ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-05-28
    Description: Author(s): W. Kuch, K. Fukumoto, J. Wang, F. Nolting, C. Quitmann, and T. Ramsvik We present a microscopic investigation of the temperature dependence of stripe domains in perpendicularly magnetized Ni films on Cu(001) using photoelectron emission microscopy in combination with x-ray magnetic circular dichroism (XMCD) in the resonant absorption of soft x rays. When the temperatur... [Phys. Rev. B 83, 172406] Published Fri May 27, 2011
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-08
    Description: Author(s): Y. S. Chai, Y. S. Oh, L. J. Wang, N. Manivannan, S. M. Feng, Y. S. Yang, L. Q. Yan, C. Q. Jin, and Kee Hoon Kim By directly measuring electrical hysteresis loops using the Positive-Up Negative-Down (PUND) method, we determined accurately the remanent ferroelectric polarization P r of orthorhombic R MnO 3 ( R = Ho, Tm, Yb, and Lu) compounds below their E -type spin ordering temperatures. We found that LuMnO 3 has th... [Phys. Rev. B 85, 184406] Published Mon May 07, 2012
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-03-04
    Description: Author(s): Han Zou, S. T. Chui, X. J. Wang, and Yi Ji A nonlocal spin valve (NLSV) is a nanoscale planar heterostructure, consisting of a spin injector, a spin detector, and a nonmagnetic channel. A pure spin current can be induced in the nonmagnetic channel by electrical spin injection. We report large but inverted spin signals in a set of NLSV struct... [Phys. Rev. B 83, 094402] Published Thu Mar 03, 2011
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-10
    Description: Author(s): J. Wang, L. S. Xie, C. S. Wang, H. Z. Zhang, L. Shu, J. Bai, Y. S. Chai, X. Zhao, J. C. Nie, C. B. Cao, C. Z. Gu, C. M. Xiong, Y. Sun, J. Shi, S. Salahuddin, K. Xia, C. W. Nan, and J. X. Zhang A method for deterministic control of magnetism using an electrical stimulus is highly desired for the new generation of magnetoelectronic devices. Much effort has been focused on magnetic domain-wall (DW) motion manipulated by a successive injection of spin-polarized current into a magnetic nanostr... [Phys. Rev. B 90, 224407] Published Fri Dec 05, 2014
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-08-14
    Description: Isoleucyl-transfer RNA (tRNA) synthetase (IleRS) joins Ile to tRNA(Ile) at its synthetic active site and hydrolyzes incorrectly acylated amino acids at its editing active site. The 2.2 angstrom resolution crystal structure of Staphylococcus aureus IleRS complexed with tRNA(Ile) and Mupirocin shows the acceptor strand of the tRNA(Ile) in the continuously stacked, A-form conformation with the 3' terminal nucleotide in the editing active site. To position the 3' terminus in the synthetic active site, the acceptor strand must adopt the hairpinned conformation seen in tRNA(Gln) complexed with its synthetase. The amino acid editing activity of the IleRS may result from the incorrect products shuttling between the synthetic and editing active sites, which is reminiscent of the editing mechanism of DNA polymerases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silvian, L F -- Wang, J -- Steitz, T A -- GM22778/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Aug 13;285(5430):1074-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics, Yale University, and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10446055" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Adenosine Monophosphate/analogs & derivatives/metabolism ; Amino Acids/metabolism ; Binding Sites ; Crystallography, X-Ray ; DNA-Directed DNA Polymerase/metabolism ; Glutamate-tRNA Ligase/chemistry/metabolism ; Isoleucine/metabolism ; Isoleucine-tRNA Ligase/*chemistry/*metabolism ; Models, Molecular ; Mupirocin/chemistry/*metabolism ; Nucleic Acid Conformation ; Oligopeptides/metabolism ; Protein Conformation ; Protein Structure, Secondary ; RNA, Transfer, Gln/chemistry/metabolism ; RNA, Transfer, Ile/*chemistry/*metabolism ; Staphylococcus aureus/enzymology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-12-03
    Description: The crystal structure of a complex involving the D10 T cell receptor (TCR), 16-residue foreign peptide antigen, and the I-Ak self major histocompatibility complex (MHC) class II molecule is reported at 3.2 angstrom resolution. The D10 TCR is oriented in an orthogonal mode relative to its peptide-MHC (pMHC) ligand, necessitated by the amino-terminal extension of peptide residues projecting from the MHC class II antigen-binding groove as part of a mini beta sheet. Consequently, the disposition of D10 complementarity-determining region loops is altered relative to that of most pMHCI-specific TCRs; the latter TCRs assume a diagonal orientation, although with substantial variability. Peptide recognition, which involves P-1 to P8 residues, is dominated by the Valpha domain, which also binds to the class II MHC beta1 helix. That docking is limited to one segment of MHC-bound peptide offers an explanation for epitope recognition and altered peptide ligand effects, suggests a structural basis for alloreactivity, and illustrates how bacterial superantigens can span the TCR-pMHCII surface.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reinherz, E L -- Tan, K -- Tang, L -- Kern, P -- Liu, J -- Xiong, Y -- Hussey, R E -- Smolyar, A -- Hare, B -- Zhang, R -- Joachimiak, A -- Chang, H C -- Wagner, G -- Wang, J -- AI/CA37581/AI/NIAID NIH HHS/ -- AI19807/AI/NIAID NIH HHS/ -- GM56008/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1913-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunobiology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583947" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/*chemistry/immunology/metabolism ; Binding Sites ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/immunology ; Conalbumin/chemistry/immunology ; Crystallization ; Crystallography, X-Ray ; Histocompatibility Antigens Class I/immunology ; Histocompatibility Antigens Class II/*chemistry/immunology/metabolism ; Hydrogen Bonding ; Ligands ; Mice ; Mice, Inbred AKR ; Models, Molecular ; Oligopeptides/chemistry/immunology/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/immunology/metabolism ; Superantigens/immunology/metabolism ; Thymus Gland/cytology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-11-27
    Description: FocA is a representative member of the formate-nitrite transporter family, which transports short-chain acids in bacteria, archaea, fungi, algae and parasites. The structure and transport mechanism of the formate-nitrite transporter family remain unknown. Here we report the crystal structure of Escherichia coli FocA at 2.25 A resolution. FocA forms a symmetric pentamer, with each protomer consisting of six transmembrane segments. Despite a lack of sequence homology, the overall structure of the FocA protomer closely resembles that of aquaporin and strongly argues that FocA is a channel, rather than a transporter. Structural analysis identifies potentially important channel residues, defines the channel path and reveals two constriction sites. Unlike aquaporin, FocA is impermeable to water but allows the passage of formate. A structural and biochemical investigation provides mechanistic insights into the channel activity of FocA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Yi -- Huang, Yongjian -- Wang, Jiawei -- Cheng, Chao -- Huang, Weijiao -- Lu, Peilong -- Xu, Ya-Nan -- Wang, Pengye -- Yan, Nieng -- Shi, Yigong -- England -- Nature. 2009 Nov 26;462(7272):467-72. doi: 10.1038/nature08610.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ministry of Education Protein Science Laboratory, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19940917" target="_blank"〉PubMed〈/a〉
    Keywords: Aquaporins/*chemistry/metabolism ; Crystallography, X-Ray ; Escherichia coli/chemistry/genetics/metabolism ; Escherichia coli Proteins/*chemistry/genetics/metabolism ; Formates/metabolism ; Liposomes/chemistry/metabolism ; Membrane Transport Proteins/*chemistry/genetics/metabolism ; Models, Molecular ; Molecular Mimicry ; Mutation ; Permeability ; Protein Structure, Quaternary ; Structure-Activity Relationship ; Water/analysis/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-02-05
    Description: The M2 protein of influenza A virus is a membrane-spanning tetrameric proton channel targeted by the antiviral drugs amantadine and rimantadine. Resistance to these drugs has compromised their effectiveness against many influenza strains, including pandemic H1N1. A recent crystal structure of M2(22-46) showed electron densities attributed to a single amantadine in the amino-terminal half of the pore, indicating a physical occlusion mechanism for inhibition. However, a solution NMR structure of M2(18-60) showed four rimantadines bound to the carboxy-terminal lipid-facing surface of the helices, suggesting an allosteric mechanism. Here we show by solid-state NMR spectroscopy that two amantadine-binding sites exist in M2 in phospholipid bilayers. The high-affinity site, occupied by a single amantadine, is located in the N-terminal channel lumen, surrounded by residues mutated in amantadine-resistant viruses. Quantification of the protein-amantadine distances resulted in a 0.3 A-resolution structure of the high-affinity binding site. The second, low-affinity, site was observed on the C-terminal protein surface, but only when the drug reaches high concentrations in the bilayer. The orientation and dynamics of the drug are distinct in the two sites, as shown by (2)H NMR. These results indicate that amantadine physically occludes the M2 channel, thus paving the way for developing new antiviral drugs against influenza viruses. The study demonstrates the ability of solid-state NMR to elucidate small-molecule interactions with membrane proteins and determine high-resolution structures of their complexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818718/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818718/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cady, Sarah D -- Schmidt-Rohr, Klaus -- Wang, Jun -- Soto, Cinque S -- Degrado, William F -- Hong, Mei -- AI74571/AI/NIAID NIH HHS/ -- GM088204/GM/NIGMS NIH HHS/ -- GM56423/GM/NIGMS NIH HHS/ -- R01 GM056423/GM/NIGMS NIH HHS/ -- R01 GM056423-12/GM/NIGMS NIH HHS/ -- R01 GM088204/GM/NIGMS NIH HHS/ -- R01 GM088204-01/GM/NIGMS NIH HHS/ -- U01 AI074571/AI/NIAID NIH HHS/ -- U01 AI074571-02/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Feb 4;463(7281):689-92. doi: 10.1038/nature08722.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Iowa State University, Ames, Iowa 50011 2, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20130653" target="_blank"〉PubMed〈/a〉
    Keywords: Amantadine/chemistry/*metabolism/pharmacology ; Amino Acid Sequence ; Antiviral Agents/chemistry/*metabolism/pharmacology ; Binding Sites ; Crystallography, X-Ray ; Dimyristoylphosphatidylcholine/chemistry/metabolism ; Hydrogen-Ion Concentration ; Influenza A virus/*chemistry/drug effects ; Lipid Bilayers/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Structure-Activity Relationship ; Temperature ; Viral Matrix Proteins/antagonists & inhibitors/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-10-26
    Description: The energy-coupling factor (ECF) transporters, responsible for vitamin uptake in prokaryotes, are a unique family of membrane transporters. Each ECF transporter contains a membrane-embedded, substrate-binding protein (known as the S component), an energy-coupling module that comprises two ATP-binding proteins (known as the A and A' components) and a transmembrane protein (known as the T component). The structure and transport mechanism of the ECF family remain unknown. Here we report the crystal structure of RibU, the S component of the ECF-type riboflavin transporter from Staphylococcus aureus at 3.6-A resolution. RibU contains six transmembrane segments, adopts a previously unreported transporter fold and contains a riboflavin molecule bound to the L1 loop and the periplasmic portion of transmembrane segments 4-6. Structural analysis reveals the essential ligand-binding residues, identifies the putative transport path and, with sequence alignment, uncovers conserved structural features and suggests potential mechanisms of action among the ECF transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Peng -- Wang, Jiawei -- Shi, Yigong -- R01 GM084964/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):717-20. doi: 10.1038/nature09488. Epub 2010 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20972419" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Conserved Sequence ; Crystallography, X-Ray ; Ligands ; Membrane Transport Proteins/*chemistry/classification/*metabolism ; Models, Molecular ; Movement ; Periplasm/metabolism ; Protein Folding ; Protein Structure, Tertiary ; Riboflavin/chemistry/*metabolism ; Sequence Alignment ; Staphylococcus aureus/*chemistry ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-09-30
    Description: The major facilitator superfamily (MFS) transporters are an ancient and widespread family of secondary active transporters. In Escherichia coli, the uptake of l-fucose, a source of carbon for microorganisms, is mediated by an MFS proton symporter, FucP. Despite intensive study of the MFS transporters, atomic structure information is only available on three proteins and the outward-open conformation has yet to be captured. Here we report the crystal structure of FucP at 3.1 A resolution, which shows that it contains an outward-open, amphipathic cavity. The similarly folded amino and carboxyl domains of FucP have contrasting surface features along the transport path, with negative electrostatic potential on the N domain and hydrophobic surface on the C domain. FucP only contains two acidic residues along the transport path, Asp 46 and Glu 135, which can undergo cycles of protonation and deprotonation. Their essential role in active transport is supported by both in vivo and in vitro experiments. Structure-based biochemical analyses provide insights into energy coupling, substrate recognition and the transport mechanism of FucP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Shangyu -- Sun, Linfeng -- Huang, Yongjian -- Lu, Feiran -- Liu, Yufeng -- Gong, Haipeng -- Wang, Jiawei -- Yan, Nieng -- England -- Nature. 2010 Oct 7;467(7316):734-8. doi: 10.1038/nature09406. Epub 2010 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20877283" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/metabolism ; Fucose/metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Models, Molecular ; Monosaccharide Transport Proteins/*chemistry/metabolism ; Protein Conformation ; Protons ; Rotation ; Static Electricity ; Symporters/*chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...