ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-20
    Description: Low Earth Orbit is becoming an inexpensive and readily available technology demonstration environment. Many new CubeSat technologies are taking advantage of this as an economical mechanism to advance beyond TRL 5. A wave of CubeSat propulsion systems favoring both reaction control and primary thrust will approach TRL 5 over the coming years, with some already there. These propulsion systems cover a wide range of capabilities including taking CubeSats to interplanetary destinations. In order to determine the feasibility of using LEO to validate the propulsion system performance and in doing so raising the TRL, a variety of factors need to be addressed. These factors include: method of measurement, environmental disturbances, spacecraft control states, and spacecraft mass properties. Propulsion Pathfinder is a NASA Ames Research Center lead project focused on raising the TRL of multiple propulsion systems over a series of flights in the coming years. This paper will highlight a few of the methods of measurement considered by this project to validate the performance of a propulsion system. The measurement methods range from tracking acceleration andor wheel spin-up to monitoring Two Line Elements between thrusting and non thrusting states. Focus will then be placed on the uncertainty of the measurement method and subsequently its feasibility through an analysis of LEO disturbance environment models and common CubeSat mass properties. In addition, the primary spacecraft control states and their imposition from the propulsion system are assessed.
    Keywords: Spacecraft Propulsion and Power
    Type: ARC-E-DAA-TN22296 , Interplanetary CubeSat Workshop; May 26, 2015 - May 27, 2015; London; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: NASA Ames Research Center and the George Washington University are developing an electric propulsion subsystem that will be integrated into the PhoneSat bus. Experimental tests have shown a reliable performance by firing three different thrusters at various frequencies in vacuum conditions. The interface consists of a microcontroller that sends a trigger pulse to the Pulsed Plasma Unit that is responsible for the thruster operation. A Smartphone is utilized as the main user interface for the selection of commands that control the entire system. The propellant, which is the cathode itself, is a solid cylinder made of Titanium. This simplicity in the design avoids miniaturization and manufacturing problems. The characteristics of this thruster allow an array of CATs to perform attitude control and orbital correction maneuvers that will open the door for the implementation of an extensive collection of new mission concepts and space applications for CubeSats. NASA Ames is currently working on the integration of the system to fit the thrusters and the PPU inside a 1.5U CubeSat together with the PhoneSat bus. This satellite is intended to be deployed from the ISS in 2015 and test the functionality of the thrusters by spinning the satellite around its long axis and measure the rotational speed with the phone gyros. This test flight will raise the TRL of the propulsion system from 5 to 7 and will be a first test for further CubeSats with propulsion systems, a key subsystem for long duration or interplanetary small satellite missions.
    Keywords: Spacecraft Propulsion and Power
    Type: ARC-E-DAA-TN14562 , Small Satellite Systems and Services (4S) Symposium; May 26, 2014 - May 30, 2014; Porto Petro, Mojorca; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Over the last decade, consumer technology has vastly improved its performances, become more affordable and reduced its size. Modern day smartphones offer capabilities that enable us to figure out where we are, which way we are pointing, observe the world around us, and store and transmit this information to wherever we want. These capabilities are remarkably similar to those required for multi-million dollar satellites. The PhoneSat project at NASA Ames Research Center is building a series of CubeSat-size spacecrafts using an off-the-shelf smartphone as its on-board computer with the goal of showing just how simple and cheap space can be. Since the PhoneSat project started, different suborbital and orbital flight activities have proven the viability of this revolutionary approach. In early 2013, the PhoneSat project launched the first triage of PhoneSats into LEO. In the five day orbital life time, the nano-satellites flew the first functioning smartphone-based satellites (using the Nexus One and Nexus S phones), the cheapest satellite (a total parts cost below $3,500) and one of the fastest on-board processors (CPU speed of 1GHz). In this paper, an overview of the PhoneSat project as well as a summary of the in-flight experimental results is presented.
    Keywords: Spacecraft Design, Testing and Performance; Space Communications, Spacecraft Communications, Command and Tracking
    Type: ARC-E-DAA-TN14625 , Small Satellites and Services Symposium; May 26, 2014 - May 30, 2014; Porto Petro, Majorca; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: Here we present the evolution of a student satellite mission: CHOMPTT (CubeSat Handling of Multisystem Precision Time Transfer), from its original concept as a candidate for the University NanoSatellite Program 8 (UNP8), to a spacecraft ready for launch in Fall of 2017 on ELaNa XIX (Educational Launch of Nanosatellites). The 3U CubeSat houses a 1 kg, 1U OPTI (Optical Precision Timing Instrument) payload, designed and built at the University of Florida, and a 1.5U EDSNNODeS-derived bus from NASA Ames Research Center. The OPTI payload comprises of: 1) a supervisor board that handles payload data, power regulation, and mode settings, 2) an optics assembly of six 1 cm retroreflectors and four laser beacon diodes for ground-tracking; and 3) two fully redundant timing channels, each consisting of: a chip-scale atomic clock, a microprocessor with clock counter, a picosecond event timer, and an avalanche photodetector (APD) with band-pass filter. Several iterations of OPTI have been developed, tested, and designed to achieve its current functionality and design a laboratory breadboard design, a 1.5U high altitude balloon design, engineering unit design, and its current flight unit design. In-lab testing of the current OPTI design indicates a short-term precision of 100 ps, equivalent to a range accuracy of 3 cm necessary to achieve our primary objective of 200 ps time transfer error, and a long-term timing accuracy of 20 ns over one orbit (1.5 hours). After the spacecraft reaches its nominal 500 km orbit at a 85 degree inclination, an experimental laser ranging facility at Kennedy Space Center in Florida, will track and emit 1064 nm nanosecond optical pulses at the CHOMPTT spacecraft. The laser pulses will then reflect off the retroreflector array mounted on the nadir face of CHOMPTT, and return the pulse to the laser ranging facility where the laser ranging facility will record the round-trip duration of the laser pulses. At the same time the pulse arrives at the spacecraft and is reflected by the array, an APD will record the arrival time of the pulses at the nanosatellite. By comparing the arrival of the pulse at the CubeSat and the duration of the round-trip of the laser pulse, the clock discrepancy between the ground and CubeSat atomic clocks can be determined, in addition to the CubeSats range from the facility. The design and verification of the flight version of CHOMPTT will be reviewed and an overview of the lifetime development and progression of CHOMPTT from the inception to launch pad will be presented.
    Keywords: Instrumentation and Photography
    Type: ARC-E-DAA-TN39313 , AIAA & Utah State University Conference on Small Satellites; Aug 05, 2017 - Aug 10, 2017; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A major upfront cost of building low cost Nanosatellites is the communications sub-system. Most radios built for space missions cost over $4,000 per unit. This exceeds many budgets. One possible cost effective solution is the Microhard MHX2420, a commercial off-the-shelf transceiver with a unit cost under $1000. This paper aims to support the Nanosatellite community seeking an inexpensive radio by characterizing Microhard's performance envelope. Though not intended for space operations, the ability to test edge cases and increase average data transfer speeds through optimization positions this radio as a solution for Nanosatellite communications by expanding usage to include more missions. The second objective of this paper is to test and verify the optimal radio settings for the most common cases to improve downlinking. All tests were conducted with the aid of the RT Logic T400CS, a hardware-in-the-loop channel simulator designed to emulate real-world radio frequency (RF) link effects. This study provides recommended settings to optimize the downlink speed as well as the environmental parameters that cause the link to fail.
    Keywords: Communications and Radar
    Type: ARC-E-DAA-TN5503 , Annual AIAA/USU Conference on Small Satellites; Aug 13, 2012 - Aug 16, 2012; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Consumer technology, over the last decade, has begun to encompass devices that enable us to figure out where we are, which way we are pointing, observe the world around us, and store and transmit this information to wherever we want. Once separate consumer products such as GPS units, digital cameras and mobile phones are now combined into the modern day Smartphone. Since these capabilities are remarkably similar to those required for the multi-million dollar satellites - so why not use a multihundred dollar Smartphone instead? The PhoneSat project of NASA Ames Research Center is developing technology demonstrations utilizing these extraordinary advances to show just how simple and cheap Space can be. The style of development revolves around the "release early, release often" Silicon Valley mentality. PhoneSat is a series of 1U CubeSat size spacecrafts that use an off-the-shelf Smartphone as their onboard computer. By doing so, PhoneSat takes advantage of the high computational capability, large memory as well as ultra-tiny sensors like high-resolution cameras and navigation devices that Smartphones offer. Along with a Smartphone, PhoneSat is equipped with other commercially available technology products, such as medical brushless motors that are used as reaction wheels. Over the four years that NASA Ames Research Center has been developing the PhoneSat project, different suborbital and orbital flight activities have proven the validity of this revolutionary approach. In early 2013, the PhoneSat project launched the first triage of PhoneSats into LEO. In the five day orbital life time, the nano-satellites flew the first functioning Smartphone based satellites (using the Nexus One and Nexus S phones), the cheapest satellite (a total parts cost below $3,500) and one of the fastest on-board processors (CPU speed of 1GHz). In late 2013, the PhoneSat project launched an improved version of its bus to a higher altitude orbit which provided data about the overall system's tolerance to the space environment. In this paper, an overview of the PhoneSat project as well as a summary of the in-flight experimental results is presented. NASA Ames Research Center is carrying on its effort to bring a paradigm shift in the way we conceive Space exploration, this new approach is certainly incarnated by PhoneSat. A set of eight PhoneSat-based CubeSats is manifested to launch in 2014 with the purpose of demonstrating new technical capabilities and being a pathfinder for future Spacecraft technology missions.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking; Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN12985 , Symposium on Small Satellites Systems and Services-4S; May 26, 2014 - May 30, 2014; Majorca; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...