ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-10-22
    Description: We present a first determination of distances and extinctions for individual stars in the first release of the APOKASC catalogue, built from the joint efforts of the Apache Point Observatory Galactic Evolution Experiment ( APOGEE ) and the Kepler Asteroseismic Science Consortium (KASC). Our method takes into account the spectroscopic constraints derived from the APOGEE Stellar Parameters and Chemical Abundances Pipeline, together with the asteroseismic parameters from KASC. These parameters are then employed to estimate intrinsic stellar properties, including absolute magnitudes, using the Bayesian tool param . We then find the distance and extinction that best fit the observed photometry in Sloan Digital Sky Survey (SDSS), 2MASS, and WISE passbands. The first 1989 giants targetted by APOKASC are found at typical distances between 0.5 and 5 kpc, with individual uncertainties of just ~1.8 per cent. Our extinction estimates are systematically smaller than provided in the Kepler Input Catalogue and by the Schlegel et al. maps. Distances to individual stars in the NGC 6791 and NGC 6819 star clusters agree to within their credible intervals. Comparison with the APOGEE red clump and SAGA catalogues provide another useful check, exhibiting agreement with our measurements to within a few per cent. Overall, present methods seem to provide excellent distance and extinction determinations for the bulk of the APOKASC sample. Approximately one third of the stars present broad or multiple-peaked probability density functions and hence increased uncertainties. Uncertainties are expected to be reduced in future releases of the catalogue, when a larger fraction of the stars will have seismically determined evolutionary status classifications.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-02-05
    Description: X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038304/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038304/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seibert, M Marvin -- Ekeberg, Tomas -- Maia, Filipe R N C -- Svenda, Martin -- Andreasson, Jakob -- Jonsson, Olof -- Odic, Dusko -- Iwan, Bianca -- Rocker, Andrea -- Westphal, Daniel -- Hantke, Max -- DePonte, Daniel P -- Barty, Anton -- Schulz, Joachim -- Gumprecht, Lars -- Coppola, Nicola -- Aquila, Andrew -- Liang, Mengning -- White, Thomas A -- Martin, Andrew -- Caleman, Carl -- Stern, Stephan -- Abergel, Chantal -- Seltzer, Virginie -- Claverie, Jean-Michel -- Bostedt, Christoph -- Bozek, John D -- Boutet, Sebastien -- Miahnahri, A Alan -- Messerschmidt, Marc -- Krzywinski, Jacek -- Williams, Garth -- Hodgson, Keith O -- Bogan, Michael J -- Hampton, Christina Y -- Sierra, Raymond G -- Starodub, Dmitri -- Andersson, Inger -- Bajt, Sasa -- Barthelmess, Miriam -- Spence, John C H -- Fromme, Petra -- Weierstall, Uwe -- Kirian, Richard -- Hunter, Mark -- Doak, R Bruce -- Marchesini, Stefano -- Hau-Riege, Stefan P -- Frank, Matthias -- Shoeman, Robert L -- Lomb, Lukas -- Epp, Sascha W -- Hartmann, Robert -- Rolles, Daniel -- Rudenko, Artem -- Schmidt, Carlo -- Foucar, Lutz -- Kimmel, Nils -- Holl, Peter -- Rudek, Benedikt -- Erk, Benjamin -- Homke, Andre -- Reich, Christian -- Pietschner, Daniel -- Weidenspointner, Georg -- Struder, Lothar -- Hauser, Gunter -- Gorke, Hubert -- Ullrich, Joachim -- Schlichting, Ilme -- Herrmann, Sven -- Schaller, Gerhard -- Schopper, Florian -- Soltau, Heike -- Kuhnel, Kai-Uwe -- Andritschke, Robert -- Schroter, Claus-Dieter -- Krasniqi, Faton -- Bott, Mario -- Schorb, Sebastian -- Rupp, Daniela -- Adolph, Marcus -- Gorkhover, Tais -- Hirsemann, Helmut -- Potdevin, Guillaume -- Graafsma, Heinz -- Nilsson, Bjorn -- Chapman, Henry N -- Hajdu, Janos -- R01 GM095583/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Feb 3;470(7332):78-81. doi: 10.1038/nature09748.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-751 24 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21293374" target="_blank"〉PubMed〈/a〉
    Keywords: Electrons ; Hot Temperature ; Lasers ; Mimiviridae/*chemistry ; Photons ; Time Factors ; X-Ray Diffraction/*instrumentation/*methods ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-02-05
    Description: X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals ( approximately 200 nm to 2 mum in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429598/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429598/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Henry N -- Fromme, Petra -- Barty, Anton -- White, Thomas A -- Kirian, Richard A -- Aquila, Andrew -- Hunter, Mark S -- Schulz, Joachim -- DePonte, Daniel P -- Weierstall, Uwe -- Doak, R Bruce -- Maia, Filipe R N C -- Martin, Andrew V -- Schlichting, Ilme -- Lomb, Lukas -- Coppola, Nicola -- Shoeman, Robert L -- Epp, Sascha W -- Hartmann, Robert -- Rolles, Daniel -- Rudenko, Artem -- Foucar, Lutz -- Kimmel, Nils -- Weidenspointner, Georg -- Holl, Peter -- Liang, Mengning -- Barthelmess, Miriam -- Caleman, Carl -- Boutet, Sebastien -- Bogan, Michael J -- Krzywinski, Jacek -- Bostedt, Christoph -- Bajt, Sasa -- Gumprecht, Lars -- Rudek, Benedikt -- Erk, Benjamin -- Schmidt, Carlo -- Homke, Andre -- Reich, Christian -- Pietschner, Daniel -- Struder, Lothar -- Hauser, Gunter -- Gorke, Hubert -- Ullrich, Joachim -- Herrmann, Sven -- Schaller, Gerhard -- Schopper, Florian -- Soltau, Heike -- Kuhnel, Kai-Uwe -- Messerschmidt, Marc -- Bozek, John D -- Hau-Riege, Stefan P -- Frank, Matthias -- Hampton, Christina Y -- Sierra, Raymond G -- Starodub, Dmitri -- Williams, Garth J -- Hajdu, Janos -- Timneanu, Nicusor -- Seibert, M Marvin -- Andreasson, Jakob -- Rocker, Andrea -- Jonsson, Olof -- Svenda, Martin -- Stern, Stephan -- Nass, Karol -- Andritschke, Robert -- Schroter, Claus-Dieter -- Krasniqi, Faton -- Bott, Mario -- Schmidt, Kevin E -- Wang, Xiaoyu -- Grotjohann, Ingo -- Holton, James M -- Barends, Thomas R M -- Neutze, Richard -- Marchesini, Stefano -- Fromme, Raimund -- Schorb, Sebastian -- Rupp, Daniela -- Adolph, Marcus -- Gorkhover, Tais -- Andersson, Inger -- Hirsemann, Helmut -- Potdevin, Guillaume -- Graafsma, Heinz -- Nilsson, Bjorn -- Spence, John C H -- 1R01GM095583-01/GM/NIGMS NIH HHS/ -- 1U54GM094625-01/GM/NIGMS NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094625/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Feb 3;470(7332):73-7. doi: 10.1038/nature09750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. henry.chapman@desy.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21293373" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray/instrumentation/*methods ; Lasers ; Models, Molecular ; Nanoparticles/*chemistry ; Nanotechnology/instrumentation/*methods ; Photosystem I Protein Complex/*chemistry ; Protein Conformation ; Time Factors ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-06-29
    Description: The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loh, N D -- Hampton, C Y -- Martin, A V -- Starodub, D -- Sierra, R G -- Barty, A -- Aquila, A -- Schulz, J -- Lomb, L -- Steinbrener, J -- Shoeman, R L -- Kassemeyer, S -- Bostedt, C -- Bozek, J -- Epp, S W -- Erk, B -- Hartmann, R -- Rolles, D -- Rudenko, A -- Rudek, B -- Foucar, L -- Kimmel, N -- Weidenspointner, G -- Hauser, G -- Holl, P -- Pedersoli, E -- Liang, M -- Hunter, M S -- Gumprecht, L -- Coppola, N -- Wunderer, C -- Graafsma, H -- Maia, F R N C -- Ekeberg, T -- Hantke, M -- Fleckenstein, H -- Hirsemann, H -- Nass, K -- White, T A -- Tobias, H J -- Farquar, G R -- Benner, W H -- Hau-Riege, S P -- Reich, C -- Hartmann, A -- Soltau, H -- Marchesini, S -- Bajt, S -- Barthelmess, M -- Bucksbaum, P -- Hodgson, K O -- Struder, L -- Ullrich, J -- Frank, M -- Schlichting, I -- Chapman, H N -- Bogan, M J -- England -- Nature. 2012 Jun 27;486(7404):513-7. doi: 10.1038/nature11222.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22739316" target="_blank"〉PubMed〈/a〉
    Keywords: Aerosols/*analysis/*chemistry ; Amino Acids/chemistry ; Electrons ; *Fractals ; Lasers ; *Mass Spectrometry ; *Motion ; Nanoparticles ; Particle Size ; Proteins/chemistry ; Solvents/chemistry ; Soot/*analysis/*chemistry ; Vibration ; X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-26
    Description: Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~10(8) to 10(11) atoms. The formation of quantum vortex lattices inside the droplets is confirmed by observing characteristic Bragg patterns from xenon clusters trapped in the vortex cores. The vortex densities are up to five orders of magnitude larger than those observed in bulk liquid helium. The droplets exhibit large centrifugal deformations but retain axially symmetric shapes at angular velocities well beyond the stability range of viscous classical droplets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gomez, Luis F -- Ferguson, Ken R -- Cryan, James P -- Bacellar, Camila -- Tanyag, Rico Mayro P -- Jones, Curtis -- Schorb, Sebastian -- Anielski, Denis -- Belkacem, Ali -- Bernando, Charles -- Boll, Rebecca -- Bozek, John -- Carron, Sebastian -- Chen, Gang -- Delmas, Tjark -- Englert, Lars -- Epp, Sascha W -- Erk, Benjamin -- Foucar, Lutz -- Hartmann, Robert -- Hexemer, Alexander -- Huth, Martin -- Kwok, Justin -- Leone, Stephen R -- Ma, Jonathan H S -- Maia, Filipe R N C -- Malmerberg, Erik -- Marchesini, Stefano -- Neumark, Daniel M -- Poon, Billy -- Prell, James -- Rolles, Daniel -- Rudek, Benedikt -- Rudenko, Artem -- Seifrid, Martin -- Siefermann, Katrin R -- Sturm, Felix P -- Swiggers, Michele -- Ullrich, Joachim -- Weise, Fabian -- Zwart, Petrus -- Bostedt, Christoph -- Gessner, Oliver -- Vilesov, Andrey F -- New York, N.Y. -- Science. 2014 Aug 22;345(6199):906-9. doi: 10.1126/science.1252395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Southern California (USC), Los Angeles, CA 90089, USA. ; Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. ; Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA. ; Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA. Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA. ; Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany. ; Department of Physics and Astronomy, USC, Los Angeles, CA 90089, USA. ; Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany. Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany. ; Advanced Light Source, LBNL, Berkeley, CA 94720, USA. ; CFEL, DESY, Notkestrasse 85, 22607 Hamburg, Germany. ; Max-Planck-Institut fur Extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany. ; Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany. Max-Planck-Institut fur Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany. ; PNSensor GmbH, Otto-Hahn-Ring 6, 81739 Munchen, Germany. ; Mork Family Department of Chemical Engineering and Materials Science, USC, Los Angeles, CA 90089, USA. ; Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA. Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA. Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA. ; Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA. Department of Physics, The Chinese University of Hong Kong, Hong Kong, China. ; National Energy Research Scientific Computing Center, LBNL, Berkeley, CA 94720, USA. ; Physical Biosciences Division, LBNL, Berkeley, CA 94720, USA. Department of Plant and Microbial Biology, University of Calfornia Berkeley, Berkeley, CA 94720, USA. ; Advanced Light Source, LBNL, Berkeley, CA 94720, USA. Department of Physics, University of California Davis, Davis, CA 95616, USA. ; Physical Biosciences Division, LBNL, Berkeley, CA 94720, USA. ; Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA. ; Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany. Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany. Max-Planck-Institut fur Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany. ; Max-Planck-Institut fur Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestrasse 85, 22607 Hamburg, Germany. James R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA. ; Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. PULSE Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. bostedt@slac.stanford.edu ogessner@lbl.gov vilesov@usc.edu. ; Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA. bostedt@slac.stanford.edu ogessner@lbl.gov vilesov@usc.edu. ; Department of Chemistry, University of Southern California (USC), Los Angeles, CA 90089, USA. Department of Physics and Astronomy, USC, Los Angeles, CA 90089, USA. bostedt@slac.stanford.edu ogessner@lbl.gov vilesov@usc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25146284" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
  • 8
    Publication Date: 2016-01-01
    Description: Physical properties were derived for the candidate open cluster La Serena 94, recently unveiled by the VISTA Variables in the Vía Láctea (VVV) survey. Thanks to the exquisite angular resolution provided by Gemini South multiconjugate adaptive optics system/Gemini South Adaptive Optics Imager (GeMS/GSAOI), we could characterize this system in detail, for the first time, with deep photometry in JHK s bands. Decontaminated JHK s diagrams reach about 5 mag below the cluster turnoff in H . The locus of red clump giants in the colour–colour diagram, together with an extinction law, was used to obtain an average extinction of A V = 14.18 ± 0.71. The same stars were considered as standard candles to derive the cluster distance, 8.5 ± 1.0 kpc. Isochrones were matched to the cluster colour–magnitude diagrams to determine its age, log t (yr) = 9.12 ± 0.06, and metallicity, Z = 0.02 ± 0.01. A core radius of r c = 0.51 ± 0.04 pc was found by fitting King models to the radial density profile. By adding up the visible stellar mass to an extrapolated mass function, the cluster mass was estimated as $\mathcal {M}=(2.65\pm 0.57)\times 10^3$  M , consistent with an integrated magnitude of $M_{K_{\rm s}}=-5.82\pm 0.16$ and a tidal radius of r t = 17.2 ± 2.1 pc. The overall characteristics of La Serena 94 confirm that it is an old open cluster located in the Crux spiral arm towards the fourth Galactic quadrant and distant 7.30 ± 0.49 kpc from the Galactic Centre. The cluster distorted structure, mass segregation and age indicate that it is a dynamically evolved stellar system.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...