ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Oxford University Press
    Call number: M 08.0276
    Description / Table of Contents: This text describes the full range of charts, graphs, maps, diagrams and tables used daily to manage, analyze and communicate information. It features over 3000 illustrations, acting as a source on presenting information for anyone who writes or designs reports.
    Type of Medium: Monograph available for loan
    Pages: 448 S.
    ISBN: 9780195135329
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Series available for loan
    Series available for loan
    Washington, DC : United States Gov. Print. Off.
    Associated volumes
    Call number: SR 90.0001(1018)
    In: U.S. Geological Survey bulletin
    Type of Medium: Series available for loan
    Pages: III, 89 S.
    Series Statement: U.S. Geological Survey bulletin 1018
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-22
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Heat flow is estimated at eight sites drilled int the Guaymas Basin, Gulf of California, during the International Ocean Discovery Program Expedition 385. The expedition sought to understand the thermal regime of the basin and heat transfer between off‐axis sills intruding the organic‐rich sediments of the Guaymas Basin, and the basin floor. The distinct sedimentation rates, active tectonics, and magmatism make the basin interesting for scientific discoveries. Results show that sedimentation corrected heat flow values range 119–221 mW/m〈sup〉2〈/sup〉 in the basin and 257–1003 mW/m〈sup〉2〈/sup〉 at the site of a young sill intrusion, denominated Ringvent. Thermal analysis shows that heat in the Guaymas Basin is being dissipated by conduction for plate ages >0.2 Ma, whereas younger plate ages are in a state of transient cooling by both conduction and advection. Drilling sites show that Ringvent is an active sill being cooled down slowly by circulating fluids with discharge velocities of 10–200 mm/yr. Possible recharge sites are located ca. 1 km away from the sill's border. Modelling of the heat output at Ringvent indicates a sill thickness of ca. 240 m. A simple order‐of‐magnitude model predicts that relatively small amounts of magma are needed to account for the elevated heat flow in non‐volcanic, sediment‐filled rifts like the central and northern Gulf of California in which heating of the upper crust is achieved via advection by sill emplacement and hydrothermal circulation. Multiple timescales of cooling control the crustal, chemical and biological evolution of the Guaymas Basin. Here, we recognize at least four timescales: the time interval between intrusions (ca. 10〈sup〉3〈/sup〉 yr), the thermal relaxation time of sills (ca. 10〈sup〉4〈/sup〉 yr), the characteristic cooling time of the sediments (ca. 10〈sup〉5〈/sup〉 yr), and the cooling of the entire crust at geologic timescales.〈/p〉
    Description: Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California http://dx.doi.org/10.13039/501100003089
    Description: German Research Center for Geosciences
    Description: https://web.iodp.tamu.edu/LORE/
    Description: https://mlp.ldeo.columbia.edu/logdb/scientific_ocean_drilling/
    Keywords: ddc:551.1 ; Guyamas Basin ; Heat Flow ; Heat Transfer ; IODP Expedition 385
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-05-20
    Keywords: Conductivity, average; Depth, bottom/max; Heat flow; LATITUDE; LONGITUDE; Method comment; Sample, optional label/labor no; Temperature gradient
    Type: Dataset
    Format: text/tab-separated-values, 1202 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-05-12
    Keywords: Area/locality; Conductivity, average; Depth, bottom/max; Depth, top/min; ELEVATION; Heat flow; LATITUDE; LONGITUDE; Method comment; Number; Number of conductivity measurements; Number of temperature data; Sample, optional label/labor no; Temperature gradient
    Type: Dataset
    Format: text/tab-separated-values, 2024 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-05-12
    Keywords: Area/locality; Conductivity, average; Depth, bottom/max; Depth, top/min; ELEVATION; Heat flow; LATITUDE; LONGITUDE; Method comment; Number; Number of conductivity measurements; Number of temperature data; Sample, optional label/labor no; Temperature gradient
    Type: Dataset
    Format: text/tab-separated-values, 304 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(5),(2021): e2020JB021098, https://doi.org/10.1029/2020JB021098.
    Description: We report results from 149 heat flux measurements made over an ∼2-year interval at sites in and around a vapor-dominated geothermal field located at water depths of ∼100–120 m in Yellowstone Lake, Wyoming. Measurements of both in situ temperature and thermal conductivity as a function of depth were made with a 1 m probe via a remotely operated vehicle, and are combined to compute the vertical conductive heat flux. Inside the ∼55.5 × 103 m2 bathymetric depression demarcating the vapor-dominated field, the median conductive flux is 13 W m−2, with a conductive output of 0.72 MW. Outside the thermal field, the median conductive flux is 3.5 W m−2. We observed 49 active vents inside the thermal field, with an estimated mass discharge rate of 56 kg s−1, a median exit-fluid temperature of 132°C, and a total heat output of 29 MW. We find evidence for relatively weak secondary convection with a total output of 0.09 MW in thermal area lake floor sediments. Our data indicate that vapor beneath the thermal field is trapped by a low-permeability cap at a temperature of ∼189°C and a depth of ∼15 m below the lake floor. The thermal output of the Deep Hole is among the highest of any vapor-dominated field in Yellowstone, due in part to the high boiling temperatures associated with the elevated lake floor pressures.
    Description: This work was funded by U.S. National Science Foundation (NSF) grants EAR-1515283 to R. N. Harris and J. E. Favorito, EAR-1516361 to R. A. Sohn, and EAR-1514865 to K. M. Luttrell All work in Yellowstone National Park was completed under research permit (YELL-2018-SCI-7018) and the authors thank Annie Carlson from the Yellowstone Center for Resources for logistical help.
    Description: 2021-11-14
    Keywords: Geothermal systems ; Heat flow ; Lacustrine
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 20XX. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(12), (2019): 6435-6442, doi:10.1029/2019GL082523.
    Description: Acoustic Doppler current profiler and conductivity‐temperature‐depth data acquired in Yellowstone Lake reveal the presence of a buoyant plume above the “Deep Hole” hydrothermal system, located southeast of Stevenson Island. Distributed venting in the ~200 × 200‐m hydrothermal field creates a plume with vertical velocities of ~10 cm/s in the mid‐water column. Salinity profiles indicate that during the period of strong summer stratification the plume rises to a neutral buoyancy horizon at ~45‐m depth, corresponding to a ~70‐m rise height, where it generates an anomaly of ~5% (−0.0014 psu) relative to background lake water. We simulate the plume with a numerical model and find that a heat flux of 28 MW reproduces the salinity and vertical velocity observations, corresponding to a mass flux of 1.4 × 103 kg/s. When observational uncertainties are considered, the heat flux could range between 20 to 50 MW.
    Description: The authors thank Yellowstone National Park Fisheries and Aquatic Sciences, The Global Foundation for Ocean Exploration, and Paul Fucile for logistical support. This research was supported by the National Science Foundation grants EAR‐1516361 to R. S., EAR‐1514865 to K. L., and EAR‐1515283 to R. H. and J. F. All work in Yellowstone National Park was completed under an authorized Yellowstone research permit (YELL‐2018‐SCI‐7018). CTD and ADCP profiles reported in this paper are available through the Marine Geoscience Data System (doi:10.1594/IEDA/324713 and doi:10.1594/IEDA/324712, accessed last on 17 April 2019, respectively).
    Description: 2019-11-09
    Keywords: Hydrothermal plume
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 57(4), (2021): e2020WR028430, https://doi.org/10.1029/2020WR028430.
    Description: We use yearlong vertical temperature profile time-series (seven thermistors at evenly spaced depth intervals from 10 to 70 cm) from five sites in and around the Deep Hole thermal area, southeast of Stevenson Island, Yellowstone Lake, to investigate heat and mass fluxes across the lake floor. The records demonstrate that thermal gradients in surficial sediments are modulated by a rich spectrum of bottom water temperature variations generated by hydrodynamic processes, and that sites inside the thermal area also respond to hydrothermal variations. We develop and implement a new method for estimating the sediment effective thermal diffusivity and pore fluid vertical flow rate that exploits the full spectrum of observed temperature variations to generate the parameter estimates, uncertainties, and metrics to assess statistical significance. Sediments at sites outside thermal areas have gradients of ∼7.5°C/m, in situ thermal diffusivities of ∼1.6 × 10−7 m2/s consistent with highly porous (80–90%) siliceous sediments, and experience hypolentic flow in the upper ∼20 cm. Sites inside the Deep Hole thermal area exhibit considerable spatial and temporal variability, with gradients of 1–32°C/m, and higher thermal diffusivities of ∼2–12 × 10−7 m2/s, consistent with hydrothermal alteration of biogenic silica to clays, quartz, and pyrite. Upward pore fluid flow at these sites is observed across multiple depth intervals, with maximum values of ∼3 cm/day. The observed spatial and temporal variability within the thermal area is consistent with upward finger flow combined with short wavelength convection within the porous sediments above a steam reservoir.
    Description: This research was supported by the National Science Foundation Grants EAR-1516361 to Robert A. Sohn and EAR-1515283 to Robert N. Harris, and by the Independent Research and Development Program at the Woods Hole Oceanographic Institution (Robert A. Sohn). All work in Yellowstone National Park was completed under an authorized Yellowstone research permit (YELL-2018-SCI-7018).
    Keywords: Groundwater ; Hydrothermal ; Hypolentic flow ; Thermal diffusivity ; Thermal gradients ; Vertical temperature profile
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 30 (1991), S. 8488-8493 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...