ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-09-09
    Description: B-RAF is the most frequently mutated protein kinase in human cancers. The finding that oncogenic mutations in BRAF are common in melanoma, followed by the demonstration that these tumours are dependent on the RAF/MEK/ERK pathway, offered hope that inhibition of B-RAF kinase activity could benefit melanoma patients. Herein, we describe the structure-guided discovery of PLX4032 (RG7204), a potent inhibitor of oncogenic B-RAF kinase activity. Preclinical experiments demonstrated that PLX4032 selectively blocked the RAF/MEK/ERK pathway in BRAF mutant cells and caused regression of BRAF mutant xenografts. Toxicology studies confirmed a wide safety margin consistent with the high degree of selectivity, enabling Phase 1 clinical trials using a crystalline formulation of PLX4032 (ref. 5). In a subset of melanoma patients, pathway inhibition was monitored in paired biopsy specimens collected before treatment initiation and following two weeks of treatment. This analysis revealed substantial inhibition of ERK phosphorylation, yet clinical evaluation did not show tumour regressions. At higher drug exposures afforded by a new amorphous drug formulation, greater than 80% inhibition of ERK phosphorylation in the tumours of patients correlated with clinical response. Indeed, the Phase 1 clinical data revealed a remarkably high 81% response rate in metastatic melanoma patients treated at an oral dose of 960 mg twice daily. These data demonstrate that BRAF-mutant melanomas are highly dependent on B-RAF kinase activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2948082/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2948082/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bollag, Gideon -- Hirth, Peter -- Tsai, James -- Zhang, Jiazhong -- Ibrahim, Prabha N -- Cho, Hanna -- Spevak, Wayne -- Zhang, Chao -- Zhang, Ying -- Habets, Gaston -- Burton, Elizabeth A -- Wong, Bernice -- Tsang, Garson -- West, Brian L -- Powell, Ben -- Shellooe, Rafe -- Marimuthu, Adhirai -- Nguyen, Hoa -- Zhang, Kam Y J -- Artis, Dean R -- Schlessinger, Joseph -- Su, Fei -- Higgins, Brian -- Iyer, Raman -- D'Andrea, Kurt -- Koehler, Astrid -- Stumm, Michael -- Lin, Paul S -- Lee, Richard J -- Grippo, Joseph -- Puzanov, Igor -- Kim, Kevin B -- Ribas, Antoni -- McArthur, Grant A -- Sosman, Jeffrey A -- Chapman, Paul B -- Flaherty, Keith T -- Xu, Xiaowei -- Nathanson, Katherine L -- Nolop, Keith -- K24 CA097588/CA/NCI NIH HHS/ -- P50 CA093372/CA/NCI NIH HHS/ -- P50 CA093372-01/CA/NCI NIH HHS/ -- R01 CA118871/CA/NCI NIH HHS/ -- R01 CA118871-01A1/CA/NCI NIH HHS/ -- England -- Nature. 2010 Sep 30;467(7315):596-9. doi: 10.1038/nature09454.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plexxikon Inc., 91 Bolivar Drive, Berkeley, California 94710, USA. gbollag@plexxikon.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20823850" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Dogs ; Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors/metabolism ; Humans ; Indoles/administration & dosage/adverse effects/chemistry/*therapeutic use ; MAP Kinase Signaling System/drug effects ; Macaca fascicularis ; Melanoma/*drug therapy/*enzymology/genetics/pathology ; Models, Molecular ; Mutant Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Mutation/*genetics ; Neoplasm Metastasis ; Phosphorylation/drug effects ; Positron-Emission Tomography ; Proto-Oncogene Proteins B-raf/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Rats ; Substrate Specificity ; Sulfonamides/administration & dosage/adverse effects/chemistry/*therapeutic use ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-04-10
    Description: Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xiao-Wei -- Yan, Xiao-Jing -- Zhou, Zi-Ren -- Yang, Fei-Fei -- Wu, Zi-Yu -- Sun, Hong-Bin -- Liang, Wen-Xue -- Song, Ai-Xin -- Lallemand-Breitenbach, Valerie -- Jeanne, Marion -- Zhang, Qun-Ye -- Yang, Huai-Yu -- Huang, Qiu-Hua -- Zhou, Guang-Biao -- Tong, Jian-Hua -- Zhang, Yan -- Wu, Ji-Hui -- Hu, Hong-Yu -- de The, Hugues -- Chen, Sai-Juan -- Chen, Zhu -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):240-3. doi: 10.1126/science.1183424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378816" target="_blank"〉PubMed〈/a〉
    Keywords: Arsenic/*metabolism ; Arsenicals/*metabolism/*pharmacology ; Cell Line ; Humans ; Leukemia, Promyelocytic, Acute/drug therapy/genetics ; Mutant Proteins/chemistry/metabolism ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Oxazines/metabolism ; Oxides/*metabolism/*pharmacology ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Retinoic Acid/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Transcription Factors/chemistry/genetics/*metabolism ; Tumor Suppressor Proteins/chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-12-10
    Description: The formation and patterning of mesoderm during mammalian gastrulation require the activity of Nodal, a secreted mesoderm-inducing factor of the transforming growth factor-beta (TGF-beta) family. Here we show that the transcriptional corepressor DRAP1 has a very specific role in regulation of Nodal activity during mouse embryogenesis. We find that loss of Drap1 leads to severe gastrulation defects that are consistent with increased expression of Nodal and can be partially suppressed by Nodal heterozygosity. Biochemical studies indicate that DRAP1 interacts with and inhibits DNA binding by the winged-helix transcription factor FoxH1 (FAST), a critical component of a positive feedback loop for Nodal activity. We propose that DRAP1 limits the spread of a morphogenetic signal by down-modulating the response to the Nodal autoregulatory loop.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iratni, Rabah -- Yan, Yu-Ting -- Chen, Canhe -- Ding, Jixiang -- Zhang, Yi -- Price, Sandy M -- Reinberg, Danny -- Shen, Michael M -- New York, N.Y. -- Science. 2002 Dec 6;298(5600):1996-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry, Division of Nucleic Acids Enzymology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12471260" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Cell Line ; Crosses, Genetic ; DNA/metabolism ; DNA-Binding Proteins/metabolism ; *Embryonic and Fetal Development ; Female ; Forkhead Transcription Factors ; Gastrula/*physiology ; Gene Expression Regulation, Developmental ; Gene Targeting ; Heterozygote ; In Situ Hybridization ; Left-Right Determination Factors ; Male ; Mesoderm/cytology/physiology ; Mice ; Morphogenesis ; Mutation ; Nodal Protein ; Phenotype ; Protein Binding ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/genetics/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; *Signal Transduction ; Transcription Factors/metabolism ; Transforming Growth Factor beta/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-07-27
    Description: Glycoprotein adhesion receptors such as selectins contribute to tissue injury in stroke. Ischemic neurons strongly expressed C1q, which may target them for complement-mediated attack or C1qRp-mediated clearance. A hybrid molecule was used to simultaneously inhibit both complement activation and selectin-mediated adhesion. The extracellular domain of soluble complement receptor-1 (sCR1) was sialyl Lewis x glycosylated (sCR1sLex) to inhibit complement activation and endothelial-platelet-leukocyte interactions. sCR1 and sCR1sLex colocalized to ischemic cerebral microvessels and C1q-expressing neurons, inhibited neutrophil and platelet accumulation, and reduced cerebral infarct volumes. Additional benefit was conferred by sialyl Lewis x glycosylation of the unmodified parent sCR1 molecule.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, J -- Kim, L J -- Mealey, R -- Marsh, H C Jr -- Zhang, Y -- Tenner, A J -- Connolly, E S Jr -- Pinsky, D J -- R01 HL55397/HL/NHLBI NIH HHS/ -- R01 HL59488/HL/NHLBI NIH HHS/ -- R01 NS35144/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Jul 23;285(5427):595-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10417391" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Platelets/physiology ; Cell Adhesion ; Cerebral Cortex/blood supply/immunology/metabolism ; Cerebral Infarction/drug therapy ; Cerebrovascular Circulation ; Cerebrovascular Disorders/*drug therapy/immunology/physiopathology ; Complement Activation ; Complement C1q/metabolism ; Glycosylation ; Humans ; Ischemic Attack, Transient/*drug therapy/immunology/physiopathology ; Leukocytes/physiology ; Mice ; Neurons/immunology/metabolism ; Neuroprotective Agents/administration & dosage/adverse ; effects/metabolism/*therapeutic use ; Neutrophils/physiology ; Oligosaccharides/administration & dosage/adverse effects/metabolism/*therapeutic ; use ; Platelet Adhesiveness ; Receptors, Complement/administration & dosage/metabolism/*therapeutic use ; Reperfusion Injury/drug therapy/immunology/metabolism ; Selectins/metabolism ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-06-09
    Description: The p53 protein is present in low amounts in normally growing cells and is activated in response to physiological insults. MDM2 regulates p53 either through inhibiting p53's transactivating function in the nucleus or by targeting p53 degradation in the cytoplasm. We identified a previously unknown nuclear export signal (NES) in the amino terminus of p53, spanning residues 11 to 27 and containing two serine residues phosphorylated after DNA damage, which was required for p53 nuclear export in colloboration with the carboxyl-terminal NES. Serine-15-phosphorylated p53 induced by ultraviolet irradiation was not exported. Thus, DNA damage-induced phosphorylation may achieve optimal p53 activation by inhibiting both MDM2 binding to, and the nuclear export of, p53.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Y -- Xiong, Y -- CA65572/CA/NCI NIH HHS/ -- K01 CA087580/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1910-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, and Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11397945" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Animals ; Cell Fusion ; Cell Line ; Cell Nucleus/*metabolism ; Cells, Cultured ; Cytoplasm/metabolism ; *DNA Damage ; Mice ; Molecular Sequence Data ; Mutation ; *Nuclear Proteins ; Phosphorylation ; Phosphoserine/metabolism ; *Protein Sorting Signals ; Protein Structure, Tertiary ; Proteins/genetics/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p14ARF ; Tumor Suppressor Protein p53/*chemistry/genetics/*metabolism ; Ubiquitins/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-06-02
    Description: Acetylation of core histone tails plays a fundamental role in transcription regulation. In addition to acetylation, other posttranslational modifications, such as phosphorylation and methylation, occur in core histone tails. Here, we report the purification, molecular identification, and functional characterization of a histone H4-specific methyltransferase PRMT1, a protein arginine methyltransferase. PRMT1 specifically methylates arginine 3 (Arg 3) of H4 in vitro and in vivo. Methylation of Arg 3 by PRMT1 facilitates subsequent acetylation of H4 tails by p300. However, acetylation of H4 inhibits its methylation by PRMT1. Most important, a mutation in the S-adenosyl-l-methionine-binding site of PRMT1 substantially crippled its nuclear receptor coactivator activity. Our finding reveals Arg 3 of H4 as a novel methylation site by PRMT1 and indicates that Arg 3 methylation plays an important role in transcriptional regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H -- Huang, Z Q -- Xia, L -- Feng, Q -- Erdjument-Bromage, H -- Strahl, B D -- Briggs, S D -- Allis, C D -- Wong, J -- Tempst, P -- Zhang, Y -- GM63067-01/GM/NIGMS NIH HHS/ -- P30 CA08748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):853-7. Epub 2001 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11387442" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Animals ; Arginine/*metabolism ; Binding Sites ; Cell Nucleus/metabolism ; HeLa Cells ; Histones/chemistry/*metabolism ; Humans ; Hydroxamic Acids/pharmacology ; Intracellular Signaling Peptides and Proteins ; Lysine/metabolism ; Methylation ; Methyltransferases/chemistry/genetics/isolation & purification/*metabolism ; Molecular Sequence Data ; Mutation ; Oocytes ; Protein-Arginine N-Methyltransferases ; Receptors, Androgen/*metabolism ; Recombinant Proteins/metabolism ; S-Adenosylmethionine/metabolism ; *Transcriptional Activation ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-09-28
    Description: Polycomb group (PcG) proteins play important roles in maintaining the silent state of HOX genes. Recent studies have implicated histone methylation in long-term gene silencing. However, a connection between PcG-mediated gene silencing and histone methylation has not been established. Here we report the purification and characterization of an EED-EZH2 complex, the human counterpart of the Drosophila ESC-E(Z) complex. We demonstrate that the complex specifically methylates nucleosomal histone H3 at lysine 27 (H3-K27). Using chromatin immunoprecipitation assays, we show that H3-K27 methylation colocalizes with, and is dependent on, E(Z) binding at an Ultrabithorax (Ubx) Polycomb response element (PRE), and that this methylation correlates with Ubx repression. Methylation on H3-K27 facilitates binding of Polycomb (PC), a component of the PRC1 complex, to histone H3 amino-terminal tail. Thus, these studies establish a link between histone methylation and PcG-mediated gene silencing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cao, Ru -- Wang, Liangjun -- Wang, Hengbin -- Xia, Li -- Erdjument-Bromage, Hediye -- Tempst, Paul -- Jones, Richard S -- Zhang, Yi -- New York, N.Y. -- Science. 2002 Nov 1;298(5595):1039-43. Epub 2002 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351676" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/isolation & purification/metabolism ; Cell Cycle Proteins/metabolism ; Chromatin/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Drosophila ; Drosophila Proteins/genetics/*metabolism ; *Gene Silencing ; Genes, Homeobox ; HeLa Cells ; *Histone-Lysine N-Methyltransferase ; Histones/*metabolism ; *Homeodomain Proteins ; Humans ; Lysine/*metabolism ; Methylation ; Methyltransferases/isolation & purification/metabolism ; Nuclear Proteins/metabolism ; Nucleosomes/metabolism ; Peptide Mapping ; Polycomb Repressive Complex 1 ; Polycomb Repressive Complex 2 ; Precipitin Tests ; Protein Methyltransferases ; Proteins/isolation & purification/metabolism ; RNA Interference ; Repressor Proteins/isolation & purification/metabolism ; Response Elements ; Temperature ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-05-13
    Description: Insulin elicits a spectrum of biological responses by binding to its cell surface receptor. In a screen for small molecules that activate the human insulin receptor tyrosine kinase, a nonpeptidyl fungal metabolite (L-783,281) was identified that acted as an insulin mimetic in several biochemical and cellular assays. The compound was selective for insulin receptor versus insulin-like growth factor I (IGFI) receptor and other receptor tyrosine kinases. Oral administration of L-783,281 to two mouse models of diabetes resulted in significant lowering in blood glucose levels. These results demonstrate the feasibility of discovering novel insulin receptor activators that may lead to new therapies for diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, B -- Salituro, G -- Szalkowski, D -- Li, Z -- Zhang, Y -- Royo, I -- Vilella, D -- Diez, M T -- Pelaez, F -- Ruby, C -- Kendall, R L -- Mao, X -- Griffin, P -- Calaycay, J -- Zierath, J R -- Heck, J V -- Smith, R G -- Moller, D E -- New York, N.Y. -- Science. 1999 May 7;284(5416):974-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Endocrinology, Merck Research Laboratories, R80W250, Post Office Box 2000, Rahway, NJ 07065, USA. bei_zhang@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10320380" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Ascomycota/*metabolism ; Binding Sites ; Blood Glucose/metabolism ; CHO Cells ; Cricetinae ; Diabetes Mellitus, Type 2/*drug therapy ; Dose-Response Relationship, Drug ; Drug Evaluation, Preclinical ; Enzyme Activation ; Glucose Tolerance Test ; Hyperglycemia/drug therapy ; Hypoglycemic Agents/chemistry/metabolism/*pharmacology/therapeutic use ; Indoles/chemistry/metabolism/*pharmacology/therapeutic use ; Insulin/blood/metabolism/*pharmacology ; Insulin Receptor Substrate Proteins ; Mice ; Mice, Mutant Strains ; Mice, Obese ; Molecular Mimicry ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Conformation/drug effects ; Receptor, Epidermal Growth Factor/metabolism ; Receptor, IGF Type 1/metabolism ; Receptor, Insulin/chemistry/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2000-01-29
    Description: Malfolded proteins in the endoplasmic reticulum (ER) induce cellular stress and activate c-Jun amino-terminal kinases (JNKs or SAPKs). Mammalian homologs of yeast IRE1, which activate chaperone genes in response to ER stress, also activated JNK, and IRE1alpha-/- fibroblasts were impaired in JNK activation by ER stress. The cytoplasmic part of IRE1 bound TRAF2, an adaptor protein that couples plasma membrane receptors to JNK activation. Dominant-negative TRAF2 inhibited activation of JNK by IRE1. Activation of JNK by endogenous signals initiated in the ER proceeds by a pathway similar to that initiated by cell surface receptors in response to extracellular signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Urano, F -- Wang, X -- Bertolotti, A -- Zhang, Y -- Chung, P -- Harding, H P -- Ron, D -- DK47119/DK/NIDDK NIH HHS/ -- ES08681/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 28;287(5453):664-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute of Biomolecular Medicine, Departments of Medicine, Cell Biology and the Kaplan Cancer Center, New York University Medical School, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10650002" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; Endoplasmic Reticulum/*metabolism ; Endoribonucleases/genetics/*metabolism ; Enzyme Activation ; Gene Targeting ; Humans ; JNK Mitogen-Activated Protein Kinases ; *Membrane Proteins ; Mitogen-Activated Protein Kinases/*metabolism ; Multienzyme Complexes/genetics/*metabolism ; Protein Kinases/genetics/*metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Proteins/chemistry/genetics/*metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; TNF Receptor-Associated Factor 2 ; Thapsigargin/pharmacology ; Two-Hybrid System Techniques ; eIF-2 Kinase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2002-08-06
    Description: Excessive caloric intake is thought to be sensed by the brain, which then activates thermogenesis as a means of preventing obesity. The sympathetic nervous system, through beta-adrenergic receptor (betaAR) action on target tissues, is likely the efferent arm of this homeostatic mechanism. To test this hypothesis, we created mice that lack the three known betaARs (beta-less mice). beta-less mice on a Chow diet had a reduced metabolic rate and were slightly obese. On a high-fat diet, beta-less mice, in contrast to wild-type mice, developed massive obesity that was due entirely to a failure of diet-induced thermogenesis. These findings establish that betaARs are necessary for diet-induced thermogenesis and that this efferent pathway plays a critical role in the body's defense against diet-induced obesity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bachman, Eric S -- Dhillon, Harveen -- Zhang, Chen-Yu -- Cinti, Saverio -- Bianco, Antonio C -- Kobilka, Brian K -- Lowell, Bradford B -- New York, N.Y. -- Science. 2002 Aug 2;297(5582):843-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12161655" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/drug effects/metabolism ; Animals ; Basal Metabolism/drug effects ; Body Temperature/drug effects ; Body Weight/drug effects/genetics ; *Diet ; Dietary Fats/administration & dosage/pharmacology ; Energy Intake ; Female ; Homeostasis/drug effects ; Immunohistochemistry ; Male ; Mice ; Mice, Knockout ; Obesity/blood/genetics/*metabolism/prevention & control ; Oxygen Consumption/drug effects ; Phenotype ; Receptors, Adrenergic, beta/genetics/*metabolism ; *Signal Transduction/drug effects ; Sympathetic Nervous System/drug effects/physiology ; Thermogenesis/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...