ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-03-29
    Description: Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Borer, Elizabeth T -- Seabloom, Eric W -- Gruner, Daniel S -- Harpole, W Stanley -- Hillebrand, Helmut -- Lind, Eric M -- Adler, Peter B -- Alberti, Juan -- Anderson, T Michael -- Bakker, Jonathan D -- Biederman, Lori -- Blumenthal, Dana -- Brown, Cynthia S -- Brudvig, Lars A -- Buckley, Yvonne M -- Cadotte, Marc -- Chu, Chengjin -- Cleland, Elsa E -- Crawley, Michael J -- Daleo, Pedro -- Damschen, Ellen I -- Davies, Kendi F -- DeCrappeo, Nicole M -- Du, Guozhen -- Firn, Jennifer -- Hautier, Yann -- Heckman, Robert W -- Hector, Andy -- HilleRisLambers, Janneke -- Iribarne, Oscar -- Klein, Julia A -- Knops, Johannes M H -- La Pierre, Kimberly J -- Leakey, Andrew D B -- Li, Wei -- MacDougall, Andrew S -- McCulley, Rebecca L -- Melbourne, Brett A -- Mitchell, Charles E -- Moore, Joslin L -- Mortensen, Brent -- O'Halloran, Lydia R -- Orrock, John L -- Pascual, Jesus -- Prober, Suzanne M -- Pyke, David A -- Risch, Anita C -- Schuetz, Martin -- Smith, Melinda D -- Stevens, Carly J -- Sullivan, Lauren L -- Williams, Ryan J -- Wragg, Peter D -- Wright, Justin P -- Yang, Louie H -- England -- Nature. 2014 Apr 24;508(7497):517-20. doi: 10.1038/nature13144. Epub 2014 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, Minnesota 55108, USA. ; Department of Entomology, University of Maryland, College Park, Maryland 20742, USA. ; Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA. ; Institute for Chemistry and Biology of the Marine Environment, Carl-von- Ossietzky University, 26382 Wilhelmshaven, Oldenburg, Germany. ; Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah 84322, USA. ; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Mar del Plata 7600 , Argentina. ; Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, USA. ; School of Environmental and Forest Sciences, University of Washington, Seattle, Washington 98195, USA. ; Agricultural Research Service (ARS), United States Department of Agriculture, Fort Collins, Colorado 80526, USA. ; Deptartment of Forest, Rangeland and Watershed Stewardship, Colorado State University, Fort Collins, Colorado 80523, USA. ; Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA. ; 1] ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, Queensland 4072, Australia [2] School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland. ; Department of Ecology and Evolutionary Biology, University of Toronto Scarborough, Ontario M1C 1A4, Canada. ; State Key Laboratory of Grassland and Agro-Ecosystems, Research Station of Alpine Meadow and Wetland Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 Gansu, China. ; Division of Biological Sciences, University of California, San Diego, California 92093, USA. ; Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK. ; Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706, USA. ; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder Colorado 80309, USA. ; US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon 97331, USA. ; Queensland University of Technology, Biogeosciences, Brisbane, Queensland 4001, Australia. ; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK. ; School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA. ; Berkeley Initiative for Global Change Biology, University of California, Berkeley 94704, USA. ; Department of Plant Biology, University of Illinois at Urbana-Champaign, llinois 61820, USA. ; Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada. ; Department of Plant & Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA. ; Australian Research Center for Urban Ecology, c/o School of Botany, University of Melbourne, Victoria 3010, Australia, and School of Biological Sciences, Monash University, Victoria 3800, Australia. ; Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA. ; CSIRO Ecosystem Sciences, Wembley, West Australia 6913, Australia. ; Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland. ; Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK. ; Department of Biology, Duke University, Durham, North Carolina 27708, USA. ; Department of Entomology, University of California, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670649" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Climate ; Eutrophication/drug effects/*radiation effects ; Geography ; Herbivory/*physiology ; Human Activities ; Internationality ; *Light ; Nitrogen/metabolism/pharmacology ; Plants/drug effects/*metabolism/*radiation effects ; *Poaceae/drug effects/physiology/radiation effects ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-18
    Description: Studies of experimental grassland communities have demonstrated that plant diversity can stabilize productivity through species asynchrony, in which decreases in the biomass of some species are compensated for by increases in others. However, it remains unknown whether these findings are relevant to natural ecosystems, especially those for which species diversity is threatened by anthropogenic global change. Here we analyse diversity-stability relationships from 41 grasslands on five continents and examine how these relationships are affected by chronic fertilization, one of the strongest drivers of species loss globally. Unmanipulated communities with more species had greater species asynchrony, resulting in more stable biomass production, generalizing a result from biodiversity experiments to real-world grasslands. However, fertilization weakened the positive effect of diversity on stability. Contrary to expectations, this was not due to species loss after eutrophication but rather to an increase in the temporal variation of productivity in combination with a decrease in species asynchrony in diverse communities. Our results demonstrate separate and synergistic effects of diversity and eutrophication on stability, emphasizing the need to understand how drivers of global change interactively affect the reliable provisioning of ecosystem services in real-world systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hautier, Yann -- Seabloom, Eric W -- Borer, Elizabeth T -- Adler, Peter B -- Harpole, W Stanley -- Hillebrand, Helmut -- Lind, Eric M -- MacDougall, Andrew S -- Stevens, Carly J -- Bakker, Jonathan D -- Buckley, Yvonne M -- Chu, Chengjin -- Collins, Scott L -- Daleo, Pedro -- Damschen, Ellen I -- Davies, Kendi F -- Fay, Philip A -- Firn, Jennifer -- Gruner, Daniel S -- Jin, Virginia L -- Klein, Julia A -- Knops, Johannes M H -- La Pierre, Kimberly J -- Li, Wei -- McCulley, Rebecca L -- Melbourne, Brett A -- Moore, Joslin L -- O'Halloran, Lydia R -- Prober, Suzanne M -- Risch, Anita C -- Sankaran, Mahesh -- Schuetz, Martin -- Hector, Andy -- England -- Nature. 2014 Apr 24;508(7497):521-5. doi: 10.1038/nature13014. Epub 2014 Feb 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, Minnesota 55108, USA [2] Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland. ; Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, Minnesota 55108, USA. ; Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah 84322, USA. ; Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA. ; Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, D-26111 Oldenburg, Germany. ; Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada. ; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK. ; School of Environmental and Forest Sciences, University of Washington, Seattle, Washington 98195, USA. ; 1] Australian Research Council Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, Queensland 4072, Australia [2] School of Natural Sciences, Department of Zoology, Trinity College Dublin, Dublin 2, Ireland. ; State Key Laboratory of Grassland and Agro-Ecosystems, Research Station of Alpine Meadow and Wetland Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China. ; Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, New Mexico 87131, USA. ; Instituto de Investigaciones Marinas y Costeras (IIMyC) (CONICET-UNMdP), Mar del Plata 7600, Argentina. ; Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706, USA. ; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA. ; United States Department of Agriculture Agricultural Research Service, Grassland Soil and Water Research Lab, Temple, Texas 76502, USA. ; Queensland University of Technology, School of Biological Sciences, Brisbane 4000, Australia. ; Department of Entomology, University of Maryland, College Park, Maryland 20742, USA. ; United States Department of Agriculture Agricultural Research Service, Agroecosystem Management Research Unit, Lincoln, Nebraska 68583, USA. ; Department of Forest, Rangeland and Watershed Stewardship, Colorado State University, Fort Collins, Colorado 80523, USA. ; School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA. ; Berkeley Initiative for Global Change Biology, University of California, Berkeley, California 94720, USA. ; Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China. ; Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA. ; 1] Australian Research Centre for Urban Ecology, Melbourne, c/o School of Botany, University of Melbourne, Victoria 3010, Australia [2] School of Biological Sciences, Monash University, Victoria 3800, Australia. ; Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA. ; CSIRO Ecosystem Sciences, Wembley, WA 6913, Australia. ; Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland. ; 1] School of Biology, University of Leeds, Leeds LS2 9JT, UK [2] National Centre for Biological Sciences, GKVK Campus, Bangalore 560065, India. ; Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24531763" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; Biomass ; Climate ; *Eutrophication/drug effects ; Fertilizers/*adverse effects ; Geography ; International Cooperation ; *Poaceae/drug effects/physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-05-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buckley, Yvonne M -- Han, Yi -- New York, N.Y. -- Science. 2014 May 30;344(6187):975-6. doi: 10.1126/science.1254662.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Natural Sciences and Trinity Centre for Biodiversity Research, Department of Zoology, Trinity College, University of Dublin, Dublin 2, Ireland. ARC Center of Excellence for Environmental Decisions, School of Biological Sciences, University of Queensland, Queensland 4072, Australia. buckleyy@tcd.ie. ; ARC Center of Excellence for Environmental Decisions, School of Biological Sciences, University of Queensland, Queensland 4072, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876482" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Birds ; Conservation of Natural Resources/*methods ; *Endangered Species ; *Introduced Species ; *Poaceae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-24
    Description: For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters(-2)) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adler, Peter B -- Seabloom, Eric W -- Borer, Elizabeth T -- Hillebrand, Helmut -- Hautier, Yann -- Hector, Andy -- Harpole, W Stanley -- O'Halloran, Lydia R -- Grace, James B -- Anderson, T Michael -- Bakker, Jonathan D -- Biederman, Lori A -- Brown, Cynthia S -- Buckley, Yvonne M -- Calabrese, Laura B -- Chu, Cheng-Jin -- Cleland, Elsa E -- Collins, Scott L -- Cottingham, Kathryn L -- Crawley, Michael J -- Damschen, Ellen I -- Davies, Kendi F -- DeCrappeo, Nicole M -- Fay, Philip A -- Firn, Jennifer -- Frater, Paul -- Gasarch, Eve I -- Gruner, Daniel S -- Hagenah, Nicole -- Hille Ris Lambers, Janneke -- Humphries, Hope -- Jin, Virginia L -- Kay, Adam D -- Kirkman, Kevin P -- Klein, Julia A -- Knops, Johannes M H -- La Pierre, Kimberly J -- Lambrinos, John G -- Li, Wei -- MacDougall, Andrew S -- McCulley, Rebecca L -- Melbourne, Brett A -- Mitchell, Charles E -- Moore, Joslin L -- Morgan, John W -- Mortensen, Brent -- Orrock, John L -- Prober, Suzanne M -- Pyke, David A -- Risch, Anita C -- Schuetz, Martin -- Smith, Melinda D -- Stevens, Carly J -- Sullivan, Lauren L -- Wang, Gang -- Wragg, Peter D -- Wright, Justin P -- Yang, Louie H -- New York, N.Y. -- Science. 2011 Sep 23;333(6050):1750-3. doi: 10.1126/science.1204498.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main, Logan, UT 84322, USA. peter.adler@usu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21940895" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Australia ; *Biodiversity ; *Biomass ; China ; *Ecosystem ; Europe ; Models, Biological ; Models, Statistical ; North America ; Plant Development ; Plant Physiological Processes ; *Plants ; Regression Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-30
    Description: Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tredennick, Andrew T -- Adler, Peter B -- Grace, James B -- Harpole, W Stanley -- Borer, Elizabeth T -- Seabloom, Eric W -- Anderson, T Michael -- Bakker, Jonathan D -- Biederman, Lori A -- Brown, Cynthia S -- Buckley, Yvonne M -- Chu, Chengjin -- Collins, Scott L -- Crawley, Michael J -- Fay, Philip A -- Firn, Jennifer -- Gruner, Daniel S -- Hagenah, Nicole -- Hautier, Yann -- Hector, Andy -- Hillebrand, Helmut -- Kirkman, Kevin -- Knops, Johannes M H -- Laungani, Ramesh -- Lind, Eric M -- MacDougall, Andrew S -- McCulley, Rebecca L -- Mitchell, Charles E -- Moore, Joslin L -- Morgan, John W -- Orrock, John L -- Peri, Pablo L -- Prober, Suzanne M -- Risch, Anita C -- Schutz, Martin -- Speziale, Karina L -- Standish, Rachel J -- Sullivan, Lauren L -- Wardle, Glenda M -- Williams, Ryan J -- Yang, Louie H -- New York, N.Y. -- Science. 2016 Jan 29;351(6272):457. doi: 10.1126/science.aad6236.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main, Logan, UT 84322, USA. atredenn@gmail.com. ; Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main, Logan, UT 84322, USA. ; U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA 70506, USA. ; Department of Physiological Diversity, Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany. ; Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA. ; Department of Biology, Wake Forest University, Box 7325 Reynolda Station, Winston-Salem, NC 27109, USA. ; School of Environmental and Forest Sciences, University of Washington, 3501 NE 41st Street, Box 354115, Seattle, WA 98195, USA. ; Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50010, USA. ; Department of Bioagricultural Sciences and Pest Management, Colorado State University, 307 University Avenue, Fort Collins, CO 80523, USA. ; School of Natural Sciences, Trinity College Dublin, University of Dublin, Zoology, Dublin 2, Ireland. ; School of Life Sciences, Sun Yat-sen University, Xingang Xi Road 135, Guangzhou, 510275, China. ; Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA. ; Department of Biology, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK. ; Grassland, Soil, and Water Research Laboratory, USDA-ARS, 808 East Blackland Road, Temple, TX 76502, USA. ; School of Earth, Environmental and Biological 42 Sciences, Queensland University of Technology (QUT), Gardens Point, Brisbane, Queensland, Australia, 4001. ; Department of Entomology, University of Maryland, 4112 Plant Sciences, College Park, MD 20742, USA. ; School of Life Sciences, University of KwaZulu-Natal, 1 Carbis Road, Pietermaritzburg, 3201, South Africa. ; Department of Biology, Ecology and Biodiversity group, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands. ; Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK. ; Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wihlhemshaven, Germany. ; School of Biological Sciences, University of Nebraska, 211 Manter Hall, Lincoln, NE 68588, USA. ; Biology Department, Doane College, 1014 Boswell Avenue, Crete, NE 68333, USA. ; Department of Integrative Biology, University of Guelph, 50 Stone Road, Guelph, Ontario, Canada N1G 2W1. ; Department of Plant and Soil Science, University of Kentucky, N-222D Ag Science North, Lexington, KY 40546-0091, USA. ; Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599, USA. ; School of Biological Sciences, Monash University, Clayton Campus, Wellington Road, Clayton 3800, Victoria, Australia. ; Department of Ecology, Environment and Evolution, La Trobe University, Kingsbury Drive, Bundoora 3086, Victoria, Australia. ; Department of Zoology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA. ; Department of Forestry, Agriculture and Water, Southern Patagonia National University-INTA-CONICET, CC 332 (CP 9400), Rio Gallegos, Santa Cruz, Patagonia, Argentina. ; Commonwealth Scientific and Industrial Research Organisation Land and Water, Private Bag 5, Wembley, WA 6913, Australia. ; Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland. ; Department of Ecology, INIBIOMA (CONICET-UNCO), Quintral 1250, Bariloche (8400), Rio Negro, Argentina. ; School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, 90 South Street, Murdoch, Western Australia 6150. ; School of Biological Sciences, University of Sydney, Heydon-Laurence Building, A08, University of Sydney, Sydney, NSW, 2006, Australia. ; Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA. ; Department of Entomology and Nematology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26823418" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Grassland ; *Plant Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-14
    Description: How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grace, James B -- Anderson, T Michael -- Seabloom, Eric W -- Borer, Elizabeth T -- Adler, Peter B -- Harpole, W Stanley -- Hautier, Yann -- Hillebrand, Helmut -- Lind, Eric M -- Partel, Meelis -- Bakker, Jonathan D -- Buckley, Yvonne M -- Crawley, Michael J -- Damschen, Ellen I -- Davies, Kendi F -- Fay, Philip A -- Firn, Jennifer -- Gruner, Daniel S -- Hector, Andy -- Knops, Johannes M H -- MacDougall, Andrew S -- Melbourne, Brett A -- Morgan, John W -- Orrock, John L -- Prober, Suzanne M -- Smith, Melinda D -- England -- Nature. 2016 Jan 21;529(7586):390-3. doi: 10.1038/nature16524. Epub 2016 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉US Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, Louisiana 70506, USA. ; Department of Biology, 206 Winston Hall, Wake Forest University, Box 7325 Reynolda Station, Winston-Salem, North Carolina 27109, USA. ; Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St Paul, Minnesota 55108, USA. ; Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main, Logan, Utah 84322, USA. ; Department of Physiological Diversity, Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany. ; German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, D-04103 Leipzig, Germany. ; Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany. ; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands. ; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstrasse 1, Wilhelmshaven D-26381, Germany. ; Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia. ; School of Environmental and Forest Sciences, University of Washington, Box 354115, Seattle, Washington 98195-4115, USA. ; School of Natural Sciences, Zoology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. ; Department of Biological Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, UK. ; Department of Zoology, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706, USA. ; Department of Ecology and Evolutionary Biology, UCB 334, University of Colorado, Boulder, Colorado 80309, USA. ; Grassland Soil and Water Research Laboratory, United States Department of Agriculture Agricultural Research Service, 808 East Blackland Road, Temple, Texas 76502, USA. ; #15 Queensland University of Technology, School of Earth, Environment and Biological Sciences, Brisbane, Queensland 4001, Australia. ; Department of Entomology, University of Maryland, College Park, 4112 Plant Sciences, College Park, Maryland 20742, USA. ; Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK. ; School of Biological Sciences, 348 Manter Hall, University of Nebraska, Lincoln, Nebraska 68588, USA. ; Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada. ; Department of Ecology, Environment, and Evolution, La Trobe University, Bundoora, Victoria 3083, Australia. ; CSIRO Land and Water, Private Bag 5, Wembley, Western Australia, 6913, Australia. ; Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, Colorado 80526, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26760203" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-05-02
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-05-18
    Description: The efficient management of diseases, pests, or endangered species is an important global issue faced by agencies constrained by limited resources. The management challenge is even greater when organisms are difficult to detect. We show how to prioritize management and survey effort across time and space for networks of susceptible–infected–susceptible subpopulations. We present simple and robust rules of thumb for protecting desirable, or eradicating undesirable, subpopulations connected in typical network patterns (motifs). We further demonstrate that these rules can be generalized to larger networks when motifs are combined in more complex formations. Results show that the best location to manage or survey a pest or a disease on a network is also the best location to protect or survey an endangered species. The optimal starting point in a network is the fastest motif to manage, where line, star, island, and cluster motifs range from fast to slow. Managing the most connected node at the right time and maintaining the same management direction provide advantages over previously recommended outside–in strategies. When a species or disease is not detected and our belief in persistence decreases, our results recommend shifting resources toward management or surveillance of the most connected nodes. Our analytic approximation provides guidance on how long we should manage or survey networks for hard-to-detect organisms. Our rules take into account management success, dispersal, economic cost, and imperfect detection and offer managers a practical basis for managing networks relevant to many significant environmental, biosecurity, and human health issues.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-01-06
    Description: The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-23
    Print ISSN: 0960-3115
    Electronic ISSN: 1572-9710
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...