ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: The relationship between the number of species and the area sampled is one of the oldest and best-documented patterns in community ecology. Several theoretical models and field data from a wide range of plant and animal taxa suggest that the slope, z, of a graph of the logarithm of species richness against the logarithm of area is roughly constant, with z approximately 0.25. We collected replicated and randomized plant data at 11 spatial scales from 0.01 to 10(8) square meters in Great Britain which show that the slope of the log-log plot is not constant, but varies systematically with spatial scale, and from habitat to habitat at the same spatial scale. Values of z were low (0.1 to 0.2) at small scales (〈100 square meters), high (0.4 to 0.5) at intermediate scales (1 hectare to 10 square kilometers), and low again (0.1 to 0.2) for the largest scale transitions (e.g., East Berks to all of Berkshire). Instead of one process determining changes in species richness across a wide range of scales, different processes might determine plant biodiversity at different spatial scales.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crawley, M J -- Harral, J E -- New York, N.Y. -- Science. 2001 Feb 2;291(5505):864-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Natural Environment Research Council Centre for Population Biology, Imperial College, Silwood Park, Ascot SL5 7PY, UK. m.crawley@ic.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11157164" target="_blank"〉PubMed〈/a〉
    Keywords: *Ecosystem ; England ; Mathematics ; Plant Physiological Phenomena ; *Plants ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-05-26
    Description: Quantifying the impact of density, extrinsic climatic fluctuations, and demography on population fluctuations is a persistent challenge in ecology. We analyzed the effect of these processes on the irregular pattern of population crashes of Soay sheep on the St. Kilda archipelago, United Kingdom. Because the age and sex structure of the population fluctuates independently of population size, and because animals of different age and sex respond in different ways to density and weather, identical weather conditions can result in different dynamics in populations of equal size. In addition, the strength of density-dependent processes is a function of the distribution of weather events. Incorporating demographic heterogeneities into population models can influence dynamics and their response to climate change.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coulson, T -- Catchpole, E A -- Albon, S D -- Morgan, B J -- Pemberton, J M -- Clutton-Brock, T H -- Crawley, M J -- Grenfell, B T -- New York, N.Y. -- Science. 2001 May 25;292(5521):1528-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK. tnc20@cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11375487" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Animals ; Female ; Hebrides ; Male ; Markov Chains ; Models, Statistical ; Nonlinear Dynamics ; Population Density ; Population Dynamics ; Reproduction ; Seasons ; *Sex Characteristics ; *Sheep/physiology ; Survival Analysis ; *Weather
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-29
    Description: Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Borer, Elizabeth T -- Seabloom, Eric W -- Gruner, Daniel S -- Harpole, W Stanley -- Hillebrand, Helmut -- Lind, Eric M -- Adler, Peter B -- Alberti, Juan -- Anderson, T Michael -- Bakker, Jonathan D -- Biederman, Lori -- Blumenthal, Dana -- Brown, Cynthia S -- Brudvig, Lars A -- Buckley, Yvonne M -- Cadotte, Marc -- Chu, Chengjin -- Cleland, Elsa E -- Crawley, Michael J -- Daleo, Pedro -- Damschen, Ellen I -- Davies, Kendi F -- DeCrappeo, Nicole M -- Du, Guozhen -- Firn, Jennifer -- Hautier, Yann -- Heckman, Robert W -- Hector, Andy -- HilleRisLambers, Janneke -- Iribarne, Oscar -- Klein, Julia A -- Knops, Johannes M H -- La Pierre, Kimberly J -- Leakey, Andrew D B -- Li, Wei -- MacDougall, Andrew S -- McCulley, Rebecca L -- Melbourne, Brett A -- Mitchell, Charles E -- Moore, Joslin L -- Mortensen, Brent -- O'Halloran, Lydia R -- Orrock, John L -- Pascual, Jesus -- Prober, Suzanne M -- Pyke, David A -- Risch, Anita C -- Schuetz, Martin -- Smith, Melinda D -- Stevens, Carly J -- Sullivan, Lauren L -- Williams, Ryan J -- Wragg, Peter D -- Wright, Justin P -- Yang, Louie H -- England -- Nature. 2014 Apr 24;508(7497):517-20. doi: 10.1038/nature13144. Epub 2014 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, Minnesota 55108, USA. ; Department of Entomology, University of Maryland, College Park, Maryland 20742, USA. ; Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA. ; Institute for Chemistry and Biology of the Marine Environment, Carl-von- Ossietzky University, 26382 Wilhelmshaven, Oldenburg, Germany. ; Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah 84322, USA. ; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Mar del Plata 7600 , Argentina. ; Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, USA. ; School of Environmental and Forest Sciences, University of Washington, Seattle, Washington 98195, USA. ; Agricultural Research Service (ARS), United States Department of Agriculture, Fort Collins, Colorado 80526, USA. ; Deptartment of Forest, Rangeland and Watershed Stewardship, Colorado State University, Fort Collins, Colorado 80523, USA. ; Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA. ; 1] ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, Queensland 4072, Australia [2] School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland. ; Department of Ecology and Evolutionary Biology, University of Toronto Scarborough, Ontario M1C 1A4, Canada. ; State Key Laboratory of Grassland and Agro-Ecosystems, Research Station of Alpine Meadow and Wetland Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000 Gansu, China. ; Division of Biological Sciences, University of California, San Diego, California 92093, USA. ; Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, UK. ; Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706, USA. ; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder Colorado 80309, USA. ; US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon 97331, USA. ; Queensland University of Technology, Biogeosciences, Brisbane, Queensland 4001, Australia. ; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK. ; School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA. ; Berkeley Initiative for Global Change Biology, University of California, Berkeley 94704, USA. ; Department of Plant Biology, University of Illinois at Urbana-Champaign, llinois 61820, USA. ; Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada. ; Department of Plant & Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA. ; Australian Research Center for Urban Ecology, c/o School of Botany, University of Melbourne, Victoria 3010, Australia, and School of Biological Sciences, Monash University, Victoria 3800, Australia. ; Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA. ; CSIRO Ecosystem Sciences, Wembley, West Australia 6913, Australia. ; Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf 8903, Switzerland. ; Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK. ; Department of Biology, Duke University, Durham, North Carolina 27708, USA. ; Department of Entomology, University of California, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670649" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; Climate ; Eutrophication/drug effects/*radiation effects ; Geography ; Herbivory/*physiology ; Human Activities ; Internationality ; *Light ; Nitrogen/metabolism/pharmacology ; Plants/drug effects/*metabolism/*radiation effects ; *Poaceae/drug effects/physiology/radiation effects ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-04
    Description: The negative effect of increasing atmospheric nitrogen (N) pollution on grassland biodiversity is now incontrovertible. However, the recent introduction of cleaner technologies in the UK has led to reductions in the emissions of nitrogen oxides, with concomitant decreases in N deposition. The degree to which grassland biodiversity can be expected to 'bounce back' in response to these improvements in air quality is uncertain, with a suggestion that long-term chronic N addition may lead to an alternative low biodiversity state. Here we present evidence from the 160-year-old Park Grass Experiment at Rothamsted Research, UK, that shows a positive response of biodiversity to reducing N addition from either atmospheric pollution or fertilizers. The proportion of legumes, species richness and diversity increased across the experiment between 1991 and 2012 as both wet and dry N deposition declined. Plots that stopped receiving inorganic N fertilizer in 1989 recovered much of the diversity that had been lost, especially if limed. There was no evidence that chronic N addition has resulted in an alternative low biodiversity state on the Park Grass plots, except where there has been extreme acidification, although it is likely that the recovery of plant communities has been facilitated by the twice-yearly mowing and removal of biomass. This may also explain why a comparable response of plant communities to reduced N inputs has yet to be observed in the wider landscape.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Storkey, J -- Macdonald, A J -- Poulton, P R -- Scott, T -- Kohler, I H -- Schnyder, H -- Goulding, K W T -- Crawley, M J -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2015 Dec 17;528(7582):401-4. doi: 10.1038/nature16444. Epub 2015 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK. ; Lehrstuhl fur Grunlandlehre, Technische Universitat Munchen, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany. ; Department of Biological Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26633635" target="_blank"〉PubMed〈/a〉
    Keywords: Air Pollution/*adverse effects/analysis ; Atmosphere/chemistry ; *Biodiversity ; Biomass ; *Environmental Restoration and Remediation ; Fabaceae/drug effects/metabolism ; Fertilizers/adverse effects/analysis ; *Grassland ; Great Britain ; Hydrogen-Ion Concentration ; Nitrogen/*adverse effects/analysis ; Parks, Recreational ; Poaceae/*classification/*drug effects/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-09-24
    Description: For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters(-2)) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adler, Peter B -- Seabloom, Eric W -- Borer, Elizabeth T -- Hillebrand, Helmut -- Hautier, Yann -- Hector, Andy -- Harpole, W Stanley -- O'Halloran, Lydia R -- Grace, James B -- Anderson, T Michael -- Bakker, Jonathan D -- Biederman, Lori A -- Brown, Cynthia S -- Buckley, Yvonne M -- Calabrese, Laura B -- Chu, Cheng-Jin -- Cleland, Elsa E -- Collins, Scott L -- Cottingham, Kathryn L -- Crawley, Michael J -- Damschen, Ellen I -- Davies, Kendi F -- DeCrappeo, Nicole M -- Fay, Philip A -- Firn, Jennifer -- Frater, Paul -- Gasarch, Eve I -- Gruner, Daniel S -- Hagenah, Nicole -- Hille Ris Lambers, Janneke -- Humphries, Hope -- Jin, Virginia L -- Kay, Adam D -- Kirkman, Kevin P -- Klein, Julia A -- Knops, Johannes M H -- La Pierre, Kimberly J -- Lambrinos, John G -- Li, Wei -- MacDougall, Andrew S -- McCulley, Rebecca L -- Melbourne, Brett A -- Mitchell, Charles E -- Moore, Joslin L -- Morgan, John W -- Mortensen, Brent -- Orrock, John L -- Prober, Suzanne M -- Pyke, David A -- Risch, Anita C -- Schuetz, Martin -- Smith, Melinda D -- Stevens, Carly J -- Sullivan, Lauren L -- Wang, Gang -- Wragg, Peter D -- Wright, Justin P -- Yang, Louie H -- New York, N.Y. -- Science. 2011 Sep 23;333(6050):1750-3. doi: 10.1126/science.1204498.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main, Logan, UT 84322, USA. peter.adler@usu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21940895" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Australia ; *Biodiversity ; *Biomass ; China ; *Ecosystem ; Europe ; Models, Biological ; Models, Statistical ; North America ; Plant Development ; Plant Physiological Processes ; *Plants ; Regression Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-30
    Description: Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tredennick, Andrew T -- Adler, Peter B -- Grace, James B -- Harpole, W Stanley -- Borer, Elizabeth T -- Seabloom, Eric W -- Anderson, T Michael -- Bakker, Jonathan D -- Biederman, Lori A -- Brown, Cynthia S -- Buckley, Yvonne M -- Chu, Chengjin -- Collins, Scott L -- Crawley, Michael J -- Fay, Philip A -- Firn, Jennifer -- Gruner, Daniel S -- Hagenah, Nicole -- Hautier, Yann -- Hector, Andy -- Hillebrand, Helmut -- Kirkman, Kevin -- Knops, Johannes M H -- Laungani, Ramesh -- Lind, Eric M -- MacDougall, Andrew S -- McCulley, Rebecca L -- Mitchell, Charles E -- Moore, Joslin L -- Morgan, John W -- Orrock, John L -- Peri, Pablo L -- Prober, Suzanne M -- Risch, Anita C -- Schutz, Martin -- Speziale, Karina L -- Standish, Rachel J -- Sullivan, Lauren L -- Wardle, Glenda M -- Williams, Ryan J -- Yang, Louie H -- New York, N.Y. -- Science. 2016 Jan 29;351(6272):457. doi: 10.1126/science.aad6236.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main, Logan, UT 84322, USA. atredenn@gmail.com. ; Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main, Logan, UT 84322, USA. ; U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA 70506, USA. ; Department of Physiological Diversity, Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany. ; Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA. ; Department of Biology, Wake Forest University, Box 7325 Reynolda Station, Winston-Salem, NC 27109, USA. ; School of Environmental and Forest Sciences, University of Washington, 3501 NE 41st Street, Box 354115, Seattle, WA 98195, USA. ; Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50010, USA. ; Department of Bioagricultural Sciences and Pest Management, Colorado State University, 307 University Avenue, Fort Collins, CO 80523, USA. ; School of Natural Sciences, Trinity College Dublin, University of Dublin, Zoology, Dublin 2, Ireland. ; School of Life Sciences, Sun Yat-sen University, Xingang Xi Road 135, Guangzhou, 510275, China. ; Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA. ; Department of Biology, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK. ; Grassland, Soil, and Water Research Laboratory, USDA-ARS, 808 East Blackland Road, Temple, TX 76502, USA. ; School of Earth, Environmental and Biological 42 Sciences, Queensland University of Technology (QUT), Gardens Point, Brisbane, Queensland, Australia, 4001. ; Department of Entomology, University of Maryland, 4112 Plant Sciences, College Park, MD 20742, USA. ; School of Life Sciences, University of KwaZulu-Natal, 1 Carbis Road, Pietermaritzburg, 3201, South Africa. ; Department of Biology, Ecology and Biodiversity group, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands. ; Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK. ; Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wihlhemshaven, Germany. ; School of Biological Sciences, University of Nebraska, 211 Manter Hall, Lincoln, NE 68588, USA. ; Biology Department, Doane College, 1014 Boswell Avenue, Crete, NE 68333, USA. ; Department of Integrative Biology, University of Guelph, 50 Stone Road, Guelph, Ontario, Canada N1G 2W1. ; Department of Plant and Soil Science, University of Kentucky, N-222D Ag Science North, Lexington, KY 40546-0091, USA. ; Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599, USA. ; School of Biological Sciences, Monash University, Clayton Campus, Wellington Road, Clayton 3800, Victoria, Australia. ; Department of Ecology, Environment and Evolution, La Trobe University, Kingsbury Drive, Bundoora 3086, Victoria, Australia. ; Department of Zoology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA. ; Department of Forestry, Agriculture and Water, Southern Patagonia National University-INTA-CONICET, CC 332 (CP 9400), Rio Gallegos, Santa Cruz, Patagonia, Argentina. ; Commonwealth Scientific and Industrial Research Organisation Land and Water, Private Bag 5, Wembley, WA 6913, Australia. ; Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland. ; Department of Ecology, INIBIOMA (CONICET-UNCO), Quintral 1250, Bariloche (8400), Rio Negro, Argentina. ; School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, 90 South Street, Murdoch, Western Australia 6150. ; School of Biological Sciences, University of Sydney, Heydon-Laurence Building, A08, University of Sydney, Sydney, NSW, 2006, Australia. ; Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA. ; Department of Entomology and Nematology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26823418" target="_blank"〉PubMed〈/a〉
    Keywords: *Biodiversity ; *Grassland ; *Plant Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-14
    Description: How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grace, James B -- Anderson, T Michael -- Seabloom, Eric W -- Borer, Elizabeth T -- Adler, Peter B -- Harpole, W Stanley -- Hautier, Yann -- Hillebrand, Helmut -- Lind, Eric M -- Partel, Meelis -- Bakker, Jonathan D -- Buckley, Yvonne M -- Crawley, Michael J -- Damschen, Ellen I -- Davies, Kendi F -- Fay, Philip A -- Firn, Jennifer -- Gruner, Daniel S -- Hector, Andy -- Knops, Johannes M H -- MacDougall, Andrew S -- Melbourne, Brett A -- Morgan, John W -- Orrock, John L -- Prober, Suzanne M -- Smith, Melinda D -- England -- Nature. 2016 Jan 21;529(7586):390-3. doi: 10.1038/nature16524. Epub 2016 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉US Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, Louisiana 70506, USA. ; Department of Biology, 206 Winston Hall, Wake Forest University, Box 7325 Reynolda Station, Winston-Salem, North Carolina 27109, USA. ; Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St Paul, Minnesota 55108, USA. ; Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main, Logan, Utah 84322, USA. ; Department of Physiological Diversity, Helmholtz Center for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany. ; German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, D-04103 Leipzig, Germany. ; Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany. ; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands. ; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstrasse 1, Wilhelmshaven D-26381, Germany. ; Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu 51005, Estonia. ; School of Environmental and Forest Sciences, University of Washington, Box 354115, Seattle, Washington 98195-4115, USA. ; School of Natural Sciences, Zoology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. ; Department of Biological Sciences, Imperial College London, Silwood Park, Ascot, Berkshire SL5 7PY, UK. ; Department of Zoology, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706, USA. ; Department of Ecology and Evolutionary Biology, UCB 334, University of Colorado, Boulder, Colorado 80309, USA. ; Grassland Soil and Water Research Laboratory, United States Department of Agriculture Agricultural Research Service, 808 East Blackland Road, Temple, Texas 76502, USA. ; #15 Queensland University of Technology, School of Earth, Environment and Biological Sciences, Brisbane, Queensland 4001, Australia. ; Department of Entomology, University of Maryland, College Park, 4112 Plant Sciences, College Park, Maryland 20742, USA. ; Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK. ; School of Biological Sciences, 348 Manter Hall, University of Nebraska, Lincoln, Nebraska 68588, USA. ; Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada. ; Department of Ecology, Environment, and Evolution, La Trobe University, Bundoora, Victoria 3083, Australia. ; CSIRO Land and Water, Private Bag 5, Wembley, Western Australia, 6913, Australia. ; Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, Colorado 80526, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26760203" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 400 (1999), S. 501-502 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A big fuss is likely to be made over new ecological research results on a genetically modified crop. But what are the scientific questions about GM crops that ecologists are attempting to tackle? In a brief communication on page 519 of this issue, Liu et al. describe research showing ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 409 (2001), S. 682-683 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Although improved crop yields can be engineered by genetically modifying plants, there is ecological concern over whether these plants are likely to persist in the wild in the event of dispersal from their cultivated habitat. Here we present the results of a long-term study of the performance ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Entomology 34 (1989), S. 531-562 
    ISSN: 0066-4170
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...