Zapata et al., 2021a). Therefore, 1000 seismic risk estimates from uncorrelated GMF are stored in “Clip_Mwi_uncorrelated” and 1000 seismic risk estimates from spatially cross-correlated GMF (using the model proposed by Markhvida et al. (2018)) are stored in “Clip_ Mwi_correlated”. It is worth noting that the prefix “clip” of these folders refers to the fact that, all of the seismic risk estimates were clipped with respect to the geocells were direct tsunami risk losses were obtained. This spatial compatibility in the losses obtained for similar areas and Mw allowed the construction of the boxplots that are presented in Figure 16 in Gomez-Zapata et al., (2021). The reader should note that folder “All_exposure_models_Clip_8.8_uncorrelated_and_correlated” also contains another folder entitled “SARA_entire_Lima_Mw8.8” where the two realisations (with and without correlation model) selected to produce Figure 10 in Gomez-Zapata et al., (2021) are stored. Moreover, the data to produce Figure 9 (boxplots comparing the variability in the seismic risk loss estimates for this specific Mw 8.8, are presented in the following .CSV file: “Lima_Mw_8.8_direct_finantial_loss_distributions_all_spatial_aggregations_Corr_and_NoCorr.csv”. Naturally, 1000 values emulating the 1000 realisations are the values that compose the variability expressed in that figure. Since that is a preliminary study (preprint version), the reader is invited to track the latest version of the actually published (if so) journal paper and check the actual the definitive numeration of the aforementioned figures.
    Keywords: tsunami risk ; earthquake risk ; risk scenario ; physical vulnerability ; loss ; deterministic risk ; fragility function ; RIESGOS ; Scenario-based multi-risk assessment in the Andes region ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 HUMAN