ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic structure and strongly correlated systems  (589)
  • Astrophysics  (347)
  • Mice, Inbred C57BL  (269)
  • 2010-2014  (1,205)
  • 1
    Publication Date: 2019-07-13
    Description: Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a blind injection where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1M25M and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN12729 , Physical Review D (ISSN 2470-0010) (e-ISSN 2470-0029); 88; 062001
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to 2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from 0.6 10(exp 3) ls to 6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3 10(exp 24) at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN22620 , Physical Review D (ISSN 0031-899X) (e-ISSN 1536-6065); 90; 6; 062010
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-06-16
    Description: Pancreatic ductal adenocarcinoma (PDA) remains a lethal malignancy despite much progress concerning its molecular characterization. PDA tumours harbour four signature somatic mutations in addition to numerous lower frequency genetic events of uncertain significance. Here we use Sleeping Beauty (SB) transposon-mediated insertional mutagenesis in a mouse model of pancreatic ductal preneoplasia to identify genes that cooperate with oncogenic Kras(G12D) to accelerate tumorigenesis and promote progression. Our screen revealed new candidate genes for PDA and confirmed the importance of many genes and pathways previously implicated in human PDA. The most commonly mutated gene was the X-linked deubiquitinase Usp9x, which was inactivated in over 50% of the tumours. Although previous work had attributed a pro-survival role to USP9X in human neoplasia, we found instead that loss of Usp9x enhances transformation and protects pancreatic cancer cells from anoikis. Clinically, low USP9X protein and messenger RNA expression in PDA correlates with poor survival after surgery, and USP9X levels are inversely associated with metastatic burden in advanced disease. Furthermore, chromatin modulation with trichostatin A or 5-aza-2'-deoxycytidine elevates USP9X expression in human PDA cell lines, indicating a clinical approach for certain patients. The conditional deletion of Usp9x cooperated with Kras(G12D) to accelerate pancreatic tumorigenesis in mice, validating their genetic interaction. We propose that USP9X is a major tumour suppressor gene with prognostic and therapeutic relevance in PDA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376394/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3376394/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perez-Mancera, Pedro A -- Rust, Alistair G -- van der Weyden, Louise -- Kristiansen, Glen -- Li, Allen -- Sarver, Aaron L -- Silverstein, Kevin A T -- Grutzmann, Robert -- Aust, Daniela -- Rummele, Petra -- Knosel, Thomas -- Herd, Colin -- Stemple, Derek L -- Kettleborough, Ross -- Brosnan, Jacqueline A -- Li, Ang -- Morgan, Richard -- Knight, Spencer -- Yu, Jun -- Stegeman, Shane -- Collier, Lara S -- ten Hoeve, Jelle J -- de Ridder, Jeroen -- Klein, Alison P -- Goggins, Michael -- Hruban, Ralph H -- Chang, David K -- Biankin, Andrew V -- Grimmond, Sean M -- Australian Pancreatic Cancer Genome Initiative -- Wessels, Lodewyk F A -- Wood, Stephen A -- Iacobuzio-Donahue, Christine A -- Pilarsky, Christian -- Largaespada, David A -- Adams, David J -- Tuveson, David A -- 13031/Cancer Research UK/United Kingdom -- 2P50CA101955/CA/NCI NIH HHS/ -- CA106610/CA/NCI NIH HHS/ -- CA122183/CA/NCI NIH HHS/ -- CA128920/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- K01 CA122183/CA/NCI NIH HHS/ -- K01 CA122183-05/CA/NCI NIH HHS/ -- P50 CA101955/CA/NCI NIH HHS/ -- P50CA62924/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2012 Apr 29;486(7402):266-70. doi: 10.1038/nature11114.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Li Ka Shing Centre, Cambridge Research Institute, Cancer Research UK, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699621" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anoikis/genetics ; Carcinoma, Pancreatic Ductal/*enzymology/genetics/pathology ; Cell Line, Tumor ; Disease Models, Animal ; Endopeptidases ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Humans ; Mice ; Mice, Inbred C57BL ; Pancreatic Neoplasms/*enzymology/genetics/pathology ; U937 Cells ; Ubiquitin Thiolesterase/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We present Interplanetary Network (IPN) data for the gamma-ray bursts in the first Fermi Gamma-Ray BurstMonitor (GBM) catalog. Of the 491 bursts in that catalog, covering 2008 July 12 to 2010 July 11, 427 wereobserved by at least one other instrument in the nine-spacecraft IPN. Of the 427, the localizations of 149 could beimproved by arrival time analysis (or triangulation). For any given burst observed by the GBM and one otherdistant spacecraft, triangulation gives an annulus of possible arrival directions whose half-width varies betweenabout 0. 4 and 32, depending on the intensity, time history, and arrival direction of the burst, as well as the distancebetween the spacecraft. We find that the IPN localizations intersect the 1 GBM error circles in only 52 of thecases, if no systematic uncertainty is assumed for the latter. If a 6 systematic uncertainty is assumed and added inquadrature, the two localization samples agree about 87 of the time, as would be expected. If we then multiply theresulting error radii by a factor of three, the two samples agree in slightly over 98 of the cases, providing a goodestimate of the GBM 3 error radius. The IPN 3 error boxes have areas between about 1 arcmin2 and 110 deg2,and are, on the average, a factor of 180 smaller than the corresponding GBM localizations. We identify two burstsin the IPNGBM sample that did not appear in the GBM catalog. In one case, the GBM triggered on a terrestrialgamma flash, and in the other, its origin was given as uncertain. We also discuss the sensitivity and calibration ofthe IPN.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN12083 , The Astrophysical Journal Supplement Series (ISSN 0067-0049) (e-ISSN 1538-4365); 207; 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-09
    Description: Author(s): D. G. Hawthorn, K. M. Shen, J. Geck, D. C. Peets, H. Wadati, J. Okamoto, S.-W. Huang, D. J. Huang, H.-J. Lin, J. D. Denlinger, Ruixing Liang, D. A. Bonn, W. N. Hardy, and G. A. Sawatzky Static charge-density-wave (CDW) and spin-density-wave (SDW) order has been convincingly observed in La-based cuprates for some time. However, more recently it has been suggested by quantum oscillation, transport, and thermodynamic measurements that density-wave order is generic to underdoped cuprat... [Phys. Rev. B 84, 075125] Published Mon Aug 08, 2011
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-01-19
    Description: Author(s): T. Willers, D. T. Adroja, B. D. Rainford, Z. Hu, N. Hollmann, P. O. Körner, Y.-Y. Chin, D. Schmitz, H. H. Hsieh, H.-J. Lin, C. T. Chen, E. D. Bauer, J. L. Sarrao, K. J. McClellan, D. Byler, C. Geibel, F. Steglich, H. Aoki, P. Lejay, A. Tanaka, L. H. Tjeng, and A. Severing We have determined the ground-state wave functions and crystal-field-level schemes of CeRh 2 Si 2 and CeRu 2 Si 2 using linear polarized soft x-ray-absorption spectroscopy (XAS) and inelastic neutron scattering. We find large crystal-field splittings and ground-state wave functions which are made of mainl... [Phys. Rev. B 85, 035117] Published Wed Jan 18, 2012
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-31
    Description: Rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1), extends the life spans of yeast, flies, and mice. Calorie restriction, which increases life span and insulin sensitivity, is proposed to function by inhibition of mTORC1, yet paradoxically, chronic administration of rapamycin substantially impairs glucose tolerance and insulin action. We demonstrate that rapamycin disrupted a second mTOR complex, mTORC2, in vivo and that mTORC2 was required for the insulin-mediated suppression of hepatic gluconeogenesis. Further, decreased mTORC1 signaling was sufficient to extend life span independently from changes in glucose homeostasis, as female mice heterozygous for both mTOR and mLST8 exhibited decreased mTORC1 activity and extended life span but had normal glucose tolerance and insulin sensitivity. Thus, mTORC2 disruption is an important mediator of the effects of rapamycin in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324089/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324089/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamming, Dudley W -- Ye, Lan -- Katajisto, Pekka -- Goncalves, Marcus D -- Saitoh, Maki -- Stevens, Deanna M -- Davis, James G -- Salmon, Adam B -- Richardson, Arlan -- Ahima, Rexford S -- Guertin, David A -- Sabatini, David M -- Baur, Joseph A -- 1F32AG032833-01A1/AG/NIA NIH HHS/ -- CA129105/CA/NCI NIH HHS/ -- F32 AG032833/AG/NIA NIH HHS/ -- P30DK19525/DK/NIDDK NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA129105-05/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Mar 30;335(6076):1638-43. doi: 10.1126/science.1215135.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22461615" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, White/metabolism ; Animals ; Carrier Proteins/genetics/metabolism ; Female ; Gluconeogenesis ; Glucose/metabolism ; Glucose Clamp Technique ; Homeostasis ; Insulin/administration & dosage/blood ; *Insulin Resistance ; Liver/metabolism ; *Longevity ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes ; Muscle, Skeletal/metabolism ; Phosphorylation ; Proteins/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; Signal Transduction ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-07-07
    Description: Obstruction of critical blood vessels due to thrombosis or embolism is a leading cause of death worldwide. Here, we describe a biomimetic strategy that uses high shear stress caused by vascular narrowing as a targeting mechanism--in the same way platelets do--to deliver drugs to obstructed blood vessels. Microscale aggregates of nanoparticles were fabricated to break up into nanoscale components when exposed to abnormally high fluid shear stress. When coated with tissue plasminogen activator and administered intravenously in mice, these shear-activated nanotherapeutics induce rapid clot dissolution in a mesenteric injury model, restore normal flow dynamics, and increase survival in an otherwise fatal mouse pulmonary embolism model. This biophysical strategy for drug targeting, which lowers required doses and minimizes side effects while maximizing drug efficacy, offers a potential new approach for treatment of life-threatening diseases that result from acute vascular occlusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korin, Netanel -- Kanapathipillai, Mathumai -- Matthews, Benjamin D -- Crescente, Marilena -- Brill, Alexander -- Mammoto, Tadanori -- Ghosh, Kaustabh -- Jurek, Samuel -- Bencherif, Sidi A -- Bhatta, Deen -- Coskun, Ahmet U -- Feldman, Charles L -- Wagner, Denisa D -- Ingber, Donald E -- New York, N.Y. -- Science. 2012 Aug 10;337(6095):738-42. doi: 10.1126/science.1217815. Epub 2012 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22767894" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomimetic Materials ; Blood Circulation ; Drug Delivery Systems/*methods ; Fibrinolytic Agents/*administration & dosage ; Hemodynamics ; Hemorheology ; Lactic Acid ; Male ; Mesenteric Arteries ; Mesenteric Vascular Occlusion/*drug therapy ; Mice ; Mice, Inbred C57BL ; Microfluidic Analytical Techniques ; Models, Anatomic ; *Nanoparticles ; Polyglycolic Acid ; Pulmonary Embolism/*drug therapy ; Stress, Mechanical ; Thrombosis/*drug therapy/prevention & control ; Tissue Plasminogen Activator/*administration & dosage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-09-06
    Description: PPARgamma is the functioning receptor for the thiazolidinedione (TZD) class of antidiabetes drugs including rosiglitazone and pioglitazone. These drugs are full classical agonists for this nuclear receptor, but recent data have shown that many PPARgamma-based drugs have a separate biochemical activity, blocking the obesity-linked phosphorylation of PPARgamma by Cdk5. Here we describe novel synthetic compounds that have a unique mode of binding to PPARgamma, completely lack classical transcriptional agonism and block the Cdk5-mediated phosphorylation in cultured adipocytes and in insulin-resistant mice. Moreover, one such compound, SR1664, has potent antidiabetic activity while not causing the fluid retention and weight gain that are serious side effects of many of the PPARgamma drugs. Unlike TZDs, SR1664 also does not interfere with bone formation in culture. These data illustrate that new classes of antidiabetes drugs can be developed by specifically targeting the Cdk5-mediated phosphorylation of PPARgamma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179551/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3179551/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Jang Hyun -- Banks, Alexander S -- Kamenecka, Theodore M -- Busby, Scott A -- Chalmers, Michael J -- Kumar, Naresh -- Kuruvilla, Dana S -- Shin, Youseung -- He, Yuanjun -- Bruning, John B -- Marciano, David P -- Cameron, Michael D -- Laznik, Dina -- Jurczak, Michael J -- Schurer, Stephan C -- Vidovic, Dusica -- Shulman, Gerald I -- Spiegelman, Bruce M -- Griffin, Patrick R -- 1RC4DK090861/DK/NIDDK NIH HHS/ -- DK31405/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R01 GM084041/GM/NIGMS NIH HHS/ -- R01 GM084041-03/GM/NIGMS NIH HHS/ -- R01-GM084041/GM/NIGMS NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- R37 DK031405-30/DK/NIDDK NIH HHS/ -- R37 DK031405-31/DK/NIDDK NIH HHS/ -- RC4 DK090861/DK/NIDDK NIH HHS/ -- RC4 DK090861-01/DK/NIDDK NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- U54 MH074404/MH/NIMH NIH HHS/ -- U54 MH074404-01/MH/NIMH NIH HHS/ -- U54-MH074404/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2011 Sep 4;477(7365):477-81. doi: 10.1038/nature10383.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21892191" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Adipocytes/drug effects/metabolism ; Adipose Tissue, White/drug effects/metabolism ; Animals ; Biphenyl Compounds/chemistry/pharmacology ; Body Fluids/drug effects ; COS Cells ; Cercopithecus aethiops ; Cyclin-Dependent Kinase 5/*antagonists & inhibitors ; Dietary Fats/pharmacology ; Disease Models, Animal ; Dose-Response Relationship, Drug ; HEK293 Cells ; Humans ; Hypoglycemic Agents/adverse effects/chemistry/*pharmacology ; Ligands ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Models, Molecular ; Obesity/chemically induced/metabolism ; Osteogenesis/drug effects ; PPAR gamma/agonists/chemistry/*metabolism ; Phosphorylation/drug effects ; Phosphoserine/metabolism ; Thiazolidinediones/adverse effects/pharmacology ; Transcription, Genetic/drug effects ; Tumor Necrosis Factor-alpha/pharmacology ; Weight Gain/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-10-12
    Description: Myocardial cell death is initiated by excessive mitochondrial Ca(2+) entry causing Ca(2+) overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (DeltaPsim). However, the signalling pathways that control mitochondrial Ca(2+) entry through the inner membrane mitochondrial Ca(2+) uniporter (MCU) are not known. The multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is activated in ischaemia reperfusion, myocardial infarction and neurohumoral injury, common causes of myocardial death and heart failure; these findings suggest that CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (I(MCU)). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A, an mPTP antagonist with clinical efficacy in ischaemia reperfusion injury, equivalently prevent mPTP opening, DeltaPsim deterioration and diminish mitochondrial disruption and programmed cell death in response to ischaemia reperfusion injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition have reduced I(MCU) and are resistant to ischaemia reperfusion injury, myocardial infarction and neurohumoral injury, suggesting that pathological actions of CaMKII are substantially mediated by increasing I(MCU). Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca(2+) entry in myocardial cell death, and indicate that mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure in response to common experimental forms of pathophysiological stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471377/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471377/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joiner, Mei-Ling A -- Koval, Olha M -- Li, Jingdong -- He, B Julie -- Allamargot, Chantal -- Gao, Zhan -- Luczak, Elizabeth D -- Hall, Duane D -- Fink, Brian D -- Chen, Biyi -- Yang, Jinying -- Moore, Steven A -- Scholz, Thomas D -- Strack, Stefan -- Mohler, Peter J -- Sivitz, William I -- Song, Long-Sheng -- Anderson, Mark E -- R01 HL062494/HL/NHLBI NIH HHS/ -- R01 HL070250/HL/NHLBI NIH HHS/ -- R01 HL079031/HL/NHLBI NIH HHS/ -- R01 HL083422/HL/NHLBI NIH HHS/ -- R01 HL084583/HL/NHLBI NIH HHS/ -- R01 HL090905/HL/NHLBI NIH HHS/ -- R01 HL113001/HL/NHLBI NIH HHS/ -- R01 HL62494/HL/NHLBI NIH HHS/ -- R01 HL70250/HL/NHLBI NIH HHS/ -- R56 NS056244/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Nov 8;491(7423):269-73. doi: 10.1038/nature11444. Epub 2012 Oct 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine and Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA. mei-ling-joiner@uiowa.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23051746" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects ; Calcium/*metabolism/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & ; inhibitors/chemistry/*metabolism ; Cyclosporine/pharmacology ; Female ; Heart/drug effects/physiopathology ; Heart Failure/drug therapy/prevention & control ; Membrane Potential, Mitochondrial/drug effects/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mitochondria, Heart/enzymology/*metabolism/*pathology ; Mitochondrial Membrane Transport Proteins/metabolism ; Myocardial Infarction/drug therapy/prevention & control ; Myocardium/*enzymology/metabolism/*pathology ; Reperfusion Injury/enzymology/metabolism/pathology/prevention & control ; Serine/metabolism ; *Stress, Physiological/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...