ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-02-13
    Description: Circadian rhythms of behavior are driven by oscillators in the brain that are coupled to the environmental light cycle. Circadian rhythms of gene expression occur widely in peripheral organs. It is unclear how these multiple rhythms are coupled together to form a coherent system. To study such coupling, we investigated the effects of cycles of food availability (which exert powerful entraining effects on behavior) on the rhythms of gene expression in the liver, lung, and suprachiasmatic nucleus (SCN). We used a transgenic rat model whose tissues express luciferase in vitro. Although rhythmicity in the SCN remained phase-locked to the light-dark cycle, restricted feeding rapidly entrained the liver, shifting its rhythm by 10 hours within 2 days. Our results demonstrate that feeding cycles can entrain the liver independently of the SCN and the light cycle, and they suggest the need to reexamine the mammalian circadian hierarchy. They also raise the possibility that peripheral circadian oscillators like those in the liver may be coupled to the SCN primarily through rhythmic behavior, such as feeding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokkan, K A -- Yamazaki, S -- Tei, H -- Sakaki, Y -- Menaker, M -- MH 56647/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2001 Jan 19;291(5503):490-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Science Foundation Center for Biological Timing and Department of Biology, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904-4328, USA. mm7e@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161204" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; *Circadian Rhythm ; Corticosterone/blood/pharmacology ; Culture Techniques ; Eating ; Female ; *Food ; *Gene Expression Regulation ; Genes, Reporter ; Liver/*physiology ; Luciferases/genetics ; Lung/physiology ; Male ; Motor Activity ; Organ Specificity ; Rats ; Suprachiasmatic Nucleus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-04-28
    Description: In multicellular organisms, circadian oscillators are organized into multitissue systems which function as biological clocks that regulate the activities of the organism in relation to environmental cycles and provide an internal temporal framework. To investigate the organization of a mammalian circadian system, we constructed a transgenic rat line in which luciferase is rhythmically expressed under the control of the mouse Per1 promoter. Light emission from cultured suprachiasmatic nuclei (SCN) of these rats was invariably and robustly rhythmic and persisted for up to 32 days in vitro. Liver, lung, and skeletal muscle also expressed circadian rhythms, which damped after two to seven cycles in vitro. In response to advances and delays of the environmental light cycle, the circadian rhythm of light emission from the SCN shifted more rapidly than did the rhythm of locomotor behavior or the rhythms in peripheral tissues. We hypothesize that a self-sustained circadian pacemaker in the SCN entrains circadian oscillators in the periphery to maintain adaptive phase control, which is temporarily lost following large, abrupt shifts in the environmental light cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamazaki, S -- Numano, R -- Abe, M -- Hida, A -- Takahashi, R -- Ueda, M -- Block, G D -- Sakaki, Y -- Menaker, M -- Tei, H -- MH56647/MH/NIMH NIH HHS/ -- R01 MH056647/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 28;288(5466):682-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NSF Center for Biological Timing and Department of Biology, University of Virginia, Charlottesville, VA 22903-2477, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10784453" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Biological Clocks/*physiology ; Cell Cycle Proteins ; Circadian Rhythm/*physiology ; Culture Techniques ; Darkness ; Genes, Reporter ; Light ; Liver/physiology ; Luciferases/genetics/metabolism ; Lung/physiology ; Male ; Mice ; Motor Activity ; Muscle, Skeletal/physiology ; Nuclear Proteins/genetics/physiology ; Period Circadian Proteins ; Promoter Regions, Genetic ; Rats ; Suprachiasmatic Nucleus/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-04-25
    Description: The tau mutation is a semidominant autosomal allele that dramatically shortens period length of circadian rhythms in Syrian hamsters. We report the molecular identification of the tau locus using genetically directed representational difference analysis to define a region of conserved synteny in hamsters with both the mouse and human genomes. The tau locus is encoded by casein kinase I epsilon (CKIepsilon), a homolog of the Drosophila circadian gene double-time. In vitro expression and functional studies of wild-type and tau mutant CKIepsilon enzyme reveal that the mutant enzyme has a markedly reduced maximal velocity and autophosphorylation state. In addition, in vitro CKIepsilon can interact with mammalian PERIOD proteins, and the mutant enzyme is deficient in its ability to phosphorylate PERIOD. We conclude that tau is an allele of hamster CKIepsilon and propose a mechanism by which the mutation leads to the observed aberrant circadian phenotype in mutant animals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869379/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869379/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lowrey, P L -- Shimomura, K -- Antoch, M P -- Yamazaki, S -- Zemenides, P D -- Ralph, M R -- Menaker, M -- Takahashi, J S -- R01MH56647/MH/NIMH NIH HHS/ -- R37MH39592/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2000 Apr 21;288(5465):483-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology and Physiology, Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10775102" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Casein Kinases ; Cell Cycle Proteins ; Chromosome Mapping ; *Circadian Rhythm/genetics ; Cloning, Molecular ; Cricetinae ; Female ; Heterozygote ; Humans ; Male ; Mesocricetus ; Mice ; Microsatellite Repeats ; Molecular Sequence Data ; Nuclear Proteins/genetics/metabolism ; Period Circadian Proteins ; Phenotype ; Phosphorylation ; *Point Mutation ; Polymerase Chain Reaction ; Polymorphism, Genetic ; Protein Kinases/chemistry/*genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Suprachiasmatic Nucleus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-11-01
    Description: Fuller et al. (Reports, 23 May 2008, p. 1074) reported that the dorsomedial hypothalamus contains a Bmal1-based oscillator that can drive food-entrained circadian rhythms. We report that mice bearing a null mutation of Bmal1 exhibit normal food-anticipatory circadian rhythms. Lack of food anticipation in Bmal1-/- mice reported by Fuller et al. may reflect morbidity due to weight loss, thus raising questions about their conclusions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mistlberger, Ralph E -- Yamazaki, Shin -- Pendergast, Julie S -- Landry, Glenn J -- Takumi, Toru -- Nakamura, Wataru -- NS051278/NS/NINDS NIH HHS/ -- R01 NS051278/NS/NINDS NIH HHS/ -- R01 NS051278-04/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 31;322(5902):675; author reply 675. doi: 10.1126/science.1161284.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada. mistlber@sfu.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18974333" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/*metabolism ; Behavior, Animal ; Biological Clocks/*physiology ; Circadian Rhythm/*physiology ; Cues ; Darkness ; Dorsomedial Hypothalamic Nucleus/*metabolism ; *Food ; *Light ; Mice ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-04-22
    Description: Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to advance the understanding of the formation and evolution of crust formed at mid-ocean ridges, but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic crust from melt lenses so far penetrated by Hole 1256D.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, Douglas S -- Teagle, Damon A H -- Alt, Jeffrey C -- Banerjee, Neil R -- Umino, Susumu -- Miyashita, Sumio -- Acton, Gary D -- Anma, Ryo -- Barr, Samantha R -- Belghoul, Akram -- Carlut, Julie -- Christie, David M -- Coggon, Rosalind M -- Cooper, Kari M -- Cordier, Carole -- Crispini, Laura -- Durand, Sedelia Rodriguez -- Einaudi, Florence -- Galli, Laura -- Gao, Yongjun -- Geldmacher, Jorg -- Gilbert, Lisa A -- Hayman, Nicholas W -- Herrero-Bervera, Emilio -- Hirano, Nobuo -- Holter, Sara -- Ingle, Stephanie -- Jiang, Shijun -- Kalberkamp, Ulrich -- Kerneklian, Marcie -- Koepke, Jurgen -- Laverne, Christine -- Vasquez, Haroldo L Lledo -- Maclennan, John -- Morgan, Sally -- Neo, Natsuki -- Nichols, Holly J -- Park, Sung-Hyun -- Reichow, Marc K -- Sakuyama, Tetsuya -- Sano, Takashi -- Sandwell, Rachel -- Scheibner, Birgit -- Smith-Duque, Chris E -- Swift, Stephen A -- Tartarotti, Paola -- Tikku, Anahita A -- Tominaga, Masako -- Veloso, Eugenio A -- Yamasaki, Toru -- Yamazaki, Shusaku -- Ziegler, Christa -- New York, N.Y. -- Science. 2006 May 19;312(5776):1016-20. Epub 2006 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA. dwilson@geol.ucsb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16627698" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-01-06
    Description: Dendritic cells (DCs) process and present self and foreign antigens to induce tolerance or immunity. In vitro models suggest that induction of immunity is controlled by regulating the presentation of antigen, but little is known about how DCs control antigen presentation in vivo. To examine antigen processing and presentation in vivo, we specifically targeted antigens to two major subsets of DCs by using chimeric monoclonal antibodies. Unlike CD8+ DCs that express the cell surface protein CD205, CD8- DCs, which are positive for the 33D1 antigen, are specialized for presentation on major histocompatibility complex (MHC) class II. This difference in antigen processing is intrinsic to the DC subsets and is associated with increased expression of proteins involved in MHC processing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dudziak, Diana -- Kamphorst, Alice O -- Heidkamp, Gordon F -- Buchholz, Veit R -- Trumpfheller, Christine -- Yamazaki, Sayuri -- Cheong, Cheolho -- Liu, Kang -- Lee, Han-Woong -- Park, Chae Gyu -- Steinman, Ralph M -- Nussenzweig, Michel C -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):107-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204652" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/immunology ; *Antigen Presentation ; Antigens, CD/analysis/immunology ; Antigens, CD8/analysis/immunology ; Base Sequence ; Dendritic Cells/*immunology ; Histocompatibility Antigens Class I/immunology ; Histocompatibility Antigens Class II/immunology ; Lectins, C-Type/analysis/immunology ; Lymphocyte Activation ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Mice, Transgenic ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Receptors, Cell Surface/analysis/immunology ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-10-18
    Description: T cells that mediate autoimmune diseases such as rheumatoid arthritis (RA) are difficult to characterize because they are likely to be deleted or inactivated in the thymus if the self antigens they recognize are ubiquitously expressed. One way to obtain and analyze these autoimmune T cells is to alter T cell receptor (TCR) signaling in developing T cells to change their sensitivity to thymic negative selection, thereby allowing their thymic production. From mice thus engineered to generate T cells mediating autoimmune arthritis, we isolated arthritogenic TCRs and characterized the self antigens they recognized. One of them was the ubiquitously expressed 60S ribosomal protein L23a (RPL23A), with which T cells and autoantibodies from RA patients reacted. This strategy may improve our understanding of the underlying drivers of autoimmunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Yoshinaga -- Hashimoto, Motomu -- Hirota, Keiji -- Ohkura, Naganari -- Morikawa, Hiromasa -- Nishikawa, Hiroyoshi -- Tanaka, Atsushi -- Furu, Moritoshi -- Ito, Hiromu -- Fujii, Takao -- Nomura, Takashi -- Yamazaki, Sayuri -- Morita, Akimichi -- Vignali, Dario A A -- Kappler, John W -- Matsuda, Shuichi -- Mimori, Tsuneyo -- Sakaguchi, Noriko -- Sakaguchi, Shimon -- R01 DK089125/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):363-8. doi: 10.1126/science.1259077.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan. ; Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan. Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. Department of the Control for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. ; Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. ; Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. Department of Frontier Research in Tumor Immunology, Center of Medical Innovation and Translational Research, Osaka University, Osaka 565-0871, Japan. ; Department of the Control for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. ; Department of the Control for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. ; Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan. ; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. ; Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA. Howard Hughes Medical Institute, National Jewish Health, Denver, CO 80206, USA. ; Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. ; Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan. ; Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan. Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan. Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo 102-0075, Japan. shimon@ifrec.osaka-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324392" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthritis, Rheumatoid/genetics/*immunology ; Autoantigens/*immunology ; Autoimmunity/*immunology ; DNA-Binding Proteins/genetics ; Gene Expression Regulation ; Genes, T-Cell Receptor beta ; Humans ; Mice ; Mice, Inbred BALB C ; Mice, Mutant Strains ; Receptors, Antigen, T-Cell/*immunology ; Ribosomal Proteins/genetics/*immunology ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: 〈p〉The genetic variation of rice cultivars provides a resource for further varietal improvement through breeding. Some rice varieties are sensitive to benzobicyclon (BBC), a β-triketone herbicide that inhibits 4-hydroxyphenylpyruvate dioxygenase (HPPD). Here we identify a rice gene, 〈i〉HIS1〈/i〉 (〈i〉HPPD INHIBITOR SENSITIVE 1〈/i〉), that confers resistance to BBC and other β-triketone herbicides. We show that 〈i〉HIS1〈/i〉 encodes an Fe(II)/2-oxoglutarate–dependent oxygenase that detoxifies β-triketone herbicides by catalyzing their hydroxylation. Genealogy analysis revealed that BBC-sensitive rice variants inherited a dysfunctional 〈i〉his1〈/i〉 allele from an 〈i〉indica〈/i〉 rice variety. Forced expression of 〈i〉HIS1〈/i〉 in 〈i〉Arabidopsis〈/i〉 conferred resistance not only to BBC but also to four additional β-triketone herbicides. 〈i〉HIS1〈/i〉 may prove useful for breeding herbicide-resistant crops.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to advance the understanding of the formation and evolution of crust formed at mid-ocean ridges, but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic crust from melt lenses so far penetrated by Hole 1256D.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...