ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-17
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-09
    Description: Abstract
    Description: Nature conservation and restoration in terrestrial ecosystems is often focused on increasing the numbers of megafauna, expecting them to have positive impacts on ecological self-regulation processes and biodiversity. In sub-Saharan Africa, conservation efforts also aspire to protect and enhance biodiversity with particular focus on elephants. However, elephant browsing carries the risk of woody biomass losses. In this context, little is known about how increasing elephant numbers affects carbon stocks in soils, including the subsoils. We hypothesized that (1) increasing numbers of elephants reduce tree biomass, and thus the amount of C stored therein, resulting (2) in a loss of soil organic carbon (SOC). If true, a negative carbon footprint could limit the sustainability of elephant conservation from a global carbon perspective. To test these hypotheses, we selected plots of low, medium, and high elephant densities in two national parks and adjacent conservancies in the Namibian component of the Kavango Zambezi Transfrontier Area (KAZA), and quantified carbon storage in both woody vegetation and soils (1 m). Analyses were supplemented by the assessment of soil carbon isotopic composition. We found that increasing elephant densities resulted in a loss of tree carbon storage by 6.4 t ha−1. However, and in contrast to our second hypothesis, SOC stocks increased by 4.7 t ha−1 with increasing elephant densities. These higher SOC stocks were mainly found in the topsoil (0–30 cm) and were largely due to the formation of SOC from woody biomass. A second carbon input source into the soils was megaherbivore dung, which contributed with 0.02–0.323 t C ha−1 year−1 to ecosystem carbon storage in the low and high elephant density plots, respectively. Consequently, increasing elephant density does not necessarily lead to a negative C footprint, as soil carbon sequestration and transient C storage in dung almost compensate for losses in tree biomass.The dataset contains the raw data of soil analyses up to 1 m soil depth and vegetation data on plot level. A third sheet of the excelfile contains necessary information about abbreviations used within the dataset.
    Keywords: Ecology ; Environment ; Carbon ; Soil Organic Carbon ; Conservation Areas ; Ecosystem ; Vegetation
    Type: Dataset , Dataset
    Format: MS Excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-09
    Description: Abstract
    Description: 1.Nature conservation is fostered through the expansion of protected areas. This is particularly evident in Sub-Saharan Africa (SSA), where conservation is intended to simultaneously promote the recovery of megafauna like elephants. Rising numbers of megaherbivores induce woody biomass losses but restore soil organic carbon (SOC). We hypothesized that increases of SOC under conservation with wildlife in SSA go directly along with increases in the preservation of plant residues in soil organic matter (SOM), traceable by plant biomarkers such as lignin and n-alkane. In contrast, intensification with agriculture leads to a reduction of them. To test this, we sampled topsoil (0-10 cm) and corresponding plant samples along different intensities of conservation and intensification in the Zambezi Region of Namibia, comprising a) conservation sites with low, medium and high elephant densities and b) adjacent intensification sites with rangeland and cropland. We found that lignin and n-alkane patterns of the above-ground vegetation were preserved in the soil. Confirming our hypothesis, increasing SOC contents with rising elephant densities went along with increasing accumulation of lignin-derived phenols. Under conservation, lignin concentrations were influenced by the input of woody debris into the soil, traced by carbon isotopes, clay, and total woody biomass. This could not be proved for n-alkanes. Under intensification, lignin derived phenols were lower than under conservation, but again, there was no clear pattern for n-alkanes. We showed that conservation with wildlife leads to an increase of SOC, which was accompanied by an accumulation of lignin-derived phenols in the soil organic matter. Increased input of woody debris, clay content and total biomass were important parameters for this lignin accumulation. In contrast, intensification with agriculture leads to a loss of lignin. Contrary, n- alkanes were not sensitive to detect effects of conservation or intensification. We conclude that increasing incorporation of woody residues into soil is a key mechanism controlling SOC accrual and to offset losses of aboveground biomass on SOC in sites under conservation with wildlife. The dataset contains raw data of lignin and n-alkanes and related soil properties. A third sheet contains a legend with information on abbreviations.
    Keywords: Ecology ; Environment ; Conservation ; Intensification ; Soil Organic Carbon ; Carbon Storage Dynamics ; Carbon Sequestration ; Biomarker ; Lignin ; n-Alkanes
    Type: Dataset , Microsoft excel file
    Format: MS Excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...