ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (99)
  • Latest Papers from Table of Contents or Articles in Press  (99)
  • Articles: DFG German National Licenses
  • Rats  (99)
  • American Association for the Advancement of Science (AAAS)  (99)
  • American Chemical Society
  • American Physical Society (APS)
  • Blackwell Science Ltd
  • De Gruyter
  • Institute of Physics
  • Wiley
  • 2020-2024
  • 2005-2009  (38)
  • 1990-1994  (61)
  • 1935-1939
  • 2009  (38)
  • 1991  (61)
  • 1936
  • Physics  (99)
  • Geography
  • Geosciences
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
  • Architecture, Civil Engineering, Surveying
  • Energy, Environment Protection, Nuclear Power Engineering
Collection
  • Articles  (99)
Source
  • Latest Papers from Table of Contents or Articles in Press  (99)
  • Articles: DFG German National Licenses
Publisher
  • American Association for the Advancement of Science (AAAS)  (99)
  • American Chemical Society
  • American Physical Society (APS)
  • Blackwell Science Ltd
  • De Gruyter
  • +
Years
  • 2020-2024
  • 2005-2009  (38)
  • 1990-1994  (61)
  • 1935-1939
Year
Topic
  • 1
    Publication Date: 1991-05-31
    Description: An in vivo selection system for isolating targets of DNA binding proteins in yeast was developed and used to identify the DNA binding site for the NGFI-B protein, a member of the steroid-thyroid hormone receptor superfamily. The feasibility of the technique was verified by selecting DNA fragments that contained binding sites for GCN4, a well-characterized yeast transcriptional activator. The DNA binding domain of NGFI-B, expressed as part of a LexA-NGFI-B-GAL4 chimeric activator, was then used to isolate a rat genomic DNA fragment that contained an NGFI-B binding site. The NGFI-B response element (NBRE) is similar to but functionally distinct from elements recognized by the estrogen and thyroid hormone receptors and the hormone receptor-like proteins COUP-TF, CF1, and H-2RIIBP. Cotransfection experiments in mammalian cells demonstrated that NGFI-B can activate transcription from the NBRE with or without its putative ligand binding domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, T E -- Fahrner, T J -- Johnston, M -- Milbrandt, J -- NS01018/NS/NINDS NIH HHS/ -- P01 CA49712/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 May 31;252(5010):1296-300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925541" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/metabolism ; Base Sequence ; Binding Sites ; Cloning, Molecular ; DNA, Fungal/*metabolism ; DNA-Binding Proteins/genetics/*metabolism/pharmacology ; Fungal Proteins/metabolism ; Molecular Sequence Data ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Plasmids ; *Protein Kinases ; Rats ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid ; Repressor Proteins ; Saccharomyces cerevisiae/*genetics ; *Saccharomyces cerevisiae Proteins ; *Serine Endopeptidases ; Transcription Factors/genetics/*metabolism/pharmacology ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-09-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marshall, E -- New York, N.Y. -- Science. 1991 Sep 27;253(5027):1491.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1896859" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Humans ; Models, Biological ; Monitoring, Physiologic ; Motion Sickness/*etiology ; Rats ; Scyphozoa ; *Space Flight ; *Weightlessness
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-03-08
    Description: Engagement of the antigen-specific receptor (TCR) of CD4+ T lymphocytes without a second (costimulatory) signal prevents the subsequent production of interleukin-2 (IL-2) by these cells. Because IL-2 is a key immunoregulatory lymphokine and is also produced by a subset of CD8+ T cells that are able to kill target cells, the effect of engaging the TCR of one such clone in the absence of costimulatory signals was examined. The capacity for TCR-dependent IL-2 production was lost, indicating comparable costimulator-dependent signaling requirements for IL-2 production in CD4+ and CD8+ T cells. However, TCR-mediated cytotoxicity was not impaired, implying that costimulation is required for only certain TCR-dependent effector functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Otten, G R -- Germain, R N -- New York, N.Y. -- Science. 1991 Mar 8;251(4998):1228-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1900952" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/immunology ; Antigen-Presenting Cells/immunology ; Antigens, CD8 ; Antigens, Differentiation, T-Lymphocyte/*immunology ; Female ; Interleukin-2/biosynthesis/*physiology ; Kinetics ; Lymphocyte Activation ; Mice ; Mice, Inbred Strains ; Ovalbumin/immunology ; Rats ; Receptors, Antigen, T-Cell/*immunology ; Spleen/immunology/radiation effects ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-09-13
    Description: The phosphorylation of the cardiac sodium channel by adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase A leads to its inactivation. It was shown that extracellular cAMP can also modulate the sodium channel of rat, guinea pig, and frog ventricular myocytes in a rapid (less than 50 milliseconds), reversible, and dose-dependent manner. The decrease in the sodium current was accompanied by a 10- to 15-millivolt shift in the steady-state availability of the sodium channel toward more negative potentials and was inhibited by guanosine-5'-O-(2-thiodiphosphate) or pertussis toxin, suggesting that the extracellular modulation of the sodium channel by cAMP is mediated by a membrane-delimited mechanism that includes a pertussis toxin-sensitive G protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sorbera, L A -- Morad, M -- HL16152/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1991 Sep 13;253(5025):1286-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Pennsylvania, Philadelphia 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1653970" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cyclic AMP/*pharmacology ; Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology ; Guanosine Diphosphate/analogs & derivatives/pharmacology ; Guinea Pigs ; Heart/drug effects/*physiology ; Isoproterenol/pharmacology ; Kinetics ; Membrane Potentials/drug effects ; Pertussis Toxin ; Rana pipiens ; Rats ; Receptors, Cyclic AMP/drug effects/*physiology ; Sodium Channels/drug effects/*physiology ; Thionucleotides/pharmacology ; Virulence Factors, Bordetella/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-25
    Description: The action of dopamine and other monoamine neurotransmitters at synapses is terminated predominantly by high-affinity reuptake into presynaptic terminals by specific sodium-dependent neurotransmitter transport proteins. A complementary DNA encoding a rat dopamine transporter has been isolated that exhibits high sequence similarity with the previously cloned norepinephrine and gamma-aminobutyric acid transporters. Transient expression of the complementary DNA in HeLa cells confirms the cocaine sensitivity of this transporter.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kilty, J E -- Lorang, D -- Amara, S G -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):578-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Yale University, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948035" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Carrier Proteins/drug effects/*genetics/metabolism ; Cloning, Molecular ; Cocaine/*pharmacology ; Dopamine/*metabolism ; Dopamine Plasma Membrane Transport Proteins ; Gene Expression ; HeLa Cells ; Humans ; Kinetics ; *Membrane Glycoproteins ; *Membrane Transport Proteins ; Molecular Sequence Data ; *Nerve Tissue Proteins ; Oligodeoxyribonucleotides ; Polymerase Chain Reaction/methods ; Rats ; Sequence Homology, Nucleic Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-02-22
    Description: The structure of the ion conduction pathway or pore of voltage-gated ion channels is unknown, although the linker between the membrane spanning segments S5 and S6 has been suggested to form part of the pore in potassium channels. To test whether this region controls potassium channel conduction, a 21-amino acid segment of the S5-S6 linker was transplanted from the voltage-activated potassium channel NGK2 to another potassium channel DRK1, which has very different pore properties. In the resulting chimeric channel, the single channel conductance and blockade by external and internal tetraethylammonium (TEA) ion were characteristic of the donor NGK2 channel. Thus, this 21-amino acid segment controls the essential biophysical properties of the pore and may form the conduction pathway of these potassium channels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hartmann, H A -- Kirsch, G E -- Drewe, J A -- Taglialatela, M -- Joho, R H -- Brown, A M -- NS08805/NS/NINDS NIH HHS/ -- NS23877/NS/NINDS NIH HHS/ -- NS28407/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Feb 22;251(4996):942-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2000495" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Brain/physiology ; Chimera ; Cloning, Molecular ; Female ; Ion Channel Gating ; Membrane Potentials ; Molecular Sequence Data ; Oligonucleotide Probes ; Oocytes/physiology ; Polymerase Chain Reaction ; Potassium Channels/drug effects/genetics/*physiology ; Rats ; Restriction Mapping ; Sequence Homology, Nucleic Acid ; Tetraethylammonium ; Tetraethylammonium Compounds/pharmacology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amato, I -- New York, N.Y. -- Science. 1991 Jul 5;253(5015):34.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2063204" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biomedical Engineering ; Electric Stimulation ; Electrodes, Implanted ; *Neurons ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-08-02
    Description: Modulation of the activity of potassium and other ion channels is an essential feature of nervous system function. The open probability of a large conductance Ca(2+)-activated K+ channel from rat brain, incorporated into planar lipid bilayers, is increased by the addition of adenosine triphosphate (ATP) to the cytoplasmic side of the channel. This modulation takes place without the addition of protein kinase, requires Mg2+, and is mimicked by an ATP analog that serves as a substrate for protein kinases but not by a nonhydrolyzable ATP analog. Addition of protein phosphatase 1 reverses the modulation by MgATP. Thus, there may be an endogenous protein kinase activity firmly associated with this K+ channel. Some ion channels may exist in a complex that contains regulatory protein kinases and phosphatases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, S K -- Reinhart, P H -- Martin, B L -- Brautigan, D -- Levitan, I B -- DK31374/DK/NIDDK NIH HHS/ -- NS17910/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Aug 2;253(5019):560-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1857986" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Animals ; Brain/*physiology ; Calcium/*pharmacology ; Kinetics ; Lipid Bilayers ; Potassium Channels/drug effects/metabolism/*physiology ; Protein Kinases/*metabolism ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-03-22
    Description: Defensins (molecular weight 3500 to 4000) act in the mammalian immune response by permeabilizing the plasma membranes of a broad spectrum of target organisms, including bacteria, fungi, and enveloped viruses. The high-resolution crystal structure of defensin HNP-3 (1.9 angstrom resolution, R factor 0.19) reveals a dimeric beta sheet that has an architecture very different from other lytic peptides. The dimeric assembly suggests mechanisms by which defensins might bind to and permeabilize the lipid bilayer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hill, C P -- Yee, J -- Selsted, M E -- Eisenberg, D -- New York, N.Y. -- Science. 1991 Mar 22;251(5000):1481-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eisenberg, Molecular Biology Institute, Los Angeles, CA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2006422" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blood Proteins/chemistry/*ultrastructure ; Cell Membrane Permeability ; Crystallography ; Defensins ; Guinea Pigs ; Humans ; Macromolecular Substances ; Membrane Proteins/chemistry/ultrastructure ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Protein Conformation ; Rabbits ; Rats ; Structure-Activity Relationship ; X-Ray Diffraction ; *alpha-Defensins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1991-10-11
    Description: It is generally accepted that glutamate serves as the neurotransmitter at most excitatory synapses in the mammalian central nervous system (CNS). Synaptic release of glutamate may trigger a fast and a slow excitatory postsynaptic current (EPSC). The slow EPSC is mediated by N-methyl-D-aspartate (NMDA) receptor channels, whereas the fast EPSC is mediated by non-NMDA receptor channels. The nootropic agent aniracetam selectively and reversibly slows the desensitization kinetics of non-NMDA channels and lengthens their single-channel open times. Antiracetam also modulates the kinetics of the fast EPSC in a manner that mirrors its action on the kinetics of the non-NMDA channels. These results support the hypothesis that the properties of the non-NMDA glutamate channels rather than the rate of neurotransmitter clearance are the primary determinants of the kinetics of the fast EPSC in the mammalian CNS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, C M -- Shi, Q Y -- Katchman, A -- Lynch, G -- NS28158/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 11;254(5029):288-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of Pennsylvania, Philadelphia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1681589" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/*drug effects ; Animals ; Glutamates/*physiology ; Glutamic Acid ; Kinetics ; Pyrrolidinones/*pharmacology ; Rats ; Receptors, Glutamate ; Receptors, N-Methyl-D-Aspartate/drug effects ; Receptors, Neurotransmitter/drug effects ; Synapses/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1991-07-05
    Description: Prolactin (PRL) is necessary for the proliferation of cloned T lymphocytes in response to interleukin-2 (IL-2). Translocation of PRL into the nucleus occurs during IL-2--stimulated mitogenesis. Therefore, the function of intranuclear PRL in T cell proliferation was tested. Eukaryotic expression vectors were prepared to express wild-type PRL [PRL(WT)], PRL that lacks the signal sequence for translocation into the endoplasmic reticulum [PRL(ER-)], and chimeric PRL in which the signal peptide was replaced with the sequence that directs the nuclear translocation of the SV40 large T antigen [PRL(NT+)]. Expression of these constructs in a T cell line (Nb2) responsive to PRL and IL-2 resulted in localization of PRL in the extracellular milieu, cytoplasm, or nucleus, respectively. Stimulation with IL-2 alone resulted in a five- to tenfold increase in the incorporation of [3H]thymidine by cells expressing PRL(NT+) or PRL(WT) as compared to PRL(ER-) or the parental Nb2 cells. Only the PRL(NT+) clone proliferated continuously with IL-2 stimulation in the presence of antiserum to PRL. These results demonstrate that nuclear PRL is necessary for IL-2--stimulated proliferation and suggest that a peptide hormone can function in the nucleus without binding to its cell surface receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clevenger, C V -- Altmann, S W -- Prystowsky, M B -- GM-13901/GM/NIGMS NIH HHS/ -- GM-36962/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Jul 5;253(5015):77-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2063207" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Transport, Active ; Cell Cycle/drug effects ; Cell Nucleus/metabolism ; Drug Synergism ; Genetic Vectors ; In Vitro Techniques ; Interleukin-2/pharmacology ; Lymphocyte Activation/*drug effects ; Molecular Sequence Data ; Prolactin/pharmacokinetics/*pharmacology ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1991-03-01
    Description: Cellular factors controlling alternative splicing of precursor messenger RNA are largely unknown, even though this process plays a central role in specifying the diversity of proteins in the eukaryotic cell. For the identification of such factors, a segment of the rat preprotachykinin gene was used in which differential expression of neuropeptides gamma and K is dependent on alternative splicing of the fourth exon (E4). Sequence variants of the three-exon segment, (E3-E4-E5) were created, resulting in a sensitive assay for factors mediating the splicing switch between E4-skipping and E4-inclusion. A dinucleotide mutation in the 5' splice site of E4 that increase base-pairing of this site to U1 small nuclear RNA resulted in uniform selection of E4, whereas a control mutation that destroyed base-pairing resulted in uniform E4-skipping. Affinity selection of spliceosomes formed on these functionally distinct substrates revealed that the extreme difference in splicing was mediated by differential binding of the U1 small nuclear ribonucleoprotein particle (snRNP) to the 5' splice site of E4. These data show that, apart from its established role in selecting 5' splice sites, U1 snRNP plays a fundamental role in 3' exon selection and provides insight into possible mechanisms of alternative splicing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuo, H C -- Nasim, F H -- Grabowski, P J -- GM-39695/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Mar 1;251(4997):1045-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Biochemistry, Brown University, Providence, RI 02912.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1825520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA Mutational Analysis ; Exons ; Hydrogen Bonding ; Macromolecular Substances ; Molecular Sequence Data ; Protein Precursors/*genetics ; *RNA Splicing ; RNA, Messenger/*metabolism ; RNA, Small Nuclear/*physiology ; Rats ; Ribonucleoproteins/chemistry/*physiology ; Ribonucleoproteins, Small Nuclear ; Structure-Activity Relationship ; Tachykinins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1991-12-20
    Description: The goal of islet transplantation in human diabetes is to maintain the islet grafts in the recipients without the use of immunosuppression. One approach is to encapsulate the donor islets in permselective membranes. Hollow fibers fabricated from an acrylic copolymer were used to encapsulate small numbers of rat islets that were immobilized in an alginate hydrogel for transplantation in diabetic mice. The fibers were biocompatible, prevented rejection, and maintained normoglycemia when transplanted intraperitoneally; hyperglycemia returned when the fibers were removed at 60 days. Normoglycemia was also maintained by subcutaneous implants that had an appropriately constructed outer surface on the fibers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lacy, P E -- Hegre, O D -- Gerasimidi-Vazeou, A -- Gentile, F T -- Dionne, K E -- DK01226/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1782-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1763328" target="_blank"〉PubMed〈/a〉
    Keywords: *Acrylic Resins ; Animals ; Animals, Newborn ; Blood Glucose/*metabolism ; Diabetes Mellitus, Experimental/blood/*surgery ; In Vitro Techniques ; Insulin/secretion ; Islets of Langerhans/*secretion ; Islets of Langerhans Transplantation/*physiology ; Male ; Membranes, Artificial ; Mice ; Mice, Inbred C57BL ; *Polyvinyl Chloride ; Rats ; Rats, Inbred WF ; Time Factors ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1991-08-16
    Description: Recombinant cDNA clones that encode two distinct subunits of the transcription factor GA binding protein (GABP) have been isolated. The predicted amino acid sequence of one subunit, GABP alpha, exhibits similarity to the sequence of the product of the ets-1 protooncogene in a region known to encompass the Ets DNA binding domain. The sequence of the second subunit, GABP beta, contains four 33-amino acid repeats located close to the NH2-terminus of the subunit. The sequences of these repeats are similar to repeats in several transmembrane proteins, including Notch from Drosophila melanogaster and Glp-1 and Lin-12 from Caenorhabditis elegans. Avid, sequence-specific binding to DNA required the presence of both polypeptides, revealing a conceptual convergence of nuclear transforming proteins and membrane-anchored proteins implicated in developmentally regulated signal transduction processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉LaMarco, K -- Thompson, C C -- Byers, B P -- Walton, E M -- McKnight, S L -- New York, N.Y. -- Science. 1991 Aug 16;253(5021):789-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1876836" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Cloning, Molecular ; DNA-Binding Proteins/*chemistry/genetics ; GA-Binding Protein Transcription Factor ; Gene Expression ; Molecular Sequence Data ; Nuclear Proteins/chemistry/genetics ; Peptides/chemistry ; Proto-Oncogene Protein c-ets-1 ; Proto-Oncogene Proteins/chemistry ; Proto-Oncogene Proteins c-ets ; RNA, Messenger/genetics ; Rats ; Recombinant Proteins ; Transcription Factors/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, L -- New York, N.Y. -- Science. 1991 Oct 18;254(5030):377.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1656528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carcinogens/*toxicity ; Dioxins/*toxicity ; Dose-Response Relationship, Drug ; Models, Theoretical ; Rats ; Receptors, Aryl Hydrocarbon ; Receptors, Drug/metabolism ; Risk
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1991-08-16
    Description: Analysis of the heteromeric DNA binding protein GABP has revealed the interaction of two distinct peptide sequence motifs normally associated with proteins located in different cellular compartments. The alpha subunit of GABP contains an 85-amino acid segment related to the Ets family of DNA binding proteins. The ETS domain of GABP alpha facilitates weak binding to DNA and, together with an adjacent segment of 37 amino acids, mediates stable interaction with GABP beta. The beta subunit of GABP contains four imperfect repeats of a sequence present in several transmembrane proteins including the product of the Notch gene of Drosophila melanogaster. These amino-terminal repeats of GABP beta mediate stable interaction with GABP alpha and, when complexed with GABP alpha, directly contact DNA. These observations provide evidence for a distinct biochemical role for the 33-amino acid repeats, and suggest that they may serve as a module for the generation of specific dimerization interfaces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thompson, C C -- Brown, T A -- McKnight, S L -- New York, N.Y. -- Science. 1991 Aug 16;253(5021):762-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1876833" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cross-Linking Reagents ; DNA/metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; GA-Binding Protein Transcription Factor ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Multigene Family ; Nuclear Proteins/*chemistry/metabolism ; Oligonucleotides/chemistry ; Proto-Oncogene Proteins/chemistry ; Proto-Oncogene Proteins c-ets ; Rats ; Recombinant Proteins ; Structure-Activity Relationship ; Transcription Factors/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-23
    Description: The N-methyl-D-aspartate (NMDA) receptor, a subtype of glutamate receptors, plays a key role in synaptic plasticity in the nervous system. After NMDA receptor activation, calcium entry into the postsynaptic neuron is a critical initial event. However, the subsequent mechanisms by which the NMDA receptor signal is processed are incompletely understood. Stimulation of cultured rat hippocampal cells with glutamate resulted in the rapid and transient tyrosine phosphorylation of a 39-kilodalton protein (p39). Tyrosine phosphorylation of p39 was triggered by the NMDA receptor and required an influx of Ca2+ from the extracellular medium. Because p39 was found to be highly related or identical to the microtubule-associated protein 2 kinase, the NMDA receptor signal may be processed by a sequential activation of protein kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bading, H -- Greenberg, M E -- CA 43855/CA/NCI NIH HHS/ -- NS 28829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Aug 23;253(5022):912-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1715095" target="_blank"〉PubMed〈/a〉
    Keywords: 2-Amino-5-phosphonovalerate/pharmacology ; Animals ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases ; Cells, Cultured ; Glutamates/pharmacology ; Glutamic Acid ; Hippocampus/drug effects/metabolism ; Immunoblotting ; Kinetics ; Phosphoproteins/*metabolism ; Phosphorylation ; Phosphotyrosine ; Protein Kinases/metabolism ; Rats ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Tyrosine/*analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-04-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffman, M -- New York, N.Y. -- Science. 1991 Apr 19;252(5004):374.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2017677" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/*genetics ; Animals ; Emphysema/therapy ; Genetic Therapy ; *Genetic Vectors ; Humans ; *Lung ; Rats ; *Transfection ; alpha 1-Antitrypsin/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, L -- New York, N.Y. -- Science. 1991 May 17;252(5008):911.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2035022" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carcinogenicity Tests ; *Carcinogens ; Dioxins/*toxicity ; Humans ; National Institute for Occupational Safety and Health (U.S.) ; Neoplasms, Experimental/chemically induced ; Rats ; Risk Factors ; United States ; *United States Environmental Protection Agency
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-01-04
    Description: The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is an important mediator of several forms of neural and behavioral plasticity. The present studies examined whether NMDA receptors might be involved in the development of opiate tolerance and dependence, two examples of behavioral plasticity. The noncompetitive NMDA receptor antagonist MK-801 attenuated the development of tolerance to the analgesic effect of morphine without affecting acute morphine analgesia. In addition, MK-801 attenuated the development of morphine dependence as assessed by naloxone-precipitated withdrawal. These results suggest that NMDA receptors may be important in the development of opiate tolerance and dependence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trujillo, K A -- Akil, H -- DA02265/DA/NIDA NIH HHS/ -- DA05336/DA/NIDA NIH HHS/ -- MH422251/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1991 Jan 4;251(4989):85-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mental Health Research Institute, University of Michigan, Ann Arbor 48109-0720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1824728" target="_blank"〉PubMed〈/a〉
    Keywords: *Analgesia ; Animals ; Behavior, Animal/drug effects ; Dizocilpine Maleate/*pharmacology ; Drug Tolerance ; Male ; *Morphine ; Naloxone/pharmacology ; Pain Measurement ; Rats ; Rats, Inbred Strains ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors/*physiology ; *Substance-Related Disorders
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, A -- New York, N.Y. -- Science. 1991 Aug 30;253(5023):957-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1887226" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*anatomy & histology/physiology ; Corpus Callosum/anatomy & histology/physiology ; Female ; Humans ; Hypothalamus/*anatomy & histology/physiology ; Male ; Rats ; *Sex Characteristics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-04-26
    Description: The neocortex of the brain develops from a simple germinal layer into a complex multilayer structure. To investigate cellular interactions during early neocortical development, whole-cell patch clamp recordings were made from neuroblasts in the ventricular zone of fetal rats. During early corticogenesis, neuroblasts are physiologically coupled by gap junctions into clusters of 15 to 90 cells. The coupled cells form columns within the ventricular zone and, by virtue of their membership in clusters, have low apparent membrane resistances and generate large responses to the inhibitory neurotransmitter gamma-aminobutyric acid. As neuronal migration out of the ventricular zone progresses, the number of cells within the clusters decreases. These clusters allow direct cell to cell interaction at the earliest stages of corticogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lo Turco, J J -- Kriegstein, A R -- NS07280/NS/NINDS NIH HHS/ -- NS12151/NS/NINDS NIH HHS/ -- NS21223/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Apr 26;252(5005):563-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology and Neurological Sciences, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1850552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebral Cortex/cytology/embryology/*physiology ; Electric Conductivity ; Electrophysiology/methods ; Embryo, Mammalian ; Evoked Potentials/drug effects ; In Vitro Techniques ; Membrane Potentials/drug effects ; Neurons/cytology/drug effects/*physiology ; Rats ; Receptors, GABA-A/physiology ; gamma-Aminobutyric Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-05-03
    Description: Long-term potentiation (LTP) of synaptic transmission after coincident pre- and postsynaptic activity is considered a cellular model of changes underlying learning and memory. In intact tissue, LTP has been observed only between populations of neurons, making analysis of mechanisms difficult. Transmission between individual pre- and postsynaptic hippocampal cells was studied, suggesting quantal amplitude distributions with little variability in quantal size. LTP between such pairs is manifested by large, persistent, and synapse-specific potentiation with a shift in amplitude distribution that suggests presynaptic changes. Oscillations in amplitude of transmission, apparently of presynaptic origin, are common and can be triggered by LTP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malinow, R -- New York, N.Y. -- Science. 1991 May 3;252(5006):722-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1850871" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Electric Conductivity ; Electrophysiology ; Hippocampus/*cytology ; Kinetics ; Membrane Potentials ; Neurons/*physiology ; Rats ; Statistics as Topic ; Synapses/*physiology ; Synaptic Transmission/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-11-15
    Description: In acinar cells from rat salivary glands, cholinergic agonists cause oscillations in cytoplasmic free calcium concentration, which then drive oscillations of cell volume that reflect oscillating cell solute content and fluid secretion. By quantitative fluorescence ratio microscopy of an intracellular indicator dye for sodium, it has now been shown that large amplitude oscillations of sodium concentration were associated with the calcium and cell volume oscillations. Both calcium and sodium oscillations were dependent on the continued presence of calcium in the extracellular medium and were abolished by the specific sodium-potassium adenosine triphosphatase inhibitor ouabain. Thus, calcium oscillations in salivary acinar cells, by modulating the activities of ion transport pathways in the plasma membrane, can cause significant oscillations of monovalent ions that may in turn feed back to regulate calcium oscillations and fluid secretion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, M M -- Foskett, J K -- New York, N.Y. -- Science. 1991 Nov 15;254(5034):1014-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948071" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*physiology ; Chlorides/physiology ; Cytosol/physiology ; In Vitro Techniques ; Male ; Ouabain/pharmacology ; Parotid Gland/*physiology ; Periodicity ; Potassium/physiology ; Rats ; Rats, Inbred Strains ; Sodium/*physiology ; Water-Electrolyte Balance
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1991-05-03
    Description: A human immunoglobulin G1 (IgG1) antibody oligomer was isolated from a transfected myeloma cell line that produced a monoclonal antibody to group B streptococci. Compared to the IgG1 monomer, the oligomer was significantly more effective at protecting neonatal rats from infection in vivo. The oligomer was also shown to cross the placenta and to be stable in neonatal rats. Immunochemical analysis and complementary DNA sequencing showed that the transfected cell line produced two distinct kappa light chains: a normal light chain (Ln) with a molecular mass of 25 kilodaltons and a 37-kilodalton species (L37), the domain composition of which was variable-variable-constant (V-V-C). Cotransfection of vectors encoding the heavy chain and L37 resulted in production of oligomeric IgG.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shuford, W -- Raff, H V -- Finley, J W -- Esselstyn, J -- Harris, L J -- New York, N.Y. -- Science. 1991 May 3;252(5006):724-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immune Sciences, Bristol-Myers Squibb Pharmaceutical Research Institute-Seattle, WA 98121.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1902593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Antibodies, Bacterial/biosynthesis/immunology/pharmacokinetics ; Antibodies, Monoclonal/biosynthesis/immunology/pharmacokinetics ; Cell Line ; Female ; Humans ; Immunization, Passive ; Immunoglobulin G/*biosynthesis/genetics/immunology ; Immunoglobulin M/genetics ; Immunoglobulin Variable Region/*biosynthesis/genetics/immunology ; Immunoglobulin kappa-Chains/*biosynthesis/genetics/immunology ; Macromolecular Substances ; Maternal-Fetal Exchange ; Multiple Myeloma ; Pregnancy ; Rats ; Streptococcal Infections/prevention & control ; Streptococcus agalactiae/immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1991-04-26
    Description: An orally effective, nonpeptide, vasopressin V1 receptor antagonist, OPC-21268, has been identified. This compound selectively antagonized binding to the V1 subtype of the vasopressin receptor in a competitive manner. In vivo, the compound acted as a specific antagonist of arginine vasopressin (AVP)-induced vasoconstriction. After oral administration in conscious rats, the compound also antagonized pressor responses to AVP. OPC-21268 can be used to study the physiological role of AVP and may be therapeutically useful in the treatment of hypertension and congestive heart failure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamamura, Y -- Ogawa, H -- Chihara, T -- Kondo, K -- Onogawa, T -- Nakamura, S -- Mori, T -- Tominaga, M -- Yabuuchi, Y -- New York, N.Y. -- Science. 1991 Apr 26;252(5005):572-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Second Tokushima Institute of New Drug Research, Otsuka Pharmaceutical Co., Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1850553" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Oral ; Angiotensin II/pharmacology ; Animals ; Arginine Vasopressin/antagonists & inhibitors/metabolism/*pharmacology ; Binding, Competitive ; Blood Pressure/*drug effects ; Cell Membrane/metabolism ; Kidney/metabolism ; Kinetics ; Liver/metabolism ; Norepinephrine/pharmacology ; Piperidines/administration & dosage/*pharmacology ; Quinolones/administration & dosage/*pharmacology ; Rats ; Receptors, Angiotensin/*drug effects/metabolism ; Receptors, Vasopressin ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-11-01
    Description: Sodium salts are potent taste stimuli, but their effectiveness is markedly dependent on the anion, with chloride yielding the greatest response. The cellular mechanisms that mediate this phenomenon are not known. This "anion paradox" has been resolved by considering the field potential that is generated by restricted electrodiffusion of the anion through paracellular shunts between taste-bud cells. Neural responses to sodium chloride, sodium acetate, and sodium gluconate were studied while the field potential was voltage-clamped. Clamping at electronegative values eliminated the anion effect, whereas clamping at electropositive potentials exaggerated it. Thus, field potentials across the lingual epithelium modulate taste reception, indicating that the functional unit of taste reception includes the taste cell and its paracellular microenvironment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ye, Q -- Heck, G L -- DeSimone, J A -- DC00122/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 1;254(5032):724-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Virginia Commonwealth University, Richmond 23298-0551.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948054" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anions ; Chemoreceptor Cells/physiology ; Epithelium/physiology ; Evoked Potentials ; Female ; Models, Biological ; Mouth Mucosa/innervation/*physiology ; Neurons/physiology ; Rats ; Rats, Inbred Strains ; *Sodium ; *Sodium Chloride ; Taste/*physiology ; Tongue/*innervation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1991-03-15
    Description: Recent studies have suggested the existence of a tumor suppressor gene located at chromosome region 5q21. DNA probes from this region were used to study a panel of sporadic colorectal carcinomas. One of these probes, cosmid 5.71, detected a somatically rearranged restriction fragment in the DNA from a single tumor. Further analysis of the 5.71 cosmid revealed two regions that were highly conserved in rodent DNA. These sequences were used to identify a gene, MCC (mutated in colorectal cancer), which encodes an 829-amino acid protein with a short region of similarity to the G protein-coupled m3 muscarinic acetylcholine receptor. The rearrangement in the tumor disrupted the coding region of the MCC gene. Moreover, two colorectal tumors were found with somatically acquired point mutations in MCC that resulted in amino acid substitutions. MCC is thus a candidate for the putative colorectal tumor suppressor gene located at 5q21. Further studies will be required to determine whether the gene is mutated in other sporadic tumors or in the germ line of patients with an inherited predisposition to colonic tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kinzler, K W -- Nilbert, M C -- Vogelstein, B -- Bryan, T M -- Levy, D B -- Smith, K J -- Preisinger, A C -- Hamilton, S R -- Hedge, P -- Markham, A -- 6M 07184/PHS HHS/ -- CA 06973/CA/NCI NIH HHS/ -- CA 09243/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Mar 15;251(4999):1366-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics Laboratory, Johns Hopkins Oncology Center, Baltimore, MD 21231.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1848370" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli/*genetics ; Amino Acid Sequence ; Animals ; Base Sequence ; *Chromosomes, Human, Pair 5 ; Colorectal Neoplasms/*genetics ; Exons ; GTP-Binding Proteins/metabolism ; Gene Expression ; *Genes, Tumor Suppressor ; Humans ; Molecular Sequence Data ; Mutation ; Oligonucleotides/chemistry ; Polymerase Chain Reaction ; Proteins/*genetics/metabolism ; Rats ; Sequence Homology, Nucleic Acid ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1991-12-20
    Description: Dimerization among transcription factors has become a recurrent theme in the regulation of eukaryotic gene expression. Hepatocyte nuclear factor-1 alpha (HNF-1 alpha) is a homeodomain-containing protein that functions as a dimer. A dimerization cofactor of HNF-1 alpha (DCoH) was identified that displayed a restricted tissue distribution and did not bind to DNA, but, rather, selectively stabilized HNF-1 alpha dimers. The formation of a stable tetrameric DCoH-HNF-1 alpha complex, which required the dimerization domain of HNF-1 alpha, did not change the DNA binding characteristics of HNF-1 alpha, but enhanced its transcriptional activity. However, DCoH did not confer transcriptional activation to the GAL4 DNA binding domain. These results indicate that DCoH regulates formation of transcriptionally active tetrameric complexes and may contribute to the developmental specificity of the complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mendel, D B -- Khavari, P A -- Conley, P B -- Graves, M K -- Hansen, L P -- Admon, A -- Crabtree, G R -- CA 09302/CA/NCI NIH HHS/ -- HD 07201/HD/NICHD NIH HHS/ -- HL 33942/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1762-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1763325" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Nucleus/physiology ; Chromosome Deletion ; DNA-Binding Proteins/*metabolism ; Gene Library ; Hepatocyte Nuclear Factor 1 ; Hepatocyte Nuclear Factor 1-alpha ; Hepatocyte Nuclear Factor 1-beta ; Humans ; *Hydro-Lyases ; Liver/physiology ; Macromolecular Substances ; Mice ; Molecular Sequence Data ; *Nuclear Proteins ; Protein Biosynthesis ; RNA, Messenger/genetics ; Rabbits ; Rats ; Reticulocytes/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-25
    Description: A complementary DNA clone for a serotonin (5HT) transporter has been isolated from rat basophilic leukemia cells. The complementary DNA sequence predicts a 653-amino acid protein with 12 to 13 putative transmembrane domains. The 5HT transporter has significant homology to the gamma-aminobutyric acid, dopamine, and norepinephrine transporters. Uptake by CV-1 cells expressing the transporter complementary DNA resembles 5HT uptake by platelets and brain synaptosomes; it is sensitive to antidepressants, amphetamine derivatives, and cocaine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffman, B J -- Mezey, E -- Brownstein, M J -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):579-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, National Institute of Mental Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948036" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antidepressive Agents/*pharmacology ; Base Sequence ; Carrier Proteins/drug effects/*genetics/metabolism ; Cell Line ; Cloning, Molecular ; Kinetics ; Leukemia, Basophilic, Acute ; Molecular Sequence Data ; Oligonucleotide Probes ; Rats ; Serotonin/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1991-11-22
    Description: Acidic and basic fibroblast growth factors (FGFs) are members of a family of proteins that are broad-spectrum mitogens, have diverse hormone-like activities, and function in tumorigenesis. FGF's ability to raise the concentration of intracellular calcium ion suggests that FGF could induce the synthesis of endothelium-derived relaxing factor (EDRF) and consequently vasodilation. Systemic administration of FGF decreased arterial blood pressure. This effect was mediated by EDRF and by adenosine triphosphate-sensitive potassium ion channels. The hypotensive effect of FGF was segregated from its mitogenic activity by protein engineering. These results extend the range of FGF autocrine activities and potential therapeutic applications, emphasize the role of endothelium as an arterial blood pressure--regulating organ, and provide insight on the structural basis of FGF functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuevas, P -- Carceller, F -- Ortega, S -- Zazo, M -- Nieto, I -- Gimenez-Gallego, G -- New York, N.Y. -- Science. 1991 Nov 22;254(5035):1208-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hospital Universitario Ramon y Cajal, Carretera de Colmenar, Madrid, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1957172" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Pressure/*drug effects ; Dose-Response Relationship, Drug ; Fibroblast Growth Factors/chemistry/*pharmacology ; Glyburide/pharmacology ; Nitric Oxide/physiology ; Potassium Channels/drug effects ; Rabbits ; Rats ; Structure-Activity Relationship ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-04
    Description: Voltage-gated sodium channels, which are responsible for the generation of action potentials in the brain, are phosphorylated by protein kinase C (PKC) in purified form. Activation of PKC decreases peak sodium current up to 80 percent and slows its inactivation for sodium channels in rat brain neurons and for rat brain type IIA sodium channel alpha subunits heterologously expressed in Chinese hamster ovary cells. These effects are specific for PKC because they can be blocked by specific peptide inhibitors of PKC and can be reproduced by direct application of PKC to the cytoplasmic surface of sodium channels in excised inside-out membrane patches. Modulation of brain sodium channels by PKC is likely to have important effects on signal transduction and synaptic transmission in the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Numann, R -- Catterall, W A -- Scheuer, T -- NS15751/NS/NINDS NIH HHS/ -- NS25704/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 4;254(5028):115-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1656525" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/physiology ; CHO Cells ; Cloning, Molecular ; Cricetinae ; Diglycerides/pharmacology ; In Vitro Techniques ; Neurons/physiology ; Phosphoproteins/physiology ; Phosphorylation ; Protein Kinase C/*physiology ; Protein Kinases/physiology ; Rats ; Sodium/*physiology ; Sodium Channels/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1991-12-06
    Description: Antagonists of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor, including phencyclidine (PCP) and ketamine, protect against brain damage in neurological disorders such as stroke. However, these agents have psychotomimetic properties in humans and morphologically damage neurons in the cerebral cortex of rats. It is now shown that the morphological damage can be prevented by certain anticholinergic drugs or by diazepam and barbiturates, which act at the gamma-aminobutyric acid (GABA) receptor-channel complex and are known to suppress the psychotomimetic symptoms caused by ketamine. Thus, it may be possible to prevent the unwanted side effects of NMDA antagonists, thereby enhancing their utility as neuroprotective drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olney, J W -- Labruyere, J -- Wang, G -- Wozniak, D F -- Price, M T -- Sesma, M A -- AG 05681/AG/NIA NIH HHS/ -- DA 53568/DA/NIDA NIH HHS/ -- MH 38894/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1991 Dec 6;254(5037):1515-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1835799" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Barbiturates/pharmacology ; Chick Embryo ; Dizocilpine Maleate/*antagonists & inhibitors ; Neurotoxins/*antagonists & inhibitors ; Parasympatholytics/pharmacology ; Pilocarpine/pharmacology ; Rats ; Receptors, N-Methyl-D-Aspartate/*drug effects ; Scopolamine Hydrobromide/pharmacology ; Vacuoles/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1991-12-13
    Description: Calcium-dependent (C-type) animal lectins participate in many cell surface recognition events mediated by protein-carbohydrate interactions. The C-type lectin family includes cell adhesion molecules, endocytic receptors, and extracellular matrix proteins. Mammalian mannose-binding proteins are C-type lectins that function in antibody-independent host defense against pathogens. The crystal structure of the carbohydrate-recognition domain of a rat mannose-binding protein, determined as the holmium-substituted complex by multiwavelength anomalous dispersion (MAD) phasing, reveals an unusual fold consisting of two distinct regions, one of which contains extensive nonregular secondary structure stabilized by two holmium ions. The structure explains the conservation of 32 residues in all C-type carbohydrate-recognition domains, suggesting that the fold seen here is common to these domains. The strong anomalous scattering observed at the Ho LIII edge demonstrates that traditional heavy atom complexes will be generally amenable to the MAD phasing method.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weis, W I -- Kahn, R -- Fourme, R -- Drickamer, K -- Hendrickson, W A -- GM34102/GM/NIGMS NIH HHS/ -- GM42628/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Dec 13;254(5038):1608-15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1721241" target="_blank"〉PubMed〈/a〉
    Keywords: Acute-Phase Proteins/*chemistry ; Amino Acid Sequence ; Animals ; Calcium/metabolism ; Calcium-Binding Proteins/*chemistry ; Carrier Proteins/*chemistry ; Collagen/chemistry ; Crystallography ; Holmium ; Hydrogen Bonding ; Lanthanum ; Lectins/*chemistry ; Ligands ; Mannose-Binding Lectins ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Protein Conformation ; Rats ; Recombinant Proteins/chemistry ; Sequence Alignment ; X-Ray Diffraction/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1991-11-15
    Description: Type I diabetes mellitus is an autoimmune disease resulting from the interaction of genetic and environmental factors. A virus that was identified serologically as Kilham's rat virus (KRV) was isolated from a spontaneously diabetic rat and reproducibly induced diabetes in naive diabetes-resistant (DR) BB/Wor rats. Viral antigen was not identified in pancreatic islet cells, and beta cell cytolysis was not observed until after the appearance of lymphocytic insulitis. KRV did not induce diabetes in major histocompatibility complex-concordant and discordant non-BB rats and did not accelerate diabetes in diabetes-prone BB/Wor rats unless the rats had been reconstituted with DR spleen cells. This model of diabetes may provide insight regarding the interaction of viruses and autoimmune disease [corrected]〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guberski, D L -- Thomas, V A -- Shek, W R -- Like, A A -- Handler, E S -- Rossini, A A -- Wallace, J E -- Welsh, R M -- DK07302/DK/NIDDK NIH HHS/ -- DK19155/DK/NIDDK NIH HHS/ -- DK7-2287/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Nov 15;254(5034):1010-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Massachusetts Medical Center, Worcester 01655.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1658938" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Laboratory ; Diabetes Mellitus, Type 1/genetics/*microbiology/pathology ; Disease Outbreaks/veterinary ; Genes, MHC Class I ; Haplotypes ; Islets of Langerhans/immunology/pathology ; Parvoviridae Infections/complications/pathology/*veterinary ; Rats ; Rats, Inbred BB
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, A F -- New York, N.Y. -- Science. 1991 May 10;252(5007):764.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1851327" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD45 ; Antigens, Differentiation ; Cell Membrane/*enzymology ; Histocompatibility Antigens ; Mice ; *Phosphoprotein Phosphatases ; Protein Tyrosine Phosphatases ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1991-06-07
    Description: The mechanism by which Ca2+ mediates gene induction in response to membrane depolarization was investigated. The adenosine 3',5'-monophosphate (cAMP) response element-binding protein (CREB) was shown to function as a Ca(2+)-regulated transcription factor and as a substrate for depolarization-activated Ca(2+)-calmodulin-dependent protein kinases (CaM kinases) I and II. CREB residue Ser133 was the major site of phosphorylation by the CaM kinases in vitro and of phosphorylation after membrane depolarization in vivo. Mutation of Ser133 impaired the ability of CREB to respond to Ca2+. These results suggest that CaM kinases may transduce electrical signals to the nucleus and that CREB functions to integrate Ca2+ and cAMP signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheng, M -- Thompson, M A -- Greenberg, M E -- R01 CA 43855/CA/NCI NIH HHS/ -- R01 NS 28829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Jun 7;252(5011):1427-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1646483" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*pharmacology ; Calcium-Calmodulin-Dependent Protein Kinases ; Chromosome Mapping ; Cloning, Molecular ; Cyclic AMP/physiology ; Cyclic AMP Response Element-Binding Protein ; DNA-Binding Proteins/*physiology ; Electrophoresis, Polyacrylamide Gel ; Fungal Proteins/pharmacology ; Gene Expression Regulation/*drug effects ; Genes, Regulator/physiology ; Humans ; In Vitro Techniques ; Phosphorylation ; Protein Kinases/pharmacology ; Rats ; Recombinant Fusion Proteins/pharmacology ; *Saccharomyces cerevisiae Proteins ; Serine/chemistry ; Signal Transduction ; TATA Box ; Transcription Factors/*physiology ; Transcription, Genetic/drug effects ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-04-26
    Description: To determine the domains of the low-affinity nerve growth factor (NGF) receptor required for appropriate signal transduction, a series of hybrid receptors were constructed that consisted of the extracellular ligand-binding domain of the human epidermal growth factor (EGF) receptor (EGFR) fused to the transmembrane and cytoplasmic domains of the human low-affinity NGF receptor (NGFR). Transfection of these chimeric receptors into rat pheochromocytoma PC12 cells resulted in appropriate cell surface expression. Biological activity mediated by the EGF-NGF chimeric receptor was assayed by the induction of neurite outgrowth in response to EGF in stably transfected cells. Furthermore, the chimeric receptor mediated nuclear signaling, as evidenced by the specific induction of transin messenger RNA, an NGF-responsive gene. Neurite outgrowth was not observed with chimeric receptors that contained the transmembrane domain from the EGFR, suggesting that the membrane-spanning region and cytoplasmic domain of the low-affinity NGFR are necessary for signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, H -- Schlessinger, J -- Chao, M V -- New York, N.Y. -- Science. 1991 Apr 26;252(5005):561-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1850551" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Gland Neoplasms ; Animals ; Axons/drug effects/physiology/ultrastructure ; *Cell Differentiation ; Cell Line ; Chimera ; Epidermal Growth Factor/pharmacology ; Humans ; Nerve Growth Factors/pharmacology/*physiology ; Neurons/*cytology ; Pheochromocytoma ; Rats ; Receptor, Epidermal Growth Factor/genetics/*physiology ; Receptors, Cell Surface/genetics/*physiology ; Receptors, Nerve Growth Factor ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-07-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abelson, P H -- New York, N.Y. -- Science. 1991 Jul 26;253(5018):361.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1907400" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chlorine/toxicity ; Environmental Pollutants/*toxicity ; Environmental Pollution/*prevention & control ; Humans ; Neoplasms, Experimental/*chemically induced ; Polychlorinated Biphenyls/*toxicity ; Rats ; United States ; United States Environmental Protection Agency
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1991-11-01
    Description: The location of neurons generating the rhythm of breathing in mammals is unknown. By microsection of the neonatal rat brainstem in vitro, a limited region of the ventral medulla (the pre-Botzinger Complex) that contains neurons essential for rhythmogenesis was identified. Rhythm generation was eliminated by removal of only this region. Medullary slices containing the pre-Botzinger Complex generated respiratory-related oscillations similar to those generated by the whole brainstem in vitro, and neurons with voltage-dependent pacemaker-like properties were identified in this region. Thus, the respiratory rhythm in the mammalian neonatal nervous system may result from a population of conditional bursting pacemaker neurons in the pre-Botzinger Complex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209964/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209964/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, J C -- Ellenberger, H H -- Ballanyi, K -- Richter, D W -- Feldman, J L -- HL02204/HL/NHLBI NIH HHS/ -- HL4095/HL/NHLBI NIH HHS/ -- NS24742/NS/NINDS NIH HHS/ -- R01 HL070029/HL/NHLBI NIH HHS/ -- R01 HL070029-01A1/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 1;254(5032):726-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Kinesiology, University of California, Los Angeles 90024-1527.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1683005" target="_blank"〉PubMed〈/a〉
    Keywords: 6-Cyano-7-nitroquinoxaline-2,3-dione ; Activity Cycles ; Animals ; Animals, Newborn ; Evoked Potentials/drug effects ; In Vitro Techniques ; Mammals/*physiology ; Medulla Oblongata/cytology/*physiology ; Neurons/cytology/drug effects/*physiology ; Quinoxalines/pharmacology ; Rats ; Respiration/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1991-09-06
    Description: Approximately 30 to 40 percent of atherosclerotic coronary arteries treated by angioplasty or by bypass surgery occlude as a result of restenosis. This restenosis is due principally to the accumulation of neointimal smooth muscle cells, which is also a prominent feature of the advanced lesions of atherosclerosis. The factors responsible for the accumulation of intimal smooth muscle cells have not been identified. Platelet-derived growth factor (PDGF) is a potent smooth muscle chemoattractant and mitogen. It is present in platelets and can be formed by endothelium, smooth muscle, and monocyte-derived macrophages. The development of an intimal lesion in the carotid artery of athymic nude rats induced by intraarterial balloon catheter deendothelialization was inhibited by a polyclonal antibody to PDGF. These data demonstrate that endogenous PDGF is involved in the accumulation of neointimal smooth muscle cells associated with balloon injury and may be involved in restenosis after angioplasty, and perhaps in atherogenesis as well.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferns, G A -- Raines, E W -- Sprugel, K H -- Motani, A S -- Reidy, M A -- Ross, R -- HL-03174/HL/NHLBI NIH HHS/ -- HL-18645/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1991 Sep 6;253(5024):1129-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉William Harvey Research Institute, St. Bartholomew's Hospital Medical College, London, United Kingdom.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1653454" target="_blank"〉PubMed〈/a〉
    Keywords: Angioplasty, Balloon/*adverse effects ; Animals ; Antibodies/*therapeutic use ; Arteriosclerosis/etiology/*prevention & control ; Carotid Arteries/*pathology ; DNA Replication ; Goats/immunology ; Humans ; Immunoglobulin G/*therapeutic use ; Muscle, Smooth, Vascular/*pathology ; Platelet-Derived Growth Factor/*immunology/metabolism ; Rats ; Rats, Nude ; Receptors, Cell Surface/metabolism ; Receptors, Platelet-Derived Growth Factor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harlan, R E -- New York, N.Y. -- Science. 1991 Oct 18;254(5030):360.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925588" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Mapping ; Rats ; Terminology as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-07-05
    Description: Mutations in the evolutionarily conserved codons of the p53 tumor suppressor gene are common in diverse types of human cancer. The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues. Analysis of these mutations can provide clues to the etiology of these diverse tumors and to the function of specific regions of p53. Transitions predominate in colon, brain, and lymphoid malignancies, whereas G:C to T:A transversions are the most frequent substitutions observed in cancers of the lung and liver. Mutations at A:T base pairs are seen more frequently in esophageal carcinomas than in other solid tumors. Most transitions in colorectal carcinomas, brain tumors, leukemias, and lymphomas are at CpG dinucleotide mutational hot spots. G to T transversions in lung, breast, and esophageal carcinomas are dispersed among numerous codons. In liver tumors in persons from geographic areas in which both aflatoxin B1 and hepatitis B virus are cancer risk factors, most mutations are at one nucleotide pair of codon 249. These differences may reflect the etiological contributions of both exogenous and endogenous factors to human carcinogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hollstein, M -- Sidransky, D -- Vogelstein, B -- Harris, C C -- CA 09071/CA/NCI NIH HHS/ -- CA 43460/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 Jul 5;253(5015):49-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1905840" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Chickens ; DNA Mutational Analysis ; *Genes, p53 ; Haplorhini ; Humans ; Mice ; Molecular Sequence Data ; *Mutation ; Neoplasms/*genetics ; Rats ; Sequence Homology, Nucleic Acid ; Trout ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1991-03-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, C S -- Nicolelis, M A -- Schneider, J S -- Chapin, J K Jr -- New York, N.Y. -- Science. 1991 Mar 8;251(4998):1162.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1706534" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axonal Transport ; Cerebral Cortex/*anatomy & histology ; Diencephalon/*anatomy & histology ; Horseradish Peroxidase ; Mice ; Neurons/cytology ; Rats ; Thalamus/*anatomy & histology ; gamma-Aminobutyric Acid/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1991-10-25
    Description: After antigenic stimulation of T lymphocytes, genes essential for proliferation and immune function, such as the interleukin-2 (IL-2) gene, are transcriptionally activated. In both transient transfections and T lymphocyte-specific in vitro transcription, the homeodomain-containing protein Oct-1 participated in the inducible regulation of transcription of the IL-2 gene. Oct-1 functioned in this context with a 40-kilodalton protein called Oct-1-associated protein (OAP40). In addition to interacting specifically with DNA, OAP40 reduced the rate of dissociation of Oct-1 from its cognate DNA-binding site, suggesting that a direct interaction exists between Oct-1 and OAP40.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ullman, K S -- Flanagan, W M -- Edwards, C A -- Crabtree, G R -- AI07290/AI/NIAID NIH HHS/ -- CA39612/CA/NCI NIH HHS/ -- HL33942/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):558-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1683003" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal ; Base Sequence ; DNA-Binding Proteins/biosynthesis/*genetics/*physiology ; Enhancer Elements, Genetic ; *Gene Expression Regulation ; Genes, Homeobox ; Host Cell Factor C1 ; Interleukin-2/*genetics ; Mice ; Mice, Inbred BALB C/immunology ; Molecular Sequence Data ; Octamer Transcription Factor-1 ; Oligodeoxyribonucleotides ; Peptides/chemical synthesis/immunology ; Rats ; T-Lymphocytes/immunology/*physiology ; Transcription Factors/*genetics/physiology ; *Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1991-07-05
    Description: Although neurotrophic factors were originally isolated on the basis of their ability to support the survival of neurons, these molecules are now thought to influence many aspects of the development and maintenance of the nervous system. Identifying the receptors for these neurotrophic factors should aid in identifying the cells on which these factors act and in understanding their precise mechanisms of action. A "tagged-ligand panning" procedure was used to clone a receptor for ciliary neurotrophic factor (CNTF). This receptor is expressed exclusively within the nervous system and skeletal muscle. The CNTF receptor has a structure unrelated to the receptors utilized by the nerve growth factor family of neurotrophic molecules, but instead is most homologous to the receptor for a cytokine, interleukin-6. This similarity suggestes that the CNTF receptor, like the interleukin-6 receptor, requires a second, signal-transducing component. In contrast to all known receptors, the CNTF receptor is anchored to cell membranes by a glycosyl-phosphatidylinositol linkage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davis, S -- Aldrich, T H -- Valenzuela, D M -- Wong, V V -- Furth, M E -- Squinto, S P -- Yancopoulos, G D -- New York, N.Y. -- Science. 1991 Jul 5;253(5015):59-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1648265" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Blotting, Northern ; Cell Line ; Cloning, Molecular ; Electrophoresis, Agar Gel ; Gene Expression ; Humans ; In Vitro Techniques ; Molecular Sequence Data ; Muscles/metabolism ; Nervous System/metabolism ; Neuroblastoma/metabolism ; Rats ; Receptor, Ciliary Neurotrophic Factor ; Receptors, Cell Surface/blood/*genetics ; Sequence Homology, Nucleic Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1991-10-25
    Description: Nerve growth factor receptor (NGFR) serves as the binding site for the neurotrophic growth factors. Although NGFR has been found in several embryonic tissues outside the nervous system, the function of NGFR in embryogenesis of non-neuronal organs remains unknown. NGFR is transiently synthesized by embryonic rat kidney and disappears from nephrons upon their terminal differentiation. Anti-sense oligonucleotide inhibition of NGFR expression inhibits kidney morphogenesis. Therefore, NGFR is required not only for development of the nervous system, but also for differentiation of the kidney tubules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sariola, H -- Saarma, M -- Sainio, K -- Arumae, U -- Palgi, J -- Vaahtokari, A -- Thesleff, I -- Karavanov, A -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):571-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paediatric Pathology, Childrens' Hospital, University of Helsinki, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1658930" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Embryo, Mammalian ; Gene Expression ; Kidney/cytology/*embryology ; Molecular Sequence Data ; Nerve Growth Factors/*physiology ; Oligonucleotides, Antisense ; PC12 Cells ; RNA, Messenger/analysis/genetics ; Rats ; Receptors, Cell Surface/*genetics/physiology ; Receptors, Nerve Growth Factor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1991-01-25
    Description: Encephalitogenic T cells specific for myelin basic protein share common V beta 8 peptide sequences in their T cell receptor (TCR) that can induce autoregulatory T cells and antibodies that prevent clinical signs of experimental autoimmune encephalomyelitis (EAE). It is not known, however, if TCR peptides can treat established disease. To test its therapeutic value, TCR-V beta 8-39-59 peptide was injected into rats with clinical signs of EAE. This treatment reduced disease severity and speeded recovery, apparently by boosting anti-V beta 8 T cells and antibodies raised naturally in response to encephalitogenic V beta 8+ T cells. These results demonstrate that synthetic TCR peptides can be used therapeutically, and implicate the TCR-V beta 8-39-59 sequence as a natural idiotope involved in EAE recovery. Similarly, human TCR peptides may be effective in enhancing natural regulation of autoreactive T cells that share common V genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Offner, H -- Hashim, G A -- Vandenbark, A A -- NS21466/NS/NINDS NIH HHS/ -- NS23221/NS/NINDS NIH HHS/ -- NS23444/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Jan 25;251(4992):430-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neuroimmunology Research, Veterans Administration Medical Center, Portland, OR.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1989076" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibody Formation ; Autoimmune Diseases/immunology/*therapy ; Encephalomyelitis/immunology/*therapy ; Enzyme-Linked Immunosorbent Assay ; Hypersensitivity, Delayed ; Immune Sera/immunology ; Immunity, Cellular ; Immunotherapy ; Molecular Sequence Data ; *Peptide Fragments/chemistry/immunology/*therapeutic use ; Rats ; Rats, Inbred Lew ; *Receptors, Antigen, T-Cell/chemistry/immunology/*therapeutic use ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1991-09-06
    Description: Receptor channels activated by glutamate, an excitatory neurotransmitter in the mammalian brain, are involved in processes such as long-term potentiation and excitotoxicity. Studies of glutamate receptor channels expressed in cultured hippocampal pyramidal neurons reveal that these channels are subject to neuromodulatory regulation through the adenylate cyclase cascade. The whole-cell current response to glutamate and kainate [a non-NMDA (N-methyl-D-aspartate) receptor agonist] was enhanced by forskolin, an activator of adenylate cyclase. Single-channel analysis revealed that an adenosine 3',5'-monophosphate-dependent protein kinase (PKA) increases the opening frequency and the mean open time of the non-NMDA-type glutamate receptor channels. Analysis of synaptic events indicated that forskolin, acting through PKA, increased the amplitude and decay time of spontaneous excitatory postsynaptic currents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greengard, P -- Jen, J -- Nairn, A C -- Stevens, C F -- New York, N.Y. -- Science. 1991 Sep 6;253(5024):1135-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1716001" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Animals ; Animals, Newborn ; Cells, Cultured ; Colforsin/pharmacology ; Electric Conductivity/drug effects ; Glutamates/metabolism/*pharmacology ; Hippocampus/*physiology ; Ion Channel Gating/drug effects ; Ion Channels/drug effects/*physiology ; Kainic Acid/*pharmacology ; Kinetics ; Membrane Potentials/drug effects ; N-Methylaspartate/*pharmacology ; Neurons/drug effects/*physiology ; Protein Kinases/*metabolism ; Rats ; Receptors, Glutamate ; Receptors, Neurotransmitter/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1991-06-14
    Description: The identification of specialized areas in the mammalian neocortex, such as the primary visual or somatosensory cortex, is based on distinctions in architectural and functional features. The extent to which certain features that distinguish neocortical areas in rats are prespecified or emerge as a result of epigenetic interactions was investigated. Late embryonic visual cortex transplanted to neonatal somatosensory cortex was later assayed for "barrels," anatomically identified functional units unique to somatosensory cortex, and for boundaries of glycoconjugated molecules associated with barrels. Barrels and boundaries form in transplanted visual cortex and are organized in an array that resembles the pattern in the normal barrelfield. These findings show that different regions of the developing neocortex have similar potentials to differentiate features that distinguish neocortical areas and contribute to their unique functional organizations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schlaggar, B L -- O'Leary, D D -- P01 NS17763/NS/NINDS NIH HHS/ -- R01 EY07025/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1991 Jun 14;252(5012):1556-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2047863" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholinesterase/*analysis ; Aging ; Animals ; Animals, Newborn ; Brain Tissue Transplantation/*physiology ; Fetal Tissue Transplantation/physiology ; Glycoconjugates/analysis ; Microscopy, Fluorescence ; Neurons/cytology/enzymology/physiology ; Rats ; Rats, Inbred Strains ; Reference Values ; Somatosensory Cortex/cytology/growth & development/*physiology ; Transplantation, Heterotopic ; Visual Cortex/cytology/*physiology/transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-02-22
    Description: The primary motor cortex (MI) contains a map organized so that contralateral limb or facial movements are elicited by electrical stimulation within separate medial to lateral MI regions. Within hours of a peripheral nerve transection in adult rats, movements represented in neighboring MI areas are evoked from the cortical territory of the affected body part. One potential mechanism for reorganization is that adjacent cortical regions expand when preexisting lateral excitatory connections are unmasked by decreased intracortical inhibition. During pharmacological blockade of cortical inhibition in one part of the MI representation, movements of neighboring representations were evoked by stimulation in adjacent MI areas. These results suggest that intracortical connections form a substrate for reorganization of cortical maps and that inhibitory circuits are critically placed to maintain or readjust the form of cortical motor representations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacobs, K M -- Donoghue, J P -- NS22517/NS/NINDS NIH HHS/ -- NS25074/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Feb 22;251(4996):944-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brown University, Providence, RI 02912.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2000496" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bicuculline/pharmacology ; Electric Stimulation ; Electromyography ; Evoked Potentials ; Forelimb/innervation ; Models, Neurological ; Motor Activity ; Motor Cortex/anatomy & histology/drug effects/*physiology ; Muscles/innervation ; Rats ; Rats, Inbred Strains ; Vibrissae/innervation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1991-10-18
    Description: Corticotropin-releasing hormone (CRH) functions as a regulator of the hypothalamic-pituitary-adrenal axis and coordinator of the stress response. CRH receptors exist in peripheral sites of the immune system, and CRH promotes several immune functions in vitro. The effect of systemic immunoneutralization of CRH was tested in an experimental model of chemically induced aseptic inflammation in rats. Intraperitoneal administration of rabbit antiserum to CRH caused suppression of both inflammatory exudate volume and cell concentration by approximately 50 to 60 percent. CRH was detected in the inflamed area but not in the systemic circulation. Immunoreactive CRH is therefore produced in peripheral inflammatory sites where, in contrast to its systemic indirect immunosuppressive effects, it acts as an autocrine or paracrine inflammatory cytokine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karalis, K -- Sano, H -- Redwine, J -- Listwak, S -- Wilder, R L -- Chrousos, G P -- New York, N.Y. -- Science. 1991 Oct 18;254(5030):421-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925600" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrageenan ; Corticotropin-Releasing Hormone/immunology/metabolism/*physiology ; Immune Sera ; Immunohistochemistry ; Inflammation/chemically induced/*metabolism ; Male ; Rats ; Rats, Inbred Strains ; Tumor Necrosis Factor-alpha/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1991-10-25
    Description: A rat dopamine (DA) transporter complementary DNA has been isolated with combined complementary DNA homology and expression approaches. The DA transporter is a 619-amino acid protein with 12 hydrophobic putative membrane-spanning domains and homology to the norepinephrine and gamma-aminobutyric acid transporters. The expressed complementary DNA confers transport of [3H]DA in Xenopus oocytes and in COS cells. Binding of the cocaine analog [3H]CFT ([3H]2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane) to transfected COS cell membranes yields a pharmacological profile similar to that in striatal membranes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimada, S -- Kitayama, S -- Lin, C L -- Patel, A -- Nanthakumar, E -- Gregor, P -- Kuhar, M -- Uhl, G -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):576-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology, National Institute on Drug Abuse, Baltimore, MD 21224.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948034" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Carrier Proteins/drug effects/*genetics/metabolism ; Cell Line ; Cell Membrane/metabolism ; Cloning, Molecular ; Cocaine/analogs & derivatives/metabolism/*pharmacology ; Dopamine/*metabolism ; Dopamine Plasma Membrane Transport Proteins ; Female ; Kinetics ; *Membrane Glycoproteins ; *Membrane Transport Proteins ; Models, Structural ; Molecular Sequence Data ; *Nerve Tissue Proteins ; Oligodeoxyribonucleotides ; Oocytes/physiology ; Plasmids ; Polymerase Chain Reaction ; Protein Conformation ; RNA, Messenger/genetics ; Rats ; Transcription, Genetic ; Transfection ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-01-25
    Description: Rhythmic activity in the neocortex varies with different behavioral and pathological states and in some cases may encode sensory information. However, the neural mechanisms of these oscillations are largely unknown. Many pyramidal neurons in layer 5 of the neocortex showed prolonged, 5- to 12-hertz rhythmic firing patterns at threshold. Rhythmic firing was due to intrinsic membrane properties, sodium conductances were essential for rhythmicity, and calcium-dependent conductances strongly modified rhythmicity. Isolated slices of neocortex generated epochs of 4- to 10-hertz synchronized activity when N-methyl-D-aspartate receptor-mediated channels were facilitated. Layer 5 was both necessary and sufficient to produce these synchronized oscillations. Thus, synaptic networks of intrinsically rhythmic neurons in layer 5 may generate or promote certain synchronized oscillations of the neocortex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silva, L R -- Amitai, Y -- Connors, B W -- New York, N.Y. -- Science. 1991 Jan 25;251(4992):432-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neurobiology, Brown University, Providence, RI 02912.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1824881" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Cerebral Cortex/*physiology ; Culture Techniques ; Electroencephalography ; Membrane Potentials ; Neurons/*physiology ; Pyramidal Tracts/*physiology ; Rats ; Receptors, N-Methyl-D-Aspartate/metabolism ; Sodium/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-04-19
    Description: Inositol 1,4,5-trisphosphate (IP3)-induced calcium release from intracellular stores is a regulator of cytosolic-free calcium levels. The subsecond kinetics and regulation of IP3-induced calcium-45 release from synaptosome-derived microsomal vesicles were resolved by rapid superfusion. Extravesicular calcium acted as a coagonist, potentiating the transient IP3-induced release of calcium-45. Thus, rapid elevation of cytosolic calcium levels may trigger IP3-induced calcium release in vivo. Extravesicular calcium also produced a more slowly developing, reversible inhibition of IP3-induced calcium-45 release. Sequential positive and negative feedback regulation by calcium of IP3-induced calcium release may contribute to transients and oscillations of cytosolic-free calcium in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finch, E A -- Turner, T J -- Goldin, S M -- GM35423/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Apr 19;252(5004):443-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2017683" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Animals ; Brain/ultrastructure ; Calcimycin/pharmacology ; Calcium/*metabolism/pharmacology ; Calcium Radioisotopes ; Cytosol/metabolism ; Drug Synergism ; Heparin/pharmacology ; Inositol 1,4,5-Trisphosphate/*pharmacology ; Kinetics ; Magnesium/pharmacology ; Microsomes/drug effects/metabolism ; Rats ; Synaptosomes/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 1991 Aug 23;253(5022):857-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1715093" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/drug therapy/*pathology ; Amyloid beta-Peptides/metabolism/pharmacology ; Animals ; Rats ; Substance P/pharmacology/*physiology/therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1991-01-25
    Description: CP-96,345 [(2S, 3S)-cis-2-(diphenylmethyl)-N-[(2-methoxyphenyl)- methyl]-1-azabicyclo[2.2.2]octan-3-amine] is a potent nonpeptide antagonist of the substance P (NK1) receptor. CP-96,345 inhibited 3H-labeled substance P binding and was a classical competitive antagonist in the NK1 monoreceptor dog carotid artery preparation. CP-96,345 inhibited substance P-induced salivation in the rat, a classical in vivo bioassay, but did not inhibit NK2, NK3, or numerous other receptors; it is thus a selective NK1 antagonist. This compound may prove to be a powerful tool for investigation of the physiological properties of substance P and exploration of its role in diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Snider, R M -- Constantine, J W -- Lowe, J A 3rd -- Longo, K P -- Lebel, W S -- Woody, H A -- Drozda, S E -- Desai, M C -- Vinick, F J -- Spencer, R W -- New York, N.Y. -- Science. 1991 Jan 25;251(4992):435-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Exploratory Medicinal Chemistry, Central Research Division, Pfizer Inc., Groton, CT 06340.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1703323" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding, Competitive ; Biphenyl Compounds/chemistry/*pharmacology ; Carotid Arteries/drug effects ; Cattle ; Dogs ; Molecular Structure ; Muscle Contraction/drug effects ; Muscle Relaxation/drug effects ; Rabbits ; Rats ; Receptors, Neurokinin-1 ; Receptors, Neurotransmitter/*antagonists & inhibitors ; Salivation/drug effects ; Stereoisomerism ; Substance P/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1991-05-17
    Description: Calcium can function as a second messenger through stimulation of calcium-dependent protein kinases. A protein kinase that requires calcium but not calmodulin or phospholipids for activity has been purified from soybean. The kinase itself binds calcium with high affinity. A complementary DNA clone for this kinase has been identified; it encodes a protein with a predicted molecular mass of 57,175 daltons. This protein contains a catalytic domain similar to that of calmodulin-dependent kinases and a calmodulin-like region with four calcium binding domains (EF hands). The predicted structure of this kinase explains its direct regulation via calcium binding and establishes it as a prototype for a new family of calcium-regulated protein kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harper, J F -- Sussman, M R -- Schaller, G E -- Putnam-Evans, C -- Charbonneau, H -- Harmon, A C -- GM15731/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 May 17;252(5008):951-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, Louisiana State University, Baton Rouge 70803.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1852075" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Brain/enzymology ; Calcium/metabolism/*physiology ; Calcium-Calmodulin-Dependent Protein Kinases ; Calmodulin/*genetics ; Molecular Sequence Data ; Protein Kinases/*genetics/metabolism ; Rats ; Sequence Homology, Nucleic Acid ; Soybeans/*enzymology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-01-11
    Description: The function of the c-Myc oncoprotein and its role in cell growth control is unclear. A basic region of c-Myc is structurally related to the basic motifs of helix-loop-helix (HLH) and leucine zipper proteins, which provide sequence-specific DNA binding function. The c-Myc basic region was tested for its ability to bind DNA by attaching it to the HLH dimerization interface of the E12 enhancer binding factor. Dimers of the chimeric protein, termed E6, specifically bound an E box element (GGCCACGTGACC) recognized by other HLH proteins in a manner dependent on the integrity of the c-Myc basic motif. Methylation of the core CpG in the E box recognition site specifically inhibited binding by E6, but not by two other HLH proteins. Expression of E6 (but not an E6 DNA binding mutant) suppressed the ability of c-myc to cooperate with H-ras in a rat embryo fibroblast transformation assay, suggesting that the DNA recognition specificity of E6 is related to that of c-Myc in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prendergast, G C -- Ziff, E B -- New York, N.Y. -- Science. 1991 Jan 11;251(4990):186-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, New York, NY.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1987636" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Cell Transformation, Neoplastic ; Cloning, Molecular ; DNA/*metabolism ; DNA-Binding Proteins/genetics/metabolism ; Genes, ras ; Leucine Zippers ; Macromolecular Substances ; Methylation ; Molecular Sequence Data ; Mutagenesis ; Oligonucleotide Probes ; Protein Conformation ; Proto-Oncogene Proteins c-myc/genetics/*metabolism ; Rabbits ; Rats ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-09-20
    Description: An atomic force microscope (AFM) was used to study the structure of isolated hepatic gap junctions in phosphate-buffered saline (PBS). The thickness of these gap junctions appears to be 14.4 nanometers, close to the dimensions reported by electron microscopy (EM). When an increasing force is applied to the microscope tip, the top membrane of the gap junction can be "dissected" away, leaving the extracellular domains of the bottom membrane exposed. When such "force dissection" is performed on samples both trypsinized and fixed with glutaraldehyde, the hexagonal array of gap junction hemichannels is revealed, with a center-to-center spacing of 9.1 nanometers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoh, J H -- Lal, R -- John, S A -- Revel, J P -- Arnsdorf, M F -- HL37109/HL/NHLBI NIH HHS/ -- R37 HL21788/HL/NHLBI NIH HHS/ -- RR07003/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1991 Sep 20;253(5026):1405-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasedena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1910206" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Fourier Analysis ; Glutaral ; Intercellular Junctions/*ultrastructure ; Liver/*ultrastructure ; Microscopy/methods ; Microscopy, Electron/methods ; Rats ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1991-05-31
    Description: A complementary DNA encoding a G protein-coupled glutamate receptor from rat brain, GluGR, was cloned by functional expression in Xenopus oocytes. The complementary DNA encodes a protein of 1199 amino acids containing a seven-transmembrane motif, flanked by large amino- and carboxyl-terminal domains. This receptor lacks any amino acid sequence similarity with other G protein-coupled receptors, suggesting that it may be a member of a new subfamily. The presence of two introns flanking the central core suggests that GluGR may have evolved by exon shuffling. Expressed in oocytes, GluGR is activated by quisqualate greater than glutamate greater than ibotenate greater than trans-1-aminocyclopentyl-1,3-dicarboxylate, and it is inhibited by 2-amino-3-phosphonopropionate. Activation is blocked by Bordella pertussis toxin. These properties are typical of some metabotropic glutamate receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Houamed, K M -- Kuijper, J L -- Gilbert, T L -- Haldeman, B A -- O'Hara, P J -- Mulvihill, E R -- Almers, W -- Hagen, F S -- AR 17803/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 1991 May 31;252(5010):1318-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1656524" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; *Brain Chemistry ; *Cloning, Molecular ; DNA/genetics ; Exons ; GTP-Binding Proteins/*metabolism ; Humans ; Introns ; Molecular Sequence Data ; Nucleic Acid Hybridization ; RNA, Messenger/genetics ; Rats ; Receptors, Glutamate ; Receptors, Neurotransmitter/chemistry/*genetics/metabolism ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2009-04-18
    Description: Genes are not simply turned on or off, but instead their expression is fine-tuned to meet the needs of a cell. How genes are modulated so precisely is not well understood. The glucocorticoid receptor (GR) regulates target genes by associating with specific DNA binding sites, the sequences of which differ between genes. Traditionally, these binding sites have been viewed only as docking sites. Using structural, biochemical, and cell-based assays, we show that GR binding sequences, differing by as little as a single base pair, differentially affect GR conformation and regulatory activity. We therefore propose that DNA is a sequence-specific allosteric ligand of GR that tailors the activity of the receptor toward specific target genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meijsing, Sebastiaan H -- Pufall, Miles A -- So, Alex Y -- Bates, Darren L -- Chen, Lin -- Yamamoto, Keith R -- GM08537/GM/NIGMS NIH HHS/ -- R01 CA020535/CA/NCI NIH HHS/ -- R01 CA020535-31/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):407-10. doi: 10.1126/science.1164265.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Cell Line, Tumor ; Crystallography, X-Ray ; DNA/*chemistry/*metabolism ; Humans ; Ligands ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, Glucocorticoid/chemistry/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2009-01-03
    Description: Chaperone-mediated autophagy controls the degradation of selective cytosolic proteins and may protect neurons against degeneration. In a neuronal cell line, we found that chaperone-mediated autophagy regulated the activity of myocyte enhancer factor 2D (MEF2D), a transcription factor required for neuronal survival. MEF2D was observed to continuously shuttle to the cytoplasm, interact with the chaperone Hsc70, and undergo degradation. Inhibition of chaperone-mediated autophagy caused accumulation of inactive MEF2D in the cytoplasm. MEF2D levels were increased in the brains of alpha-synuclein transgenic mice and patients with Parkinson's disease. Wild-type alpha-synuclein and a Parkinson's disease-associated mutant disrupted the MEF2D-Hsc70 binding and led to neuronal death. Thus, chaperone-mediated autophagy modulates the neuronal survival machinery, and dysregulation of this pathway is associated with Parkinson's disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666000/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666000/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Qian -- She, Hua -- Gearing, Marla -- Colla, Emanuela -- Lee, Michael -- Shacka, John J -- Mao, Zixu -- AG023695/AG/NIA NIH HHS/ -- NS038065/NS/NINDS NIH HHS/ -- NS048254/NS/NINDS NIH HHS/ -- NS055077/NS/NINDS NIH HHS/ -- NS47466/NS/NINDS NIH HHS/ -- NS57098/NS/NINDS NIH HHS/ -- P30 NS055077/NS/NINDS NIH HHS/ -- P30 NS055077-01A2/NS/NINDS NIH HHS/ -- P50 AG025688/AG/NIA NIH HHS/ -- P50 AG025688-03/AG/NIA NIH HHS/ -- R01 AG023695/AG/NIA NIH HHS/ -- R01 AG023695-02/AG/NIA NIH HHS/ -- R01 AG023695-03/AG/NIA NIH HHS/ -- R01 AG023695-04/AG/NIA NIH HHS/ -- R01 AG023695-05/AG/NIA NIH HHS/ -- R01 NS048254/NS/NINDS NIH HHS/ -- R01 NS048254-02/NS/NINDS NIH HHS/ -- R01 NS048254-03/NS/NINDS NIH HHS/ -- R01 NS048254-04/NS/NINDS NIH HHS/ -- R01 NS048254-05/NS/NINDS NIH HHS/ -- R01 NS048254-06/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 2;323(5910):124-7. doi: 10.1126/science.1166088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19119233" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Ammonium Chloride/pharmacology ; Animals ; *Autophagy ; Brain/metabolism ; Cell Line ; Cell Nucleus/metabolism ; Cell Survival ; Cytoplasm/metabolism ; DNA/metabolism ; HSC70 Heat-Shock Proteins/metabolism ; Lysosomal-Associated Membrane Protein 2/metabolism ; Lysosomes/metabolism ; MADS Domain Proteins/*metabolism ; MEF2 Transcription Factors ; Mice ; Mice, Transgenic ; Molecular Chaperones/*metabolism ; Myogenic Regulatory Factors/chemistry/*metabolism ; Neurons/cytology/*metabolism ; Parkinson Disease/metabolism ; Protein Binding ; Protein Transport ; Rats ; Rats, Long-Evans ; alpha-Synuclein/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2009-02-14
    Description: The sigma-1 receptor is widely distributed in the central nervous system and periphery. Originally mischaracterized as an opioid receptor, the sigma-1 receptor binds a vast number of synthetic compounds but does not bind opioid peptides; it is currently considered an orphan receptor. The sigma-1 receptor pharmacophore includes an alkylamine core, also found in the endogenous compound N,N-dimethyltryptamine (DMT). DMT acts as a hallucinogen, but its receptor target has been unclear. DMT bound to sigma-1 receptors and inhibited voltage-gated sodium ion (Na+) channels in both native cardiac myocytes and heterologous cells that express sigma-1 receptors. DMT induced hypermobility in wild-type mice but not in sigma-1 receptor knockout mice. These biochemical, physiological, and behavioral experiments indicate that DMT is an endogenous agonist for the sigma-1 receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947205/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947205/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fontanilla, Dominique -- Johannessen, Molly -- Hajipour, Abdol R -- Cozzi, Nicholas V -- Jackson, Meyer B -- Ruoho, Arnold E -- F31 DA022932/DA/NIDA NIH HHS/ -- NS30016/NS/NINDS NIH HHS/ -- R01 MH065503/MH/NIMH NIH HHS/ -- R01 MH065503-01A1/MH/NIMH NIH HHS/ -- R01 NS030016/NS/NINDS NIH HHS/ -- R01 NS030016-08/NS/NINDS NIH HHS/ -- R01 NS030016-09/NS/NINDS NIH HHS/ -- T32 GM08688/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 13;323(5916):934-7. doi: 10.1126/science.1166127.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19213917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Cell Line ; Cells, Cultured ; Cercopithecus aethiops ; Guinea Pigs ; Hallucinogens/*metabolism ; Ligands ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myocardium/metabolism ; N,N-Dimethyltryptamine/*metabolism ; Rats ; Receptors, sigma/agonists/antagonists & inhibitors/*metabolism ; Tryptamines/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2009-04-04
    Description: Dysregulation of the fear system is at the core of many psychiatric disorders. Much progress has been made in uncovering the neural basis of fear learning through studies in which associative emotional memories are formed by pairing an initially neutral stimulus (conditioned stimulus, CS; e.g., a tone) to an unconditioned stimulus (US; e.g., a shock). Despite recent advances, the question of how to persistently weaken aversive CS-US associations, or dampen traumatic memories in pathological cases, remains a major dilemma. Two paradigms (blockade of reconsolidation and extinction) have been used in the laboratory to reduce acquired fear. Unfortunately, their clinical efficacy is limited: Reconsolidation blockade typically requires potentially toxic drugs, and extinction is not permanent. Here, we describe a behavioral design in which a fear memory in rats is destabilized and reinterpreted as safe by presenting an isolated retrieval trial before an extinction session. This procedure permanently attenuates the fear memory without the use of drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625935/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625935/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Monfils, Marie-H -- Cowansage, Kiriana K -- Klann, Eric -- LeDoux, Joseph E -- F31 MH083472/MH/NIMH NIH HHS/ -- F31 MH083472-01A1/MH/NIMH NIH HHS/ -- F31MH083472/MH/NIMH NIH HHS/ -- K05 MH067048/MH/NIMH NIH HHS/ -- NS034007/NS/NINDS NIH HHS/ -- NS047384/NS/NINDS NIH HHS/ -- P50 MH058911/MH/NIMH NIH HHS/ -- R01 MH046516/MH/NIMH NIH HHS/ -- R37 MH038774/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2009 May 15;324(5929):951-5. doi: 10.1126/science.1167975. Epub 2009 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neural Science, New York University, New York, NY 10003, USA. monfils@mail.utexas.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19342552" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/physiology ; Animals ; Conditioning, Classical ; Extinction, Psychological/*physiology ; *Fear ; Male ; Memory/*physiology ; Mental Recall/*physiology ; Phosphorylation ; Rats ; Receptors, AMPA/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2009-10-10
    Description: Neurons in the central nervous system (CNS) lose their ability to regenerate early in development, but the underlying mechanisms are unknown. By screening genes developmentally regulated in retinal ganglion cells (RGCs), we identified Kruppel-like factor-4 (KLF4) as a transcriptional repressor of axon growth in RGCs and other CNS neurons. RGCs lacking KLF4 showed increased axon growth both in vitro and after optic nerve injury in vivo. Related KLF family members suppressed or enhanced axon growth to differing extents, and several growth-suppressive KLFs were up-regulated postnatally, whereas growth-enhancing KLFs were down-regulated. Thus, coordinated activities of different KLFs regulate the regenerative capacity of CNS neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882032/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882032/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, Darcie L -- Blackmore, Murray G -- Hu, Ying -- Kaestner, Klaus H -- Bixby, John L -- Lemmon, Vance P -- Goldberg, Jeffrey L -- P30 EY014801/EY/NEI NIH HHS/ -- R01 NS059866/NS/NINDS NIH HHS/ -- R01 NS059866-01A2/NS/NINDS NIH HHS/ -- R01 NS061348/NS/NINDS NIH HHS/ -- R01 NS061348-01A2/NS/NINDS NIH HHS/ -- R01 NS061348-02/NS/NINDS NIH HHS/ -- R01 NS061348-03/NS/NINDS NIH HHS/ -- R01 NS061348-04/NS/NINDS NIH HHS/ -- R03 EY016790/EY/NEI NIH HHS/ -- R03 EY016790-01/EY/NEI NIH HHS/ -- R03 EY016790-02/EY/NEI NIH HHS/ -- R03 EY016790-03/EY/NEI NIH HHS/ -- T32 NS007459/NS/NINDS NIH HHS/ -- T32 NS07492/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):298-301. doi: 10.1126/science.1175737.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19815778" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology/ultrastructure ; Cell Count ; Cell Survival ; Cells, Cultured ; Down-Regulation ; Gene Knockout Techniques ; Growth Cones/physiology ; Hippocampus/cytology/physiology ; Kruppel-Like Transcription Factors/genetics/*physiology ; Mice ; Nerve Crush ; Nerve Regeneration ; Neurites/physiology ; Neurons/*physiology ; Optic Nerve Injuries/physiopathology ; Rats ; Retinal Ganglion Cells/cytology/*physiology ; Transcription, Genetic ; Transfection ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2009-05-02
    Description: Different global patterns of brain activity are associated with distinct arousal and behavioral states of an animal, but how the brain rapidly switches between different states remains unclear. We here report that repetitive high-frequency burst spiking of a single rat cortical neuron could trigger a switch between the cortical states resembling slow-wave and rapid-eye-movement sleep. This is reflected in the switching of the membrane potential of the stimulated neuron from slow UP/DOWN oscillations to a persistent-UP state or vice versa, with concurrent changes in the temporal pattern of cortical local field potential (LFP) recorded several millimeters away. These results point to the power of single cortical neurons in modulating the behavioral state of an animal.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913066/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913066/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Cheng-Yu T -- Poo, Mu-Ming -- Dan, Yang -- R01 EY018861/EY/NEI NIH HHS/ -- R01 EY018861-01/EY/NEI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 May 1;324(5927):643-6. doi: 10.1126/science.1169957.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Institute of Neuroscience, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19407203" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal ; Electroencephalography ; Membrane Potentials ; Neurons/*physiology ; Patch-Clamp Techniques ; Rats ; Rats, Long-Evans ; Sleep Stages ; Sleep, REM ; Somatosensory Cortex/cytology/*physiology ; Visual Cortex/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2009-07-25
    Description: The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geurts, Aron M -- Cost, Gregory J -- Freyvert, Yevgeniy -- Zeitler, Bryan -- Miller, Jeffrey C -- Choi, Vivian M -- Jenkins, Shirin S -- Wood, Adam -- Cui, Xiaoxia -- Meng, Xiangdong -- Vincent, Anna -- Lam, Stephen -- Michalkiewicz, Mieczyslaw -- Schilling, Rebecca -- Foeckler, Jamie -- Kalloway, Shawn -- Weiler, Hartmut -- Menoret, Severine -- Anegon, Ignacio -- Davis, Gregory D -- Zhang, Lei -- Rebar, Edward J -- Gregory, Philip D -- Urnov, Fyodor D -- Jacob, Howard J -- Buelow, Roland -- 5P01HL082798-03/HL/NHLBI NIH HHS/ -- 5U01HL066579-08/HL/NHLBI NIH HHS/ -- P01 HL082798/HL/NHLBI NIH HHS/ -- P01 HL082798-03/HL/NHLBI NIH HHS/ -- U01 HL066579/HL/NHLBI NIH HHS/ -- U01 HL066579-08/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 24;325(5939):433. doi: 10.1126/science.1172447.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 52336, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19628861" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Dna ; Embryo, Mammalian ; Endodeoxyribonucleases/genetics/*metabolism ; Feasibility Studies ; Female ; *Gene Knockout Techniques ; Green Fluorescent Proteins ; Immunoglobulin M/*genetics ; Male ; *Microinjections ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; RNA, Messenger ; Rats ; *Zinc Fingers/genetics ; rab GTP-Binding Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2009-08-01
    Description: A current paradigm states that monocytes circulate freely and patrol blood vessels but differentiate irreversibly into dendritic cells (DCs) or macrophages upon tissue entry. Here we show that bona fide undifferentiated monocytes reside in the spleen and outnumber their equivalents in circulation. The reservoir monocytes assemble in clusters in the cords of the subcapsular red pulp and are distinct from macrophages and DCs. In response to ischemic myocardial injury, splenic monocytes increase their motility, exit the spleen en masse, accumulate in injured tissue, and participate in wound healing. These observations uncover a role for the spleen as a site for storage and rapid deployment of monocytes and identify splenic monocytes as a resource that the body exploits to regulate inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803111/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803111/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swirski, Filip K -- Nahrendorf, Matthias -- Etzrodt, Martin -- Wildgruber, Moritz -- Cortez-Retamozo, Virna -- Panizzi, Peter -- Figueiredo, Jose-Luiz -- Kohler, Rainer H -- Chudnovskiy, Aleksey -- Waterman, Peter -- Aikawa, Elena -- Mempel, Thorsten R -- Libby, Peter -- Weissleder, Ralph -- Pittet, Mikael J -- 1R01HL095612/HL/NHLBI NIH HHS/ -- P01 A154904/PHS HHS/ -- P01 AI054904/AI/NIAID NIH HHS/ -- P01 AI054904-010001/AI/NIAID NIH HHS/ -- P50 CA086355/CA/NCI NIH HHS/ -- P50 CA086355-07/CA/NCI NIH HHS/ -- P50 CA86355/CA/NCI NIH HHS/ -- R00 HL094533/HL/NHLBI NIH HHS/ -- R01 HL095629/HL/NHLBI NIH HHS/ -- R01 HL096576/HL/NHLBI NIH HHS/ -- R24 CA69246/CA/NCI NIH HHS/ -- U01 HL080731/HL/NHLBI NIH HHS/ -- U01 HL080731-05/HL/NHLBI NIH HHS/ -- U54 CA126515/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 31;325(5940):612-6. doi: 10.1126/science.1175202.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. fswirski@mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19644120" target="_blank"〉PubMed〈/a〉
    Keywords: Angiotensin II/blood/pharmacology ; Animals ; Antigens, Ly/metabolism ; Bone Marrow Cells/physiology ; Cell Differentiation ; Cell Movement ; Cell Size ; Female ; Inflammation/*pathology ; Mice ; Mice, Inbred C57BL ; Monocytes/cytology/*physiology ; Myocardial Infarction/immunology/*pathology/*physiopathology ; Myocardium/*immunology/*pathology ; Rats ; Rats, Wistar ; Receptors, Angiotensin/metabolism ; Spleen/cytology/*immunology ; Splenectomy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2009-01-20
    Description: Vaults are among the largest cytoplasmic ribonucleoprotein particles and are found in numerous eukaryotic species. Roles in multidrug resistance and innate immunity have been suggested, but the cellular function remains unclear. We have determined the x-ray structure of rat liver vault at 3.5 angstrom resolution and show that the cage structure consists of a dimer of half-vaults, with each half-vault comprising 39 identical major vault protein (MVP) chains. Each MVP monomer folds into 12 domains: nine structural repeat domains, a shoulder domain, a cap-helix domain, and a cap-ring domain. Interactions between the 42-turn-long cap-helix domains are key to stabilizing the particle. The shoulder domain is structurally similar to a core domain of stomatin, a lipid-raft component in erythrocytes and epithelial cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanaka, Hideaki -- Kato, Koji -- Yamashita, Eiki -- Sumizawa, Tomoyuki -- Zhou, Yong -- Yao, Min -- Iwasaki, Kenji -- Yoshimura, Masato -- Tsukihara, Tomitake -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):384-8. doi: 10.1126/science.1164975.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19150846" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Liver/*chemistry ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Vault Ribonucleoprotein Particles/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2009-08-22
    Description: The paradigmatic feature of long-term memory (LTM) is its persistence. However, little is known about the mechanisms that make some LTMs last longer than others. In rats, a long-lasting fear LTM vanished rapidly when the D1 dopamine receptor antagonist SCH23390 was injected into the dorsal hippocampus 12 hours, but not immediately or 9 hours, after the fearful experience. Conversely, intrahippocampal application of the D1 agonist SK38393 at the same critical post-training time converted a rapidly decaying fear LTM into a persistent one. This effect was mediated by brain-derived neurotrophic factor and regulated by the ventral tegmental area (VTA). Thus, the persistence of LTM depends on activation of VTA/hippocampus dopaminergic connections and can be specifically modulated by manipulating this system at definite post-learning time points.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rossato, Janine I -- Bevilaqua, Lia R M -- Izquierdo, Ivan -- Medina, Jorge H -- Cammarota, Martin -- New York, N.Y. -- Science. 2009 Aug 21;325(5943):1017-20. doi: 10.1126/science.1172545.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro de Memoria, Instituto do Cerebro, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19696353" target="_blank"〉PubMed〈/a〉
    Keywords: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology ; 8-Bromo Cyclic Adenosine Monophosphate/pharmacology ; Animals ; Benzazepines/pharmacology ; Brain-Derived Neurotrophic Factor/metabolism ; Dopamine/*physiology ; Dopamine Agonists/pharmacology ; Dopamine Antagonists/pharmacology ; Fear ; Hippocampus/drug effects/*physiology ; Male ; Memory/drug effects/*physiology ; Phosphorylation ; Rats ; Rats, Wistar ; Receptors, Dopamine D1/agonists/antagonists & inhibitors/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Time Factors ; Tyrosine 3-Monooxygenase ; Ventral Tegmental Area/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2009-05-16
    Description: Late-phase synaptic plasticity depends on the synthesis of new proteins that must function only in the activated synapses. The synaptic tag hypothesis requires input-specific functioning of these proteins after undirected transport. Confirmation of this hypothesis requires specification of a biochemical tagging activity and an example protein that behaves as the hypothesis predicts. We found that in rat neurons, soma-derived Vesl-1S (Homer-1a) protein, a late-phase plasticity-related synaptic protein, prevailed in every dendrite and did not enter spines. N-methyl-d-aspartate receptor activation triggered input-specific spine entry of Vesl-1S proteins, which met many criteria for synaptic tagging. These results suggest that Vesl-1S supports the hypothesis and that the activity-dependent regulation of spine entry functions as a synaptic tag.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okada, Daisuke -- Ozawa, Fumiko -- Inokuchi, Kaoru -- New York, N.Y. -- Science. 2009 May 15;324(5929):904-9. doi: 10.1126/science.1171498.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan. dada@mitils.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19443779" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Carrier Proteins/genetics/*metabolism ; Cells, Cultured ; Dendrites/*metabolism ; Dendritic Spines/*metabolism/ultrastructure ; Hippocampus/cytology/metabolism ; Mice ; *Neuronal Plasticity ; Plasmids ; Protein Transport ; Rats ; Rats, Wistar ; Receptors, N-Methyl-D-Aspartate/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Synapses/*metabolism ; Synaptic Transmission ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2009-10-17
    Description: Cortical information processing is under state-dependent control of subcortical neuromodulatory systems. Although this modulatory effect is thought to be mediated mainly by slow nonsynaptic metabotropic receptors, other mechanisms, such as direct synaptic transmission, are possible. Yet, it is currently unknown if any such form of subcortical control exists. Here, we present direct evidence of a strong, spatiotemporally precise excitatory input from an ascending neuromodulatory center. Selective stimulation of serotonergic median raphe neurons produced a rapid activation of hippocampal interneurons. At the network level, this subcortical drive was manifested as a pattern of effective disynaptic GABAergic inhibition that spread throughout the circuit. This form of subcortical network regulation should be incorporated into current concepts of normal and pathological cortical function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Varga, Viktor -- Losonczy, Attila -- Zemelman, Boris V -- Borhegyi, Zsolt -- Nyiri, Gabor -- Domonkos, Andor -- Hangya, Balazs -- Holderith, Noemi -- Magee, Jeffrey C -- Freund, Tamas F -- HHMI55005608/Howard Hughes Medical Institute/ -- MH-54671/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 16;326(5951):449-53. doi: 10.1126/science.1178307.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Experimental Medicine, Budapest 1083, Hungary. vargav@koki.hu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19833972" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Electric Stimulation ; Excitatory Postsynaptic Potentials ; Glutamic Acid/physiology ; Hippocampus/cytology/*physiology ; Inhibitory Postsynaptic Potentials ; Interneurons/*physiology ; Mice ; Neural Inhibition/physiology ; Neural Pathways/physiology ; Neurons, Afferent/*physiology ; Patch-Clamp Techniques ; Photic Stimulation ; Raphe Nuclei/cytology/*physiology ; Rats ; Rats, Sprague-Dawley ; Serotonin/*physiology ; Synapses/*physiology ; Synaptic Potentials/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2009-05-30
    Description: The neural mechanisms underlying the transition from a drug-nondependent to a drug-dependent state remain elusive. Chronic exposure to drugs has been shown to increase brain-derived neurotrophic factor (BDNF) levels in ventral tegmental area (VTA) neurons. BDNF infusions into the VTA potentiate several behavioral effects of drugs, including psychomotor sensitization and cue-induced drug seeking. We found that a single infusion of BDNF into the VTA promotes a shift from a dopamine-independent to a dopamine-dependent opiate reward system, identical to that seen when an opiate-naive rat becomes dependent and withdrawn. This shift involves a switch in the gamma-aminobutyric acid type A (GABAA) receptors of VTA GABAergic neurons, from inhibitory to excitatory signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913611/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913611/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vargas-Perez, Hector -- Ting-A Kee, Ryan -- Walton, Christine H -- Hansen, D Micah -- Razavi, Rozita -- Clarke, Laura -- Bufalino, Mary Rose -- Allison, David W -- Steffensen, Scott C -- van der Kooy, Derek -- AA13666/AA/NIAAA NIH HHS/ -- R01 AA013666/AA/NIAAA NIH HHS/ -- R01 AA013666-09/AA/NIAAA NIH HHS/ -- R01 AA020919/AA/NIAAA NIH HHS/ -- New York, N.Y. -- Science. 2009 Jun 26;324(5935):1732-4. doi: 10.1126/science.1168501. Epub 2009 May 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada. vargashector@yahoo.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19478142" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bicuculline/pharmacology ; Brain-Derived Neurotrophic Factor/administration & ; dosage/genetics/*metabolism/*pharmacology ; Conditioning (Psychology) ; Dopamine/physiology ; Dopamine Antagonists/administration & dosage/pharmacology ; Flupenthixol/administration & dosage/pharmacology ; GABA Agonists/pharmacology ; GABA Antagonists/pharmacology ; Heroin Dependence/metabolism ; Male ; Morphine/administration & dosage ; Muscimol/pharmacology ; Opioid-Related Disorders/*metabolism ; RNA, Messenger/genetics/metabolism ; Rats ; Rats, Wistar ; Receptors, GABA-A/metabolism ; *Reward ; Signal Transduction ; Substance Withdrawal Syndrome/metabolism ; Ventral Tegmental Area/drug effects/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2009-08-01
    Description: The ability to shift between different behavioral strategies is necessary for appropriate decision-making. Here, we show that chronic stress biases decision-making strategies, affecting the ability of stressed animals to perform actions on the basis of their consequences. Using two different operant tasks, we revealed that, in making choices, rats subjected to chronic stress became insensitive to changes in outcome value and resistant to changes in action-outcome contingency. Furthermore, chronic stress caused opposing structural changes in the associative and sensorimotor corticostriatal circuits underlying these different behavioral strategies, with atrophy of medial prefrontal cortex and the associative striatum and hypertrophy of the sensorimotor striatum. These data suggest that the relative advantage of circuits coursing through sensorimotor striatum observed after chronic stress leads to a bias in behavioral strategies toward habit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dias-Ferreira, Eduardo -- Sousa, Joao C -- Melo, Irene -- Morgado, Pedro -- Mesquita, Ana R -- Cerqueira, Joao J -- Costa, Rui M -- Sousa, Nuno -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 31;325(5940):621-5. doi: 10.1126/science.1171203.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19644122" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Atrophy ; Cell Count ; Choice Behavior ; Chronic Disease ; Corpus Striatum/*pathology ; *Decision Making ; Dendrites/pathology ; Frontal Lobe/*pathology ; Habits ; Hypertrophy ; Neural Pathways/pathology ; Neurons/pathology ; Prefrontal Cortex/pathology ; Rats ; Rats, Long-Evans ; Rats, Wistar ; Reinforcement (Psychology) ; Stress, Psychological/*pathology/*psychology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2009-12-08
    Description: Several common genetic variations have been associated with type 2 diabetes, but the exact disease mechanisms are still poorly elucidated. Using congenic strains from the diabetic Goto-Kakizaki rat, we identified a 1.4-megabase genomic locus that was linked to impaired insulin granule docking at the plasma membrane and reduced beta cell exocytosis. In this locus, Adra2a, encoding the alpha2A-adrenergic receptor [alpha(2A)AR], was significantly overexpressed. Alpha(2A)AR mediates adrenergic suppression of insulin secretion. Pharmacological receptor antagonism, silencing of receptor expression, or blockade of downstream effectors rescued insulin secretion in congenic islets. Furthermore, we identified a single-nucleotide polymorphism in the human ADRA2A gene for which risk allele carriers exhibited overexpression of alpha(2A)AR, reduced insulin secretion, and increased type 2 diabetes risk. Human pancreatic islets from risk allele carriers exhibited reduced granule docking and secreted less insulin in response to glucose; both effects were counteracted by pharmacological alpha(2A)AR antagonists.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosengren, Anders H -- Jokubka, Ramunas -- Tojjar, Damon -- Granhall, Charlotte -- Hansson, Ola -- Li, Dai-Qing -- Nagaraj, Vini -- Reinbothe, Thomas M -- Tuncel, Jonatan -- Eliasson, Lena -- Groop, Leif -- Rorsman, Patrik -- Salehi, Albert -- Lyssenko, Valeriya -- Luthman, Holger -- Renstrom, Erik -- New York, N.Y. -- Science. 2010 Jan 8;327(5962):217-20. doi: 10.1126/science.1176827. Epub 2009 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lund University Diabetes Centre, Malmo, SE-20502 Malmo, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965390" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adrenergic alpha-2 Receptor Agonists ; Adrenergic alpha-2 Receptor Antagonists ; Adrenergic alpha-Agonists/pharmacology ; Adrenergic alpha-Antagonists/pharmacology ; Adult ; Aged ; Animals ; Animals, Congenic ; Blood Glucose/metabolism ; Cell Membrane/metabolism ; Cyclic AMP/metabolism ; Diabetes Mellitus, Type 2/*genetics/metabolism ; Exocytosis ; Genetic Association Studies ; Genetic Predisposition to Disease ; Humans ; Insulin/blood/*secretion ; Insulin-Secreting Cells/*secretion ; Middle Aged ; Polymorphism, Single Nucleotide ; RNA Interference ; Rats ; Rats, Inbred Strains ; Receptors, Adrenergic, alpha-2/*genetics/*metabolism ; Risk Factors ; Secretory Vesicles/metabolism ; Up-Regulation ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2009-07-11
    Description: mu-Opioid receptor (MOR) agonists represent the gold standard for the treatment of severe pain but may paradoxically also enhance pain sensitivity, that is, lead to opioid-induced hyperalgesia (OIH). We show that abrupt withdrawal from MOR agonists induces long-term potentiation (LTP) at the first synapse in pain pathways. Induction of opioid withdrawal LTP requires postsynaptic activation of heterotrimeric guanine nucleotide-binding proteins and N-methyl-d-aspartate receptors and a rise of postsynaptic calcium concentrations. In contrast, the acute depression by opioids is induced presynaptically at these synapses. Withdrawal LTP can be prevented by tapered withdrawal and shares pharmacology and signal transduction pathways with OIH. These findings provide a previously unrecognized target to selectively combat pro-nociceptive effects of opioids without compromising opioid analgesia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drdla, Ruth -- Gassner, Matthias -- Gingl, Ewald -- Sandkuhler, Jurgen -- P 18129/Austrian Science Fund FWF/Austria -- New York, N.Y. -- Science. 2009 Jul 10;325(5937):207-10. doi: 10.1126/science.1171759.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19590003" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesics, Opioid/administration & dosage/*adverse effects/pharmacology ; Animals ; Calcium/metabolism ; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage/adverse ; effects/pharmacology ; Evoked Potentials ; GTP-Binding Proteins/metabolism ; Hyperalgesia/chemically induced ; *Long-Term Potentiation/drug effects ; Male ; Nerve Fibers, Unmyelinated/physiology ; Patch-Clamp Techniques ; Piperidines/administration & dosage/adverse effects/pharmacology ; Posterior Horn Cells/drug effects/physiology ; Rats ; Rats, Sprague-Dawley ; Receptors, N-Methyl-D-Aspartate/metabolism ; Receptors, Opioid, mu/*agonists ; Signal Transduction ; Substance Withdrawal Syndrome/*physiopathology ; Synapses/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2009-09-12
    Description: Action potentials in nonmyelinated axons are considered to contribute substantially to activity-dependent brain metabolism. Here we show that fast Na+ current decay and delayed K+ current onset during action potentials in nonmyelinated mossy fibers of the rat hippocampus minimize the overlap of their respective ion fluxes. This results in total Na+ influx and associated energy demand per action potential of only 1.3 times the theoretical minimum, in contrast to the factor of 4 used in previous energy budget calculations for neural activity. Analysis of ionic conductance parameters revealed that the properties of Na+ and K+ channels are matched to make axonal action potentials energy-efficient, minimizing their contribution to activity-dependent metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alle, Henrik -- Roth, Arnd -- Geiger, Jorg R P -- New York, N.Y. -- Science. 2009 Sep 11;325(5946):1405-8. doi: 10.1126/science.1174331.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Independent Hertie Research Group, Max-Planck-Institute for Brain Research, 60528 Frankfurt, Germany. henrik.alle@charite.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745156" target="_blank"〉PubMed〈/a〉
    Keywords: *Action Potentials ; Animals ; Axons/physiology ; *Energy Metabolism ; Mossy Fibers, Hippocampal/*physiology ; Patch-Clamp Techniques ; Potassium/metabolism ; Potassium Channels/metabolism ; Presynaptic Terminals/physiology ; Rats ; Rats, Wistar ; Sodium/metabolism ; Sodium Channels/metabolism ; Sodium-Potassium-Exchanging ATPase/metabolism ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2009-12-17
    Description: Metabotropic glutamate receptor 5 (mGluR5) is highly expressed in the mammalian central nervous system (CNS). It is involved in multiple physiological functions and is a target for treatment of various CNS disorders, including schizophrenia. We report that Norbin, a neuron-specific protein, physically interacts with mGluR5 in vivo, increases the cell surface localization of the receptor, and positively regulates mGluR5 signaling. Genetic deletion of Norbin attenuates mGluR5-dependent stable changes in synaptic function measured as long-term depression or long-term potentiation of synaptic transmission in the hippocampus. As with mGluR5 knockout mice or mice treated with mGluR5-selective antagonists, Norbin knockout mice showed a behavioral phenotype associated with a rodent model of schizophrenia, as indexed by alterations both in sensorimotor gating and psychotomimetic-induced locomotor activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796550/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796550/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Hong -- Westin, Linda -- Nong, Yi -- Birnbaum, Shari -- Bendor, Jacob -- Brismar, Hjalmar -- Nestler, Eric -- Aperia, Anita -- Flajolet, Marc -- Greengard, Paul -- DA 10044/DA/NIDA NIH HHS/ -- MH074866/MH/NIMH NIH HHS/ -- MH66172/MH/NIMH NIH HHS/ -- P01 DA010044/DA/NIDA NIH HHS/ -- P01 DA010044-020002/DA/NIDA NIH HHS/ -- P01 DA010044-030002/DA/NIDA NIH HHS/ -- P01 DA010044-04/DA/NIDA NIH HHS/ -- P01 DA010044-040002/DA/NIDA NIH HHS/ -- P01 DA010044-05/DA/NIDA NIH HHS/ -- P01 DA010044-050002/DA/NIDA NIH HHS/ -- P01 DA010044-06/DA/NIDA NIH HHS/ -- P01 DA010044-060002/DA/NIDA NIH HHS/ -- P01 DA010044-07/DA/NIDA NIH HHS/ -- P01 DA010044-070002/DA/NIDA NIH HHS/ -- P01 DA010044-08/DA/NIDA NIH HHS/ -- P01 DA010044-080002/DA/NIDA NIH HHS/ -- P01 DA010044-09/DA/NIDA NIH HHS/ -- P01 DA010044-090002/DA/NIDA NIH HHS/ -- P01 DA010044-10/DA/NIDA NIH HHS/ -- P01 DA010044-100002/DA/NIDA NIH HHS/ -- P01 DA010044-11/DA/NIDA NIH HHS/ -- P01 DA010044-110005/DA/NIDA NIH HHS/ -- P01 DA010044-12/DA/NIDA NIH HHS/ -- P01 DA010044-120005/DA/NIDA NIH HHS/ -- P01 DA010044-129002/DA/NIDA NIH HHS/ -- P01 DA010044-13/DA/NIDA NIH HHS/ -- P01 DA010044-130005/DA/NIDA NIH HHS/ -- P01 DA010044-139002/DA/NIDA NIH HHS/ -- P01 DA010044-14/DA/NIDA NIH HHS/ -- P01 DA010044-140005/DA/NIDA NIH HHS/ -- P01 DA010044-149002/DA/NIDA NIH HHS/ -- P01 DA010044-14S1/DA/NIDA NIH HHS/ -- P01 DA010044-14S10005/DA/NIDA NIH HHS/ -- P01 DA010044-14S19002/DA/NIDA NIH HHS/ -- P50 MH074866/MH/NIMH NIH HHS/ -- P50 MH074866-010001/MH/NIMH NIH HHS/ -- P50 MH074866-020001/MH/NIMH NIH HHS/ -- P50 MH074866-030001/MH/NIMH NIH HHS/ -- P50 MH074866-039001/MH/NIMH NIH HHS/ -- P50 MH074866-040001/MH/NIMH NIH HHS/ -- P50 MH074866-050001/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2009 Dec 11;326(5959):1554-7. doi: 10.1126/science.1178496.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20007903" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Calcium/metabolism ; Calcium Signaling ; Cell Line ; Cell Membrane/metabolism ; Humans ; Mice ; Mice, Knockout ; Motor Activity ; Nerve Tissue Proteins/genetics/*metabolism ; Neuronal Plasticity ; Protein Binding ; Rats ; Receptor, Metabotropic Glutamate 5 ; Receptors, Metabotropic Glutamate/genetics/*metabolism ; Reflex, Startle ; Schizophrenia/physiopathology ; *Signal Transduction ; Synaptic Transmission ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2009-08-08
    Description: Diminished synaptic inhibition in the spinal dorsal horn is a major contributor to chronic pain. Pathways that reduce synaptic inhibition in inflammatory and neuropathic pain states have been identified, but central hyperalgesia and diminished dorsal horn synaptic inhibition also occur in the absence of inflammation or neuropathy, solely triggered by intense nociceptive (C-fiber) input to the spinal dorsal horn. We found that endocannabinoids, produced upon strong nociceptive stimulation, activated type 1 cannabinoid (CB1) receptors on inhibitory dorsal horn neurons to reduce the synaptic release of gamma-aminobutyric acid and glycine and thus rendered nociceptive neurons excitable by nonpainful stimuli. Our results suggest that spinal endocannabinoids and CB1 receptors on inhibitory dorsal horn interneurons act as mediators of heterosynaptic pain sensitization and play an unexpected role in dorsal horn pain-controlling circuits.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835775/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835775/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pernia-Andrade, Alejandro J -- Kato, Ako -- Witschi, Robert -- Nyilas, Rita -- Katona, Istvan -- Freund, Tamas F -- Watanabe, Masahiko -- Filitz, Jorg -- Koppert, Wolfgang -- Schuttler, Jurgen -- Ji, Guangchen -- Neugebauer, Volker -- Marsicano, Giovanni -- Lutz, Beat -- Vanegas, Horacio -- Zeilhofer, Hanns Ulrich -- NS11255/NS/NINDS NIH HHS/ -- NS38261/NS/NINDS NIH HHS/ -- P01 NS011255/NS/NINDS NIH HHS/ -- P01 NS011255-32A20042/NS/NINDS NIH HHS/ -- P01 NS011255-330042/NS/NINDS NIH HHS/ -- R01 NS038261/NS/NINDS NIH HHS/ -- R01 NS038261-08/NS/NINDS NIH HHS/ -- R01 NS038261-09/NS/NINDS NIH HHS/ -- R01 NS038261-10/NS/NINDS NIH HHS/ -- R01 NS038261-10S1/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Aug 7;325(5941):760-4. doi: 10.1126/science.1171870.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661434" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Cannabinoid Receptor Modulators/*physiology ; Electric Stimulation ; *Endocannabinoids ; Excitatory Postsynaptic Potentials ; Female ; Humans ; Hyperalgesia/*physiopathology ; Inhibitory Postsynaptic Potentials ; Interneurons/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Fibers, Unmyelinated/*physiology ; Neural Inhibition ; Pain/*physiopathology ; Piperidines/administration & dosage/pharmacology ; Posterior Horn Cells/*physiology ; Pyrazoles/administration & dosage/pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptor, Cannabinoid, CB1/antagonists & inhibitors/*metabolism ; Spinal Cord/cytology/physiology ; *Synaptic Transmission ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2009-03-17
    Description: Patolsky et al. (Reports, 25 August 2006, p. 1100) used silicon nanowires to record action potentials in rat neuronal axons and found increases in conductance of about 85 nanosiemens. We point out that the data correspond to voltage changes of about -85 millivolts on the nanowire and that conceivable mechanisms of axon-nanowire interaction lead to signals that are opposite in sign or smaller by orders of magnitude.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fromherz, Peter -- Voelker, Moritz -- New York, N.Y. -- Science. 2009 Mar 13;323(5920):1429; author reply 1429. doi: 10.1126/science.1155416.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Membrane and Neurophysics, Max Planck Institute for Biochemistry, D82152 Martinsried/Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286538" target="_blank"〉PubMed〈/a〉
    Keywords: *Action Potentials ; Animals ; Axons/*physiology ; Electric Conductivity ; Electric Stimulation ; Ion Channel Gating ; *Nanowires ; Neural Inhibition ; Neurons/*physiology ; Rats ; Semiconductors ; Silicon ; Sodium/metabolism ; Static Electricity ; Transistors, Electronic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2009-11-11
    Description: Presynaptic axonal differentiation is essential for synapse formation and the establishment of neuronal circuits. However, the mechanisms that coordinate presynaptic development in the brain are largely unknown. We found that the major mitotic E3 ubiquitin ligase Cdc20-anaphase promoting complex (Cdc20-APC) regulates presynaptic differentiation in primary postmitotic mammalian neurons and in the rat cerebellar cortex. Cdc20-APC triggered the degradation of the transcription factor NeuroD2 and thereby promoted presynaptic differentiation. The NeuroD2 target gene encoding Complexin II, which acts locally at presynaptic sites, mediated the ability of NeuroD2 to suppress presynaptic differentiation. Thus, our findings define a Cdc20-APC ubiquitin signaling pathway that governs presynaptic development, which holds important implications for neuronal connectivity and plasticity in the brain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846784/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846784/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Yue -- Kim, Albert H -- Yamada, Tomoko -- Wu, Bei -- Bilimoria, Parizad M -- Ikeuchi, Yoshiho -- de la Iglesia, Nuria -- Shen, Jie -- Bonni, Azad -- F32 CA124028/CA/NCI NIH HHS/ -- NS041021/NS/NINDS NIH HHS/ -- NS051255/NS/NINDS NIH HHS/ -- R01 NS041021/NS/NINDS NIH HHS/ -- R01 NS041021-06/NS/NINDS NIH HHS/ -- R01 NS041021-07/NS/NINDS NIH HHS/ -- R01 NS041021-08/NS/NINDS NIH HHS/ -- R01 NS051255/NS/NINDS NIH HHS/ -- R01 NS051255-02/NS/NINDS NIH HHS/ -- R01 NS051255-03/NS/NINDS NIH HHS/ -- R01 NS051255-04/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 23;326(5952):575-8. doi: 10.1126/science.1177087.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19900895" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport/genetics/metabolism ; Anaphase-Promoting Complex-Cyclosome ; Animals ; Axons/metabolism/*physiology/ultrastructure ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Cdc20 Proteins ; Cell Cycle Proteins/genetics/*metabolism ; Cerebellar Cortex/cytology/metabolism/ultrastructure ; Gene Knockdown Techniques ; Mutant Proteins/metabolism ; Nerve Tissue Proteins/genetics/metabolism ; Neuropeptides/genetics/metabolism ; Presynaptic Terminals/*metabolism ; Rats ; *Signal Transduction ; Synapses/*metabolism ; Synapsins/metabolism ; Synaptic Vesicles/genetics/metabolism ; Ubiquitin/*metabolism ; Ubiquitin-Protein Ligase Complexes/genetics/*metabolism ; Ubiquitin-Protein Ligases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2009-03-21
    Description: Dopamine replacement therapy is useful for treating motor symptoms in the early phase of Parkinson's disease, but it is less effective in the long term. Electrical deep-brain stimulation is a valuable complement to pharmacological treatment but involves a highly invasive surgical procedure. We found that epidural electrical stimulation of the dorsal columns in the spinal cord restores locomotion in both acute pharmacologically induced dopamine-depleted mice and in chronic 6-hydroxydopamine-lesioned rats. The functional recovery was paralleled by a disruption of aberrant low-frequency synchronous corticostriatal oscillations, leading to the emergence of neuronal activity patterns that resemble the state normally preceding spontaneous initiation of locomotion. We propose that dorsal column stimulation might become an efficient and less invasive alternative for treatment of Parkinson's disease in the future.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669752/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669752/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fuentes, Romulo -- Petersson, Per -- Siesser, William B -- Caron, Marc G -- Nicolelis, Miguel A L -- R21 NS049534/NS/NINDS NIH HHS/ -- R21 NS049534-01A2/NS/NINDS NIH HHS/ -- R21 NS049534-02/NS/NINDS NIH HHS/ -- R33 NS049534/NS/NINDS NIH HHS/ -- R33 NS049534-03/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Mar 20;323(5921):1578-82. doi: 10.1126/science.1164901.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA. fuentes@neuro.duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19299613" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways/physiology ; Animals ; Combined Modality Therapy ; Corpus Striatum/physiopathology ; Dopamine/metabolism ; *Electric Stimulation Therapy ; Electrodes, Implanted ; Electrophysiological Phenomena ; Humans ; Levodopa/administration & dosage/therapeutic use ; *Locomotion ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Motor Cortex/physiopathology ; Neurons/physiology ; Oxidopamine/pharmacology ; Parkinson Disease/physiopathology/*therapy ; Parkinsonian Disorders/physiopathology/*therapy ; Rats ; Spinal Cord/*physiology ; alpha-Methyltyrosine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-09-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pizzorusso, Tommaso -- New York, N.Y. -- Science. 2009 Sep 4;325(5945):1214-5. doi: 10.1126/science.1179697.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Istituto Neuroscienze CNR, via Moruzzi, 1 56100 Pisa, Italy. tommaso.pizzorusso@in.cnr.it〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19729646" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/cytology/growth & development/*physiology ; Animals ; Chondroitin ABC Lyase/metabolism ; Chondroitin Sulfate Proteoglycans/metabolism/*physiology ; Conditioning, Classical ; *Extinction, Psychological ; Extracellular Matrix/physiology ; *Fear ; Memory/*physiology ; Mice ; Neuronal Plasticity ; Rats ; Visual Cortex/growth & development/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2009-08-08
    Description: Tuft dendrites are the main target for feedback inputs innervating neocortical layer 5 pyramidal neurons, but their properties remain obscure. We report the existence of N-methyl-D-aspartate (NMDA) spikes in the fine distal tuft dendrites that otherwise did not support the initiation of calcium spikes. Both direct measurements and computer simulations showed that NMDA spikes are the dominant mechanism by which distal synaptic input leads to firing of the neuron and provide the substrate for complex parallel processing of top-down input arriving at the tuft. These data lead to a new unifying view of integration in pyramidal neurons in which all fine dendrites, basal and tuft, integrate inputs locally through the recruitment of NMDA receptor channels relative to the fixed apical calcium and axosomatic sodium integration points.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larkum, Matthew E -- Nevian, Thomas -- Sandler, Maya -- Polsky, Alon -- Schiller, Jackie -- New York, N.Y. -- Science. 2009 Aug 7;325(5941):756-60. doi: 10.1126/science.1171958.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Berne, Buhlplatz 5, 3012 Berne, Switzerland. matthew.larkum@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661433" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Axons/physiology ; Calcium Signaling ; Computer Simulation ; Dendrites/*physiology ; Excitatory Postsynaptic Potentials ; In Vitro Techniques ; Models, Neurological ; N-Methylaspartate/metabolism ; Neocortex/cytology/*physiology ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology ; Rats ; Rats, Wistar ; Receptors, N-Methyl-D-Aspartate/metabolism ; Sodium/metabolism ; Synapses/*physiology ; Synaptic Potentials
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-10-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Subang, M C -- Richardson, P M -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):238-9. doi: 10.1126/science.1181038.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bone and Joint Research, Barts and the London School of Medicine, Charterhouse Square, London EC1M 6BQ, UK. m.c.subang@qmul.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19815761" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology/ultrastructure ; Cell Nucleus/*metabolism ; Cytoskeleton/metabolism ; Growth Cones/*physiology/ultrastructure ; Hippocampus/cytology/embryology ; Intercellular Signaling Peptides and Proteins/metabolism ; Kruppel-Like Transcription Factors/genetics/*metabolism ; Mice ; Nerve Regeneration ; Nerve Tissue Proteins/metabolism ; Rats ; Retinal Ganglion Cells/cytology ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2009-02-14
    Description: Vesicular secretion of neurotransmitter is essential for neuronal communication. Kiss-and-run is a mode of membrane fusion and retrieval without the full collapse of the vesicle into the plasma membrane and de novo regeneration. The importance of kiss-and-run during efficient neurotransmission has remained in doubt. We developed an approach for loading individual synaptic vesicles with single quantum dots. Their size and pH-dependent photoluminescence change allowed us to distinguish kiss-and-run from full-collapse fusion and to track single vesicles through multiple rounds of kiss-and-run and reuse, without perturbing vesicle cycling. Kiss-and-run dominated at the beginning of stimulus trains, reflecting the preference of vesicles with high release probability. Its incidence was increased by rapid firing, a response appropriate to shape the kinetics of neurotransmission during a wide range of firing patterns.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696197/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696197/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Qi -- Li, Yulong -- Tsien, Richard W -- K99 DA025143/DA/NIDA NIH HHS/ -- K99 DA025143-01A1/DA/NIDA NIH HHS/ -- R01 MH064070/MH/NIMH NIH HHS/ -- R01 MH064070-08/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2009 Mar 13;323(5920):1448-53. doi: 10.1126/science.1167373. Epub 2009 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19213879" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Electric Stimulation ; Hippocampus/cytology ; Hydrogen-Ion Concentration ; Ion Transport ; Luminescence ; *Membrane Fusion ; Neurons/*physiology ; Neurotransmitter Agents/metabolism ; Presynaptic Terminals/physiology ; Quantum Dots ; Rats ; Rats, Sprague-Dawley ; Synaptic Membranes/physiology ; *Synaptic Transmission ; Synaptic Vesicles/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2009-06-06
    Description: Huntington's disease (HD) is caused by a polyglutamine repeat in the protein huntingtin (Htt) with mutant Htt (mHtt) expressed throughout the body and similarly in all brain regions. Yet, HD neuropathology is largely restricted to the corpus striatum. We report that the small guanine nucleotide-binding protein Rhes, which is localized very selectively to the striatum, binds physiologically to mHtt. Using cultured cells, we found Rhes induces sumoylation of mHtt, which leads to cytotoxicity. Thus, Rhes-mHtt interactions can account for the localized neuropathology of HD.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745286/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745286/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Subramaniam, Srinivasa -- Sixt, Katherine M -- Barrow, Roxanne -- Snyder, Solomon H -- DA00074/DA/NIDA NIH HHS/ -- MH18501/MH/NIMH NIH HHS/ -- R37 MH018501/MH/NIMH NIH HHS/ -- R37 MH018501-40/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2009 Jun 5;324(5932):1327-30. doi: 10.1126/science.1172871.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19498170" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Death ; Cell Line ; Cell Survival ; Corpus Striatum/metabolism ; GTP-Binding Proteins/*metabolism ; Humans ; Mice ; Mice, Transgenic ; Mutant Proteins/metabolism ; Nerve Tissue Proteins/chemistry/*metabolism ; Nuclear Proteins/chemistry/*metabolism ; PC12 Cells ; RNA Interference ; Rats ; Recombinant Fusion Proteins/metabolism ; SUMO-1 Protein/genetics/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2009-07-04
    Description: Cellular responses in the V2 secondary visual cortex to simple as well as complex visual stimuli have been well studied. However, the role of area V2 in visual memory remains unexplored. We found that layer 6 neurons of V2 are crucial for the processing of object-recognition memory (ORM). Using the protein regulator of G protein signaling-14 (RGS-14) as a tool, we found that the expression of this protein into layer 6 neurons of rat-brain area V2 promoted the conversion of a normal short-term ORM that normally lasts for 45 minutes into long-term memory detectable even after many months. Furthermore, elimination of the same-layer neurons by means of injection of a selective cytotoxin resulted in the complete loss of normal as well as protein-mediated enhanced ORM.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lopez-Aranda, Manuel F -- Lopez-Tellez, Juan F -- Navarro-Lobato, Irene -- Masmudi-Martin, Mariam -- Gutierrez, Antonia -- Khan, Zafar U -- New York, N.Y. -- Science. 2009 Jul 3;325(5936):87-9. doi: 10.1126/science.1170869.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Neurobiology, Centro de Investigaciones Medico-Sanitarias, University of Malaga, Campus Teatinos s/n, 29071 Malaga, Spain. zkhan@uma.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19574389" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Lentivirus/genetics ; Memory/*physiology ; Memory, Short-Term/*physiology ; Neurons/physiology ; RGS Proteins/genetics/metabolism ; Rats ; Rats, Wistar ; Recognition (Psychology)/*physiology ; Temporal Lobe/physiology ; Visual Cortex/cytology/*physiology ; Visual Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2009-06-23
    Description: Most antianxiety drugs (anxiolytics) work by modulating neurotransmitters in the brain. Benzodiazepines are fast and effective anxiolytic drugs; however, their long-term use is limited by the development of tolerance and withdrawal symptoms. Ligands of the translocator protein [18 kilodaltons (kD)] may promote the synthesis of endogenous neurosteroids, which also exert anxiolytic effects in animal models. Here, we found that the translocator protein (18 kD) ligand XBD173 enhanced gamma-aminobutyric acid-mediated neurotransmission and counteracted induced panic attacks in rodents in the absence of sedation and tolerance development. XBD173 also exerted antipanic activity in humans and, in contrast to benzodiazepines, did not cause sedation or withdrawal symptoms. Thus, translocator protein (18 kD) ligands are promising candidates for fast-acting anxiolytic drugs with less severe side effects than benzodiazepines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rupprecht, Rainer -- Rammes, Gerhard -- Eser, Daniela -- Baghai, Thomas C -- Schule, Cornelius -- Nothdurfter, Caroline -- Troxler, Thomas -- Gentsch, Conrad -- Kalkman, Hans O -- Chaperon, Frederique -- Uzunov, Veska -- McAllister, Kevin H -- Bertaina-Anglade, Valerie -- La Rochelle, Christophe Drieu -- Tuerck, Dietrich -- Floesser, Annette -- Kiese, Beate -- Schumacher, Michael -- Landgraf, Rainer -- Holsboer, Florian -- Kucher, Klaus -- New York, N.Y. -- Science. 2009 Jul 24;325(5939):490-3. doi: 10.1126/science.1175055. Epub 2009 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Nussbaumstrasse 7, Munich 80336, Germany. rainer.rupprecht@med.uni-muenchen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19541954" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Alprazolam/pharmacology ; Animals ; Anti-Anxiety Agents/adverse effects/*metabolism ; Benzodiazepines/adverse effects ; Cell Line ; Drug Tolerance ; Humans ; Isoquinolines/pharmacology ; Male ; Mice ; Mice, Inbred C57BL ; Neurotransmitter Agents/metabolism ; Panic Disorder/drug therapy ; Purines/*therapeutic use ; Rats ; Rats, Sprague-Dawley ; Receptors, GABA/*metabolism ; Receptors, GABA-A/metabolism ; Substance Withdrawal Syndrome/prevention & control ; Tetragastrin ; gamma-Aminobutyric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tigaret, Cezar -- Choquet, Daniel -- New York, N.Y. -- Science. 2009 Mar 6;323(5919):1295-6. doi: 10.1126/science.1171519.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UMR 5091 CNRS, Universite de Bordeaux, 146 rue Leo Saignat, 33077 Bordeaux Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19265005" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Brain/metabolism ; Caenorhabditis elegans Proteins/chemistry/metabolism ; Cell Membrane/metabolism ; Glutamic Acid/metabolism ; Kainic Acid/metabolism ; Membrane Proteins/chemistry/metabolism ; Neurons/*metabolism ; Rats ; Receptors, AMPA/chemistry/isolation & purification/*metabolism ; Synapses/metabolism ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2009-03-21
    Description: Deep brain stimulation (DBS) is a therapeutic option for intractable neurological and psychiatric disorders, including Parkinson's disease and major depression. Because of the heterogeneity of brain tissues where electrodes are placed, it has been challenging to elucidate the relevant target cell types or underlying mechanisms of DBS. We used optogenetics and solid-state optics to systematically drive or inhibit an array of distinct circuit elements in freely moving parkinsonian rodents and found that therapeutic effects within the subthalamic nucleus can be accounted for by direct selective stimulation of afferent axons projecting to this region. In addition to providing insight into DBS mechanisms, these results demonstrate an optical approach for dissection of disease circuitry and define the technological toolbox needed for systematic deconstruction of disease circuits by selectively controlling individual components.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gradinaru, Viviana -- Mogri, Murtaza -- Thompson, Kimberly R -- Henderson, Jaimie M -- Deisseroth, Karl -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):354-9. doi: 10.1126/science.1167093. Epub 2009 Mar 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19299587" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Astrocytes/metabolism ; Axons/*physiology ; *Deep Brain Stimulation ; Fiber Optic Technology ; Halorhodopsins/metabolism ; Light ; Motor Activity ; Motor Cortex/pathology/physiopathology ; Neural Inhibition ; Neurons, Afferent/*physiology ; Optics and Photonics ; Parkinsonian Disorders/pathology/*physiopathology/therapy ; Rats ; Rhodopsin/metabolism ; Subthalamic Nucleus/pathology/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-07-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saksida, Lisa M -- New York, N.Y. -- Science. 2009 Jul 3;325(5936):40-1. doi: 10.1126/science.1177156.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, UK. lms42@cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19574374" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Humans ; Memory/*physiology ; RGS Proteins/metabolism ; Rats ; Recognition (Psychology)/*physiology ; Temporal Lobe/*physiology ; Visual Cortex/*physiology ; Visual Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2009-03-03
    Description: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is familial in 10% of cases. We have identified a missense mutation in the gene encoding fused in sarcoma (FUS) in a British kindred, linked to ALS6. In a survey of 197 familial ALS index cases, we identified two further missense mutations in eight families. Postmortem analysis of three cases with FUS mutations showed FUS-immunoreactive cytoplasmic inclusions and predominantly lower motor neuron degeneration. Cellular expression studies revealed aberrant localization of mutant FUS protein. FUS is involved in the regulation of transcription and RNA splicing and transport, and it has functional homology to another ALS gene, TARDBP, which suggests that a common mechanism may underlie motor neuron degeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516382/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4516382/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vance, Caroline -- Rogelj, Boris -- Hortobagyi, Tibor -- De Vos, Kurt J -- Nishimura, Agnes Lumi -- Sreedharan, Jemeen -- Hu, Xun -- Smith, Bradley -- Ruddy, Deborah -- Wright, Paul -- Ganesalingam, Jeban -- Williams, Kelly L -- Tripathi, Vineeta -- Al-Saraj, Safa -- Al-Chalabi, Ammar -- Leigh, P Nigel -- Blair, Ian P -- Nicholson, Garth -- de Belleroche, Jackie -- Gallo, Jean-Marc -- Miller, Christopher C -- Shaw, Christopher E -- 078662/Wellcome Trust/United Kingdom -- G0300329/Medical Research Council/United Kingdom -- G0500289/Medical Research Council/United Kingdom -- G0501573/Medical Research Council/United Kingdom -- G0600676/Medical Research Council/United Kingdom -- G0600974/Medical Research Council/United Kingdom -- G0900688/Medical Research Council/United Kingdom -- MC_G1000733/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1208-11. doi: 10.1126/science.1165942.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Neuroscience, King's College London, Medical Research Council (MRC) Centre for Neurodegeneration Research, Institute of Psychiatry, London SE5 8AF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19251628" target="_blank"〉PubMed〈/a〉
    Keywords: Age of Onset ; Amino Acid Sequence ; Amyotrophic Lateral Sclerosis/*genetics/metabolism/pathology ; Animals ; Brain/pathology ; Cell Line ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; DNA-Binding Proteins/analysis/genetics/metabolism ; Female ; Humans ; Inclusion Bodies/chemistry/ultrastructure ; Male ; Molecular Sequence Data ; Motor Neurons/metabolism ; *Mutation, Missense ; Pedigree ; RNA-Binding Protein FUS/analysis/*genetics/*metabolism ; Rats ; Spinal Cord/pathology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2009-03-07
    Description: Glutamate receptors of the AMPA-subtype (AMPARs), together with the transmembrane AMPAR regulatory proteins (TARPs), mediate fast excitatory synaptic transmission in the mammalian brain. Here, we show by proteomic analysis that the majority of AMPARs in the rat brain are coassembled with two members of the cornichon family of transmembrane proteins, rather than with the TARPs. Coassembly with cornichon homologs 2 and 3 affects AMPARs in two ways: Cornichons increase surface expression of AMPARs, and they alter channel gating by markedly slowing deactivation and desensitization kinetics. These results demonstrate that cornichons are intrinsic auxiliary subunits of native AMPARs and provide previously unknown molecular determinants for glutamatergic neurotransmission in the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwenk, Jochen -- Harmel, Nadine -- Zolles, Gerd -- Bildl, Wolfgang -- Kulik, Akos -- Heimrich, Bernd -- Chisaka, Osamu -- Jonas, Peter -- Schulte, Uwe -- Fakler, Bernd -- Klocker, Nikolaj -- New York, N.Y. -- Science. 2009 Mar 6;323(5919):1313-9. doi: 10.1126/science.1167852.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Physiology II, University of Freiburg, Engesserstrasse 4, 79108 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19265014" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/*metabolism ; Cell Membrane/metabolism ; Glutamic Acid/metabolism ; Immunohistochemistry ; *Ion Channel Gating ; Kinetics ; Membrane Proteins/chemistry/metabolism ; Mice ; Neurons/*metabolism ; Patch-Clamp Techniques ; Protein Subunits/chemistry/metabolism ; Proteomics ; Rats ; Receptors, AMPA/chemistry/*metabolism ; Signal Transduction ; Synapses/metabolism ; *Synaptic Transmission ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2009-12-08
    Description: Brain function operates through the coordinated activation of neuronal assemblies. Graph theory predicts that scale-free topologies, which include "hubs" (superconnected nodes), are an effective design to orchestrate synchronization. Whether hubs are present in neuronal assemblies and coordinate network activity remains unknown. Using network dynamics imaging, online reconstruction of functional connectivity, and targeted whole-cell recordings in rats and mice, we found that developing hippocampal networks follow a scale-free topology, and we demonstrated the existence of functional hubs. Perturbation of a single hub influenced the entire network dynamics. Morphophysiological analysis revealed that hub cells are a subpopulation of gamma-aminobutyric acid-releasing (GABAergic) interneurons possessing widespread axonal arborizations. These findings establish a central role for GABAergic interneurons in shaping developing networks and help provide a conceptual framework for studying neuronal synchrony.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonifazi, P -- Goldin, M -- Picardo, M A -- Jorquera, I -- Cattani, A -- Bianconi, G -- Represa, A -- Ben-Ari, Y -- Cossart, R -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1419-24. doi: 10.1126/science.1175509.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Neurobiologie de la Mediterranee INSERM U901, Universitede la Mediterranee, Parc Scientifique de Luminy, Boite Postale 13, 13273 Marseille Cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965761" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Axons/ultrastructure ; CA3 Region, Hippocampal/cytology/*physiology ; Calcium/metabolism ; Dendrites/ultrastructure ; Excitatory Postsynaptic Potentials ; Hippocampus/cytology/*physiology ; In Vitro Techniques ; Interneurons/*physiology/ultrastructure ; Mice ; Nerve Net/*physiology ; Patch-Clamp Techniques ; Pyramidal Cells/physiology ; Rats ; Rats, Wistar ; Synapses/physiology ; gamma-Aminobutyric Acid/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-09-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Magistretti, Pierre J -- New York, N.Y. -- Science. 2009 Sep 11;325(5946):1349-51. doi: 10.1126/science.1180102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. pierre.magistretti@epfl.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745140" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Astrocytes/physiology ; Axons/physiology ; Brain/*physiology ; *Energy Metabolism ; *Excitatory Postsynaptic Potentials ; Glucose/metabolism ; Glutamic Acid/metabolism ; Hippocampus/cytology/*physiology ; Humans ; Neurons/*physiology ; Neurotransmitter Agents/metabolism ; Potassium Channels/metabolism ; Rats ; Sodium Channels/metabolism ; Synapses/physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2009-06-23
    Description: Amyloids are highly organized cross-beta-sheet-rich protein or peptide aggregates that are associated with pathological conditions including Alzheimer's disease and type II diabetes. However, amyloids may also have a normal biological function, as demonstrated by fungal prions, which are involved in prion replication, and the amyloid protein Pmel17, which is involved in mammalian skin pigmentation. We found that peptide and protein hormones in secretory granules of the endocrine system are stored in an amyloid-like cross-beta-sheet-rich conformation. Thus, functional amyloids in the pituitary and other organs can contribute to normal cell and tissue physiology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865899/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865899/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maji, Samir K -- Perrin, Marilyn H -- Sawaya, Michael R -- Jessberger, Sebastian -- Vadodaria, Krishna -- Rissman, Robert A -- Singru, Praful S -- Nilsson, K Peter R -- Simon, Rozalyn -- Schubert, David -- Eisenberg, David -- Rivier, Jean -- Sawchenko, Paul -- Vale, Wylie -- Riek, Roland -- P01 DK026741/DK/NIDDK NIH HHS/ -- P01 DK026741-29/DK/NIDDK NIH HHS/ -- P01 DK026741-30/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 17;325(5938):328-32. doi: 10.1126/science.1173155. Epub 2009 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Physical Chemistry, Eidgenossische Technische Hochschule (ETH) Zurich, Wolfgang-Paulistrasse 10, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19541956" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenocorticotropic Hormone/chemistry/metabolism ; Amyloid/*chemistry/metabolism ; Animals ; Cell Survival ; Corticotropin-Releasing Hormone/chemistry/metabolism ; Heparin, Low-Molecular-Weight/chemistry ; Humans ; Hydrogen-Ion Concentration ; Mice ; Neurons/cytology/physiology ; Peptide Hormones/*chemistry/metabolism ; Pituitary Gland/*chemistry ; Pituitary Gland, Anterior/chemistry/metabolism ; Pituitary Gland, Posterior/chemistry/metabolism ; Pituitary Hormones/*chemistry/metabolism ; Protein Conformation ; Rats ; Secretory Vesicles/*chemistry/metabolism ; Sheep ; Urocortins/chemistry/metabolism ; beta-Endorphin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2009-12-08
    Description: Fast-spiking, parvalbumin-expressing basket cells (BCs) are important for feedforward and feedback inhibition. During network activity, BCs respond with short latency and high temporal precision. It is thought that the specific properties of input synapses are responsible for rapid recruitment. However, a potential contribution of active dendritic conductances has not been addressed. We combined confocal imaging and patch-clamp techniques to obtain simultaneous somatodendritic recordings from BCs. Action potentials were initiated in the BC axon and backpropagated into the dendrites with reduced amplitude and little activity dependence. These properties were explained by a high K+ to Na+ conductance ratio in BC dendrites. Computational analysis indicated that dendritic K+ channels convey unique integration properties to BCs, leading to the rapid and temporally precise activation by excitatory inputs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Hua -- Martina, Marco -- Jonas, Peter -- New York, N.Y. -- Science. 2010 Jan 1;327(5961):52-8. doi: 10.1126/science.1177876. Epub 2009 Dec 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Physiology I, Universitat Freiburg, Engesserstrasse 4, D-79108 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965717" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Axons/physiology ; Dendrites/*physiology ; Dentate Gyrus/cytology/*physiology ; Excitatory Postsynaptic Potentials ; Hippocampus/cytology/*physiology ; In Vitro Techniques ; Interneurons/*physiology ; Ion Channel Gating ; Microscopy, Confocal ; Neural Inhibition ; Parvalbumins/metabolism ; Patch-Clamp Techniques ; Potassium/metabolism ; Potassium Channels, Voltage-Gated/metabolism ; Rats ; Rats, Wistar ; Sodium/metabolism ; Sodium Channels/metabolism ; Synapses/*physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...