ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Time Factors  (54)
  • Nature Publishing Group (NPG)  (54)
  • Springer Nature
  • 1
    Publication Date: 2012-06-23
    Description: Ecosystem respiration is the biotic conversion of organic carbon to carbon dioxide by all of the organisms in an ecosystem, including both consumers and primary producers. Respiration exhibits an exponential temperature dependence at the subcellular and individual levels, but at the ecosystem level respiration can be modified by many variables including community abundance and biomass, which vary substantially among ecosystems. Despite its importance for predicting the responses of the biosphere to climate change, it is as yet unknown whether the temperature dependence of ecosystem respiration varies systematically between aquatic and terrestrial environments. Here we use the largest database of respiratory measurements yet compiled to show that the sensitivity of ecosystem respiration to seasonal changes in temperature is remarkably similar for diverse environments encompassing lakes, rivers, estuaries, the open ocean and forested and non-forested terrestrial ecosystems, with an average activation energy similar to that of the respiratory complex (approximately 0.65 electronvolts (eV)). By contrast, annual ecosystem respiration shows a substantially greater temperature dependence across aquatic (approximately 0.65 eV) versus terrestrial ecosystems (approximately 0.32 eV) that span broad geographic gradients in temperature. Using a model derived from metabolic theory, these findings can be reconciled by similarities in the biochemical kinetics of metabolism at the subcellular level, and fundamental differences in the importance of other variables besides temperature-such as primary productivity and allochthonous carbon inputs-on the structure of aquatic and terrestrial biota at the community level.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yvon-Durocher, Gabriel -- Caffrey, Jane M -- Cescatti, Alessandro -- Dossena, Matteo -- del Giorgio, Paul -- Gasol, Josep M -- Montoya, Jose M -- Pumpanen, Jukka -- Staehr, Peter A -- Trimmer, Mark -- Woodward, Guy -- Allen, Andrew P -- England -- Nature. 2012 Jul 26;487(7408):472-6. doi: 10.1038/nature11205.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, UK. g.yvon-durocher@exeter.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722862" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomass ; Biota ; Carbon/*metabolism ; Carbon Dioxide/*metabolism ; Cell Respiration ; Data Collection ; *Ecosystem ; *Global Warming ; Humans ; Kinetics ; Lakes ; Marine Biology ; *Oxygen Consumption ; Photosynthesis ; Rivers ; Seasons ; Seawater ; *Temperature ; Time Factors ; Trees/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-02-05
    Description: X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038304/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038304/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seibert, M Marvin -- Ekeberg, Tomas -- Maia, Filipe R N C -- Svenda, Martin -- Andreasson, Jakob -- Jonsson, Olof -- Odic, Dusko -- Iwan, Bianca -- Rocker, Andrea -- Westphal, Daniel -- Hantke, Max -- DePonte, Daniel P -- Barty, Anton -- Schulz, Joachim -- Gumprecht, Lars -- Coppola, Nicola -- Aquila, Andrew -- Liang, Mengning -- White, Thomas A -- Martin, Andrew -- Caleman, Carl -- Stern, Stephan -- Abergel, Chantal -- Seltzer, Virginie -- Claverie, Jean-Michel -- Bostedt, Christoph -- Bozek, John D -- Boutet, Sebastien -- Miahnahri, A Alan -- Messerschmidt, Marc -- Krzywinski, Jacek -- Williams, Garth -- Hodgson, Keith O -- Bogan, Michael J -- Hampton, Christina Y -- Sierra, Raymond G -- Starodub, Dmitri -- Andersson, Inger -- Bajt, Sasa -- Barthelmess, Miriam -- Spence, John C H -- Fromme, Petra -- Weierstall, Uwe -- Kirian, Richard -- Hunter, Mark -- Doak, R Bruce -- Marchesini, Stefano -- Hau-Riege, Stefan P -- Frank, Matthias -- Shoeman, Robert L -- Lomb, Lukas -- Epp, Sascha W -- Hartmann, Robert -- Rolles, Daniel -- Rudenko, Artem -- Schmidt, Carlo -- Foucar, Lutz -- Kimmel, Nils -- Holl, Peter -- Rudek, Benedikt -- Erk, Benjamin -- Homke, Andre -- Reich, Christian -- Pietschner, Daniel -- Weidenspointner, Georg -- Struder, Lothar -- Hauser, Gunter -- Gorke, Hubert -- Ullrich, Joachim -- Schlichting, Ilme -- Herrmann, Sven -- Schaller, Gerhard -- Schopper, Florian -- Soltau, Heike -- Kuhnel, Kai-Uwe -- Andritschke, Robert -- Schroter, Claus-Dieter -- Krasniqi, Faton -- Bott, Mario -- Schorb, Sebastian -- Rupp, Daniela -- Adolph, Marcus -- Gorkhover, Tais -- Hirsemann, Helmut -- Potdevin, Guillaume -- Graafsma, Heinz -- Nilsson, Bjorn -- Chapman, Henry N -- Hajdu, Janos -- R01 GM095583/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Feb 3;470(7332):78-81. doi: 10.1038/nature09748.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-751 24 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21293374" target="_blank"〉PubMed〈/a〉
    Keywords: Electrons ; Hot Temperature ; Lasers ; Mimiviridae/*chemistry ; Photons ; Time Factors ; X-Ray Diffraction/*instrumentation/*methods ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-29
    Description: Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Borer, Elizabeth T -- Seabloom, Eric W -- Gruner, Daniel S -- Harpole, W Stanley -- Hillebrand, Helmut -- Lind, Eric M -- Adler, Peter B -- Alberti, Juan -- Anderson, T Michael -- Bakker, Jonathan D -- Biederman, Lori -- Blumenthal, Dana -- Brown, Cynthia S -- Brudvig, Lars A -- Buckley, Yvonne M -- Cadotte, Marc -- Chu, Chengjin -- Cleland, Elsa E -- Crawley, Michael J -- Daleo, Pedro -- Damschen, Ellen I -- Davies, Kendi F -- DeCrappeo, Nicole M -- Du, Guozhen -- Firn, Jennifer -- Hautier, Yann -- Heckman, Robert W -- Hector, Andy -- HilleRisLambers, Janneke -- Iribarne, Oscar -- Klein, Julia A -- Knops, Johannes M H -- La Pierre, Kimberly J -- Leakey, Andrew D B -- Li, Wei -- MacDougall, Andrew S -- McCulley, Rebecca L -- Melbourne, Brett A -- Mitchell, Charles E -- Moore, Joslin L -- Mortensen, Brent -- O'Halloran, Lydia R -- Orrock, John L -- Pascual, Jesus -- Prober, Suzanne M -- Pyke, David A -- Risch, Anita C -- Schuetz, Martin -- Smith, Melinda D -- Stevens, Carly J -- Sullivan, Lauren L -- Williams, Ryan J -- Wragg, Peter D -- Wright, Justin P -- Yang, Louie H -- England -- Nature. 2014 Apr 24;508(7497):517-20. doi: 10.1038/nature13144. Epub 2014 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, Minnesota 55108, USA. ; Department of Entomology, University of Maryland, College Park, Maryland 20742, USA. ; Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA. ; Institute for Chemistry and Biology of the Marine Environment, Carl-von- Ossietzky University, 26382 Wilhelmshaven, Oldenburg, Germany. ; Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah 84322, USA. ; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Mar del Plata 7600 , Argentina. ; Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, USA. ; School of Environmental and Forest Sciences, University of Washington, Seattle, Washington 98195, USA. ; Agricultural Research Service (ARS), United States Department of Agriculture, Fort Collins, Colorado 80526, USA. ; Deptartment of Forest, Rangeland and Watershed Stewardship, Colorado State University, Fort Collins, Colorado 80523, USA. ; Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA. ; 1] ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, Queensland 4072, Australia [2] School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland. ; Department of Ecology and Evolutionary Biology, University of Toronto Scarborough, Ontario M1C 1A4, Canada. ; State Key Laboratory of Grassland and Agro-Ecosystems, Research Station of Alpine Meadow and Wetland Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 Gansu, China. ; Division of Biological Sciences, University of California, San Diego, California 92093, USA. ; Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK. ; Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706, USA. ; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder Colorado 80309, USA. ; US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon 97331, USA. ; Queensland University of Technology, Biogeosciences, Brisbane, Queensland 4001, Australia. ; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK. ; School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA. ; Berkeley Initiative for Global Change Biology, University of California, Berkeley 94704, USA. ; Department of Plant Biology, University of Illinois at Urbana-Champaign, llinois 61820, USA. ; Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada. ; Department of Plant & Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA. ; Australian Research Center for Urban Ecology, c/o School of Botany, University of Melbourne, Victoria 3010, Australia, and School of Biological Sciences, Monash University, Victoria 3800, Australia. ; Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA. ; CSIRO Ecosystem Sciences, Wembley, West Australia 6913, Australia. ; Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland. ; Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK. ; Department of Biology, Duke University, Durham, North Carolina 27708, USA. ; Department of Entomology, University of California, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670649" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Climate ; Eutrophication/drug effects/*radiation effects ; Geography ; Herbivory/*physiology ; Human Activities ; Internationality ; *Light ; Nitrogen/metabolism/pharmacology ; Plants/drug effects/*metabolism/*radiation effects ; *Poaceae/drug effects/physiology/radiation effects ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-02-05
    Description: X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals ( approximately 200 nm to 2 mum in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429598/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429598/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Henry N -- Fromme, Petra -- Barty, Anton -- White, Thomas A -- Kirian, Richard A -- Aquila, Andrew -- Hunter, Mark S -- Schulz, Joachim -- DePonte, Daniel P -- Weierstall, Uwe -- Doak, R Bruce -- Maia, Filipe R N C -- Martin, Andrew V -- Schlichting, Ilme -- Lomb, Lukas -- Coppola, Nicola -- Shoeman, Robert L -- Epp, Sascha W -- Hartmann, Robert -- Rolles, Daniel -- Rudenko, Artem -- Foucar, Lutz -- Kimmel, Nils -- Weidenspointner, Georg -- Holl, Peter -- Liang, Mengning -- Barthelmess, Miriam -- Caleman, Carl -- Boutet, Sebastien -- Bogan, Michael J -- Krzywinski, Jacek -- Bostedt, Christoph -- Bajt, Sasa -- Gumprecht, Lars -- Rudek, Benedikt -- Erk, Benjamin -- Schmidt, Carlo -- Homke, Andre -- Reich, Christian -- Pietschner, Daniel -- Struder, Lothar -- Hauser, Gunter -- Gorke, Hubert -- Ullrich, Joachim -- Herrmann, Sven -- Schaller, Gerhard -- Schopper, Florian -- Soltau, Heike -- Kuhnel, Kai-Uwe -- Messerschmidt, Marc -- Bozek, John D -- Hau-Riege, Stefan P -- Frank, Matthias -- Hampton, Christina Y -- Sierra, Raymond G -- Starodub, Dmitri -- Williams, Garth J -- Hajdu, Janos -- Timneanu, Nicusor -- Seibert, M Marvin -- Andreasson, Jakob -- Rocker, Andrea -- Jonsson, Olof -- Svenda, Martin -- Stern, Stephan -- Nass, Karol -- Andritschke, Robert -- Schroter, Claus-Dieter -- Krasniqi, Faton -- Bott, Mario -- Schmidt, Kevin E -- Wang, Xiaoyu -- Grotjohann, Ingo -- Holton, James M -- Barends, Thomas R M -- Neutze, Richard -- Marchesini, Stefano -- Fromme, Raimund -- Schorb, Sebastian -- Rupp, Daniela -- Adolph, Marcus -- Gorkhover, Tais -- Andersson, Inger -- Hirsemann, Helmut -- Potdevin, Guillaume -- Graafsma, Heinz -- Nilsson, Bjorn -- Spence, John C H -- 1R01GM095583-01/GM/NIGMS NIH HHS/ -- 1U54GM094625-01/GM/NIGMS NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094625/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Feb 3;470(7332):73-7. doi: 10.1038/nature09750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. henry.chapman@desy.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21293373" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray/instrumentation/*methods ; Lasers ; Models, Molecular ; Nanoparticles/*chemistry ; Nanotechnology/instrumentation/*methods ; Photosystem I Protein Complex/*chemistry ; Protein Conformation ; Time Factors ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-22
    Description: The timing of Neanderthal disappearance and the extent to which they overlapped with the earliest incoming anatomically modern humans (AMHs) in Eurasia are key questions in palaeoanthropology. Determining the spatiotemporal relationship between the two populations is crucial if we are to understand the processes, timing and reasons leading to the disappearance of Neanderthals and the likelihood of cultural and genetic exchange. Serious technical challenges, however, have hindered reliable dating of the period, as the radiocarbon method reaches its limit at approximately 50,000 years ago. Here we apply improved accelerator mass spectrometry (14)C techniques to construct robust chronologies from 40 key Mousterian and Neanderthal archaeological sites, ranging from Russia to Spain. Bayesian age modelling was used to generate probability distribution functions to determine the latest appearance date. We show that the Mousterian ended by 41,030-39,260 calibrated years bp (at 95.4% probability) across Europe. We also demonstrate that succeeding 'transitional' archaeological industries, one of which has been linked with Neanderthals (Chatelperronian), end at a similar time. Our data indicate that the disappearance of Neanderthals occurred at different times in different regions. Comparing the data with results obtained from the earliest dated AMH sites in Europe, associated with the Uluzzian technocomplex, allows us to quantify the temporal overlap between the two human groups. The results reveal a significant overlap of 2,600-5,400 years (at 95.4% probability). This has important implications for models seeking to explain the cultural, technological and biological elements involved in the replacement of Neanderthals by AMHs. A mosaic of populations in Europe during the Middle to Upper Palaeolithic transition suggests that there was ample time for the transmission of cultural and symbolic behaviours, as well as possible genetic exchanges, between the two groups.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Higham, Tom -- Douka, Katerina -- Wood, Rachel -- Ramsey, Christopher Bronk -- Brock, Fiona -- Basell, Laura -- Camps, Marta -- Arrizabalaga, Alvaro -- Baena, Javier -- Barroso-Ruiz, Cecillio -- Bergman, Christopher -- Boitard, Coralie -- Boscato, Paolo -- Caparros, Miguel -- Conard, Nicholas J -- Draily, Christelle -- Froment, Alain -- Galvan, Bertila -- Gambassini, Paolo -- Garcia-Moreno, Alejandro -- Grimaldi, Stefano -- Haesaerts, Paul -- Holt, Brigitte -- Iriarte-Chiapusso, Maria-Jose -- Jelinek, Arthur -- Jorda Pardo, Jesus F -- Maillo-Fernandez, Jose-Manuel -- Marom, Anat -- Maroto, Julia -- Menendez, Mario -- Metz, Laure -- Morin, Eugene -- Moroni, Adriana -- Negrino, Fabio -- Panagopoulou, Eleni -- Peresani, Marco -- Pirson, Stephane -- de la Rasilla, Marco -- Riel-Salvatore, Julien -- Ronchitelli, Annamaria -- Santamaria, David -- Semal, Patrick -- Slimak, Ludovic -- Soler, Joaquim -- Soler, Narcis -- Villaluenga, Aritza -- Pinhasi, Ron -- Jacobi, Roger -- England -- Nature. 2014 Aug 21;512(7514):306-9. doi: 10.1038/nature13621.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology &the History of Art, University of Oxford, Oxford OX1 3QY, UK. ; 1] Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology &the History of Art, University of Oxford, Oxford OX1 3QY, UK [2] Research School for Earth Sciences, Australian National University, Canberra 0200, Australia. ; School of Geography, Archaeology and Palaeoecology (GAP), Queen's University Belfast, Belfast BT7 1NN, UK. ; School of Languages, Literatures and Cultures, College Park, 4102 Jimenez Hall, University of Maryland, Maryland 20742-4821, USA. ; Research Team on Prehistory (IT-622-13), IKERBASQUE, University of the Basque Country (UPV-EHU), Tomas y Valiente Street, 01006 Vitoria-Gasteiz, Spain. ; Departimento Prehistoria y Arqueologia, Universidad Autonoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain. ; Fundacion Instituto de Investigacion de Prehistoria y Evolucion Humana, Plaza del Coso 1, 14900 Lucena, Cordoba, Spain. ; URS, 525 Vine Street, Suite 1800, Cincinnati, Ohio 45202, USA. ; 8 rue des Sapins, 67100 Strasbourg, France. ; Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, Universita degli Studi di Siena, Via Laterina 8, 53100 Siena, Italy. ; Departement de Prehistoire, Museum National d'Histoire Naturelle, 75013 Paris, France. ; 1] Abt. Altere Urgeschichte und Quartarokologie, Universitat Tubingen, Schloss Hohentubingen, 72070 Tubingen, Germany [2] Tubingen Senckenberg Center for Human Evolution and Paleoecology, Schloss Hohentubingen, 72070 Tubingen, Germany. ; Service public de Wallonie, DGO4, Service de l'Archeologie, rue des Martyrs, 22, B-6700 Arlon, Belgium. ; Laboratoire d'Eco-antropologie et Ethnobiologie, Musee de l'Homme, 17 place du Trocadero, 75116 Paris, France. ; Departamento de Prehistoria, Arqueologia, Antropologia e Historia Antigua, Universidad de La Laguna, Campus de Guajara, 38071 Tenerife, Spain. ; 1] Monrepos Archaeological Research Centre and Museum for Human Behavioural Evolution, Schloss Monrepos, D-56567 Neuwied, Germany [2] The Cantabria International Institute for Prehistoric Research (IIIPC), University of Cantabria, Avda. Los Castros, s/n. 39005 Santander, Spain. ; Laboratorio di Preistoria 'B. Bagolini', Dipartimento di Lettere e Filosofia, Universita degli Studi di Trento, via Tommaso Gar, 14 I-38122 Trento, Italy. ; Institut Royal des Sciences Naturelles de Belgique, rue Vautier 29, B-1000 Brussels, Belgium. ; Department of Anthropology, University of Massachusetts, 103 Machmer Hall, Amherst, Massachusetts 01003, USA. ; School of Anthropology, Emil W. Haury Building, University of Arizona, Tucson, Arizona 85721-0030, USA. ; Departamento de Prehistoria y Arqueologia, UNED. Paseo Senda del Rey 7, 20840, Madrid, Spain. ; 1] Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology &the History of Art, University of Oxford, Oxford OX1 3QY, UK [2] The Kimmel Center for Archaeological Science, Weizmann Institute of Science, Rehovot 76100, Israel. ; rea de Prehistoria, Universitat de Girona, pl. Ferrater Mora 1, 17071 Girona, Spain. ; CNRS, UMR 5608, TRACES, Toulouse Jean Jaures University, Maison de la Recherche, 5 Allees Antonio Machado, 31058 Toulouse, Cedex 9, France. ; Department of Anthropology, Trent University, Life and Health Sciences Building Block C, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada. ; Dipartimento di Antichita, Filosofia e Storia, Universita di Genova, Via Balbi 2, Genova I-16126, Italy. ; Ephoreia of Paleoanthropology of Southern Greece, Ardittou 34B, Athens 11636, Greece. ; Universita di Ferrara, Dipartimento di Studi Umanistici, Sezione di Scienze Preistoriche e Antropologiche, Corso Ercole I d'Este 32, I-44100 Ferrara, Italy. ; Service public de Wallonie, DGO4, Direction de l'Archeologie, rue des Brigades d'Irlande, 1, B-5100 Jambes, Belgium. ; Departamento de Historia, Universidad de Oviedo, c/Teniente Alfonso Martinez, s/n, 33011 Oviedo, Spain. ; Departement d'Anthropologie, Universite de Montreal, C. P. 6128, Succursale Centre-ville, Montreal, Quebec H3T 1N8, Canada. ; Service of Scientific Heritage, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium. ; Monrepos Archaeological Research Centre and Museum for Human Behavioural Evolution, Schloss Monrepos, D-56567 Neuwied, Germany. ; UCD Earth Institute and School of Archaeology, University College Dublin, Belfield, Dublin 4, Ireland. ; 1] Department of Prehistory and Europe, Franks House, The British Museum, London N1 5QJ, UK [2] The Natural History Museum, Cromwell Road, London SW7 5BD, UK [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25143113" target="_blank"〉PubMed〈/a〉
    Keywords: Acculturation/*history ; Animals ; Bayes Theorem ; *Extinction, Biological ; *Geography ; History, Ancient ; Humans ; Mass Spectrometry ; *Neanderthals/genetics/physiology ; Radiometric Dating ; *Spatio-Temporal Analysis ; Time Factors ; Tool Use Behavior ; Uncertainty
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-07-18
    Description: Generating engraftable human haematopoietic cells from autologous tissues is a potential route to new therapies for blood diseases. However, directed differentiation of pluripotent stem cells yields haematopoietic cells that engraft poorly. Here, we have devised a method to phenocopy the vascular-niche microenvironment of haemogenic cells, thereby enabling reprogramming of human endothelial cells into engraftable haematopoietic cells without transition through a pluripotent intermediate. Highly purified non-haemogenic human umbilical vein endothelial cells or adult dermal microvascular endothelial cells were transduced with the transcription factors FOSB, GFI1, RUNX1 and SPI1 (hereafter referred to as FGRS), and then propagated on serum-free instructive vascular niche monolayers to induce outgrowth of haematopoietic colonies containing cells with functional and immunophenotypic features of multipotent progenitor cells (MPPs). These endothelial cells that have been reprogrammed into human MPPs (rEC-hMPPs) acquire colony-forming-cell potential and durably engraft into immune-deficient mice after primary and secondary transplantation, producing long-term rEC-hMPP-derived myeloid (granulocytic/monocytic, erythroid, megakaryocytic) and lymphoid (natural killer and B cell) progenies. Conditional expression of FGRS transgenes, combined with vascular induction, activates endogenous FGRS genes, endowing rEC-hMPPs with a transcriptional and functional profile similar to that of self-renewing MPPs. Our approach underscores the role of inductive cues from the vascular niche in coordinating and sustaining haematopoietic specification and may prove useful for engineering autologous haematopoietic grafts to treat inherited and acquired blood disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159670/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159670/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sandler, Vladislav M -- Lis, Raphael -- Liu, Ying -- Kedem, Alon -- James, Daylon -- Elemento, Olivier -- Butler, Jason M -- Scandura, Joseph M -- Rafii, Shahin -- CA159175/CA/NCI NIH HHS/ -- CA163167/CA/NCI NIH HHS/ -- HL055748/HL/NHLBI NIH HHS/ -- HL119872/HL/NHLBI NIH HHS/ -- R01 DK095039/DK/NIDDK NIH HHS/ -- R01 HL097797/HL/NHLBI NIH HHS/ -- R01 HL115128/HL/NHLBI NIH HHS/ -- R01 HL119872/HL/NHLBI NIH HHS/ -- R01DK095039/DK/NIDDK NIH HHS/ -- R01HL097797/HL/NHLBI NIH HHS/ -- R01HL119872/HL/NHLBI NIH HHS/ -- U01 HL099997/HL/NHLBI NIH HHS/ -- U01-HL099997/HL/NHLBI NIH HHS/ -- U54 CA163167/CA/NCI NIH HHS/ -- U54CA163167/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 17;511(7509):312-8. doi: 10.1038/nature13547. Epub 2014 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ansary Stem Cell Institute, Department of Genetic Medicine, and Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York 10065, USA. ; 1] Ansary Stem Cell Institute, Department of Genetic Medicine, and Howard Hughes Medical Institute, Weill Cornell Medical College, New York, New York 10065, USA [2] Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, New York 10065, USA. ; HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10065, USA. ; Department of Medicine, Hematology-Oncology, Weill Cornell Medical College and the New York Presbyterian Hospital, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25030167" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/cytology/metabolism/transplantation ; Animals ; Aorta ; Cell Lineage ; *Cellular Microenvironment ; *Cellular Reprogramming ; Endothelial Cells/*cytology/metabolism ; Female ; Gene Expression Regulation ; Gonads ; Hematopoiesis ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*cytology/metabolism ; Humans ; Lymphocytes/cytology ; Mesonephros ; Mice ; Multipotent Stem Cells/*cytology/metabolism/transplantation ; Myeloid Cells/cytology ; Pluripotent Stem Cells ; Time Factors ; Transcription Factors/genetics/metabolism ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-12-24
    Description: Early flowering plants are thought to have been woody species restricted to warm habitats. This lineage has since radiated into almost every climate, with manifold growth forms. As angiosperms spread and climate changed, they evolved mechanisms to cope with episodic freezing. To explore the evolution of traits underpinning the ability to persist in freezing conditions, we assembled a large species-level database of growth habit (woody or herbaceous; 49,064 species), as well as leaf phenology (evergreen or deciduous), diameter of hydraulic conduits (that is, xylem vessels and tracheids) and climate occupancies (exposure to freezing). To model the evolution of species' traits and climate occupancies, we combined these data with an unparalleled dated molecular phylogeny (32,223 species) for land plants. Here we show that woody clades successfully moved into freezing-prone environments by either possessing transport networks of small safe conduits and/or shutting down hydraulic function by dropping leaves during freezing. Herbaceous species largely avoided freezing periods by senescing cheaply constructed aboveground tissue. Growth habit has long been considered labile, but we find that growth habit was less labile than climate occupancy. Additionally, freezing environments were largely filled by lineages that had already become herbs or, when remaining woody, already had small conduits (that is, the trait evolved before the climate occupancy). By contrast, most deciduous woody lineages had an evolutionary shift to seasonally shedding their leaves only after exposure to freezing (that is, the climate occupancy evolved before the trait). For angiosperms to inhabit novel cold environments they had to gain new structural and functional trait solutions; our results suggest that many of these solutions were probably acquired before their foray into the cold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zanne, Amy E -- Tank, David C -- Cornwell, William K -- Eastman, Jonathan M -- Smith, Stephen A -- FitzJohn, Richard G -- McGlinn, Daniel J -- O'Meara, Brian C -- Moles, Angela T -- Reich, Peter B -- Royer, Dana L -- Soltis, Douglas E -- Stevens, Peter F -- Westoby, Mark -- Wright, Ian J -- Aarssen, Lonnie -- Bertin, Robert I -- Calaminus, Andre -- Govaerts, Rafael -- Hemmings, Frank -- Leishman, Michelle R -- Oleksyn, Jacek -- Soltis, Pamela S -- Swenson, Nathan G -- Warman, Laura -- Beaulieu, Jeremy M -- England -- Nature. 2014 Feb 6;506(7486):89-92. doi: 10.1038/nature12872. Epub 2013 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biological Sciences, George Washington University, Washington DC 20052, USA [2] Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, Missouri 63121, USA. ; 1] Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844, USA [2] Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho 83844, USA. ; 1] Department of Ecological Sciences, Systems Ecology, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands [2] Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia. ; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada [2] Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia. ; Department of Biology and the Ecology Center, Utah State University, Logan, Utah 84322, USA. ; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA. ; Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia. ; 1] Department of Forest Resources, University of Minnesota, St Paul, Minnesota 55108, USA [2] Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales 2751, Australia. ; Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06459, USA. ; 1] Department of Biology, University of Florida, Gainesville, Florida 32611, USA [2] Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA [3] Genetics Institute, University of Florida, Gainesville, Florida 32611, USA. ; Department of Biology, University of Missouri-St Louis, St Louis, Missouri 63121, USA. ; Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia. ; Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada. ; Department of Biology, College of the Holy Cross, Worcester, Massachusetts 01610, USA. ; Department of Biology, University of Florida, Gainesville, Florida 32611, USA. ; Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, United Kingdom. ; 1] Department of Forest Resources, University of Minnesota, St Paul, Minnesota 55108, USA [2] Polish Academy of Sciences, Institute of Dendrology, 62-035 Kornik, Poland. ; 1] Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA [2] Genetics Institute, University of Florida, Gainesville, Florida 32611, USA. ; Department of Plant Biology and Ecology, Evolutionary Biology and Behavior, Program, Michigan State University, East Lansing, Michigan 48824, USA. ; 1] Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia [2] Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, Hawaii 96720, USA. ; National Institute for Mathematical & Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24362564" target="_blank"〉PubMed〈/a〉
    Keywords: Angiosperms/*anatomy & histology/*physiology ; *Biological Evolution ; *Cold Climate ; *Ecosystem ; *Freezing ; Likelihood Functions ; Phylogeography ; Plant Leaves/anatomy & histology/physiology ; Seeds/physiology ; Time Factors ; Wood/anatomy & histology/physiology ; Xylem/*anatomy & histology/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-04
    Description: Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Poorter, Lourens -- Bongers, Frans -- Aide, T Mitchell -- Almeyda Zambrano, Angelica M -- Balvanera, Patricia -- Becknell, Justin M -- Boukili, Vanessa -- Brancalion, Pedro H S -- Broadbent, Eben N -- Chazdon, Robin L -- Craven, Dylan -- de Almeida-Cortez, Jarcilene S -- Cabral, George A L -- de Jong, Ben H J -- Denslow, Julie S -- Dent, Daisy H -- DeWalt, Saara J -- Dupuy, Juan M -- Duran, Sandra M -- Espirito-Santo, Mario M -- Fandino, Maria C -- Cesar, Ricardo G -- Hall, Jefferson S -- Hernandez-Stefanoni, Jose Luis -- Jakovac, Catarina C -- Junqueira, Andre B -- Kennard, Deborah -- Letcher, Susan G -- Licona, Juan-Carlos -- Lohbeck, Madelon -- Marin-Spiotta, Erika -- Martinez-Ramos, Miguel -- Massoca, Paulo -- Meave, Jorge A -- Mesquita, Rita -- Mora, Francisco -- Munoz, Rodrigo -- Muscarella, Robert -- Nunes, Yule R F -- Ochoa-Gaona, Susana -- de Oliveira, Alexandre A -- Orihuela-Belmonte, Edith -- Pena-Claros, Marielos -- Perez-Garcia, Eduardo A -- Piotto, Daniel -- Powers, Jennifer S -- Rodriguez-Velazquez, Jorge -- Romero-Perez, I Eunice -- Ruiz, Jorge -- Saldarriaga, Juan G -- Sanchez-Azofeifa, Arturo -- Schwartz, Naomi B -- Steininger, Marc K -- Swenson, Nathan G -- Toledo, Marisol -- Uriarte, Maria -- van Breugel, Michiel -- van der Wal, Hans -- Veloso, Maria D M -- Vester, Hans F M -- Vicentini, Alberto -- Vieira, Ima C G -- Bentos, Tony Vizcarra -- Williamson, G Bruce -- Rozendaal, Danae M A -- England -- Nature. 2016 Feb 11;530(7589):211-4. doi: 10.1038/nature16512. Epub 2016 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands. ; PO Box 23360, Department of Biology, University of Puerto Rico, San Juan, PR 00931-3360, Puerto Rico. ; Spatial Ecology and Conservation Lab, Department of Geography, University of Alabama, Tuscaloosa, Alabama 35487, USA. ; Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autonoma de Mexico, CP58190, Morelia, Michoacan, Mexico. ; Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA. ; Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA. ; Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Avenida Padua Dias 11, 13418-900, Piracicaba, Sao Paulo, Brazil. ; SI ForestGEO, Smithsonian Tropical Research Institute, Roosevelt Avenue, Tupper Building - 401, Balboa, Ancon, Panama, Panama ; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany. ; Institute for Biology, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany. ; Departamento de Botanica, Universidade Federal de Pernambuco, Pernambuco, CEP 50670-901, Brazil. ; Department of Sustainability Science, El Colegio de la Frontera Sur, Unidad Campeche, Av. Rancho Poligono 2A, Parque Industrial Lerma, Campeche, Campeche, CP 24500, Mexico. ; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana 70130, USA. ; Smithsonian Tropical Research Institute, Roosevelt Avenue, Tupper Building - 401, Balboa, Ancon, Panama, Panama ; Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK. ; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, South Carolina 29634, USA. ; Centro de Investigacion Cientifica de Yucatan, AC, Unidad de Recursos Naturales, Calle 43 No. 130, Colonia Chuburna de Hidalgo, CP 97200, Merida, Yucatan, Mexico. ; Earth and Atmospheric Sciences Department, University of Alberta, Edmonton, Alberta T6G 2E3, Canada. ; Departamento de Biologia Geral, Universidade Estadual de Montes Claros, Montes Claros, Minas Gerais, CEP 39401-089, Brazil. ; Fondo Patrimonio Natural para la Biodiversidad y Areas Protegidas, Calle 72 No. 12-65 piso 6, Bogota, Colombia. ; Biological Dynamics of Forest Fragments Project, Environmental Dynamics Research Coordination, Instituto Nacional de Pesquisas da Amazonia, Manaus, Amazonas, CEP 69067-375, Brazil. ; Centre for Crop Systems Analysis, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands. ; Knowledge, Technology and Innovation Group, Wageningen University, PO Box 8130, 6700 EW Wageningen, The Netherlands. ; Coordenacao de Tecnologia e Inovacao, Instituto Nacional de Pesquisas da Amazonia, Avenida Andre Araujo, 2936 - Aleixo, 69060-001 Manaus, Brazil. ; Department of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction, Colorado 81501, USA. ; Department of Environmental Studies, Purchase College (State University of New York), Purchase, New York 10577, USA. ; Instituto Boliviano de Investigacion Forestal (IBIF), FCA-UAGRM, Casilla 6204, Santa Cruz de la Sierra, Bolivia. ; World Agroforestry Centre (ICRAF), PO Box 30677 - 00100, Nairobi, Kenya. ; Department of Geography, University of Wisconsin-Madison, 550 North Park Street, Madison, Wisconsin 53706, USA. ; Departamento de Ecologia y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Mexico 04510 DF, Mexico. ; Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York 10027, USA. ; Section of Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus 8000, Denmark. ; Departamento de Ecologia, Instituto de Biociencias, Universidade de Sao Paulo, Rua do Matao, travessa 14, No. 321, Sao Paulo, CEP 05508-090, Brazil. ; Universidade Federal do Sul da Bahia, Centro de Formacao em Ciencias Agroflorestais, Itabuna-BA, 45613-204, Brazil. ; Department of Ecology, Evolution, &Behavior, University of Minnesota, Saint Paul, Minnesota 55108, USA. ; Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA. ; School of Social Sciences, Geography Area, Universidad Pedagogica y Tecnologica de Colombia (UPTC), Tunja, Colombia. ; Department of Geography, 4841 Ellison Hall, University of California, Santa Barbara, California 93106, USA. ; Department of Biology, University of Maryland, College Park, Maryland 20742, USA. ; Yale-NUS College, 12 College Avenue West, Singapore 138610. ; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 11754. ; Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur - Unidad Villahermosa, 86280 Centro, Tabasco, Mexico. ; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, The Netherlands. ; Bonhoeffer College, Bruggertstraat 60, 7545 AX Enschede, The Netherlands. ; Museu Paraense Emilio Goeldi, CP 399, CEP 66040-170, Belem, Brazil. ; Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803-1705, USA. ; Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26840632" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomass ; Carbon/metabolism ; Carbon Cycle ; Carbon Sequestration ; Ecology ; *Forests ; Humidity ; Latin America ; Rain ; Time Factors ; Trees/*growth & development/metabolism ; *Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-07-03
    Description: The development of multicellular organisms relies on the coordinated control of cell divisions leading to proper patterning and growth. The molecular mechanisms underlying pattern formation, particularly the regulation of formative cell divisions, remain poorly understood. In Arabidopsis, formative divisions generating the root ground tissue are controlled by SHORTROOT (SHR) and SCARECROW (SCR). Here we show, using cell-type-specific transcriptional effects of SHR and SCR combined with data from chromatin immunoprecipitation-based microarray experiments, that SHR regulates the spatiotemporal activation of specific genes involved in cell division. Coincident with the onset of a specific formative division, SHR and SCR directly activate a D-type cyclin; furthermore, altering the expression of this cyclin resulted in formative division defects. Our results indicate that proper pattern formation is achieved through transcriptional regulation of specific cell-cycle genes in a cell-type- and developmental-stage-specific context. Taken together, we provide evidence for a direct link between developmental regulators, specific components of the cell-cycle machinery and organ patterning.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967763/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967763/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sozzani, R -- Cui, H -- Moreno-Risueno, M A -- Busch, W -- Van Norman, J M -- Vernoux, T -- Brady, S M -- Dewitte, W -- Murray, J A H -- Benfey, P N -- BB/E022383/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E022383/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E022383/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- P50 GM081883/GM/NIGMS NIH HHS/ -- P50 GM081883-020003/GM/NIGMS NIH HHS/ -- P50 GM081883-030003/GM/NIGMS NIH HHS/ -- P50-GM081883/GM/NIGMS NIH HHS/ -- R01 GM043778/GM/NIGMS NIH HHS/ -- R01 GM043778-18/GM/NIGMS NIH HHS/ -- R01 GM043778-19/GM/NIGMS NIH HHS/ -- R01 GM043778-20/GM/NIGMS NIH HHS/ -- R01 GM043778-21/GM/NIGMS NIH HHS/ -- R01-GM043778/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Jul 1;466(7302):128-32. doi: 10.1038/nature09143.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, North Carolina 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20596025" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/cytology/embryology/*genetics/*growth & development ; Arabidopsis Proteins/genetics/*metabolism ; Body Patterning/*genetics/*physiology ; Cell Cycle/genetics/physiology ; Cell Division/genetics ; Cyclin D/genetics/metabolism ; Cyclin-Dependent Kinases/metabolism ; Gene Expression Regulation, Plant ; Genes, cdc/*physiology ; Organogenesis/genetics/physiology ; Plant Roots/cytology/embryology/genetics/growth & development ; Time Factors ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-05-16
    Description: Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of approximately 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is approximately 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by approximately 100,000 yr glacial-interglacial cycles up to approximately 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loulergue, Laetitia -- Schilt, Adrian -- Spahni, Renato -- Masson-Delmotte, Valerie -- Blunier, Thomas -- Lemieux, Benedicte -- Barnola, Jean-Marc -- Raynaud, Dominique -- Stocker, Thomas F -- Chappellaz, Jerome -- England -- Nature. 2008 May 15;453(7193):383-6. doi: 10.1038/nature06950.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Glaciologie et Geophysique de l'Environnement, CNRS-Universite Joseph Fourier Grenoble, 54 Rue Moliere, 38402 St Martin d'Heres, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18480822" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Greenhouse Effect ; History, Ancient ; Ice Cover ; Methane/*analysis ; Temperature ; Time Factors ; Tropical Climate ; Wetlands
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...