ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: Future human missions to Mars will require effective communications supporting exploration activities and scientific field data collection. Constraints on cost, size, weight and power consumption for all communications equipment make optimization of these systems very important. These information and communication systems connect people and systems together into coherent teams performing the difficult and hazardous tasks inherent in planetary exploration. The communication network supporting vehicle telemetry data, mission operations, and scientific collaboration must have excellent reliability, and flexibility.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: We are developing automated methods to provide realtime access to spacecraft domain knowledge relevant a spacecraft's current operational state. The method is based upon analyzing state-transition signatures in the telemetry stream. A key insight is that documentation relevant to a specific failure mode or operational state is related to the structure and function of spacecraft systems. This means that diagnostic dependency and state models can provide a roadmap for effective documentation navigation and presentation. Diagnostic models consume the telemetry and derive a high-level state description of the spacecraft. Each potential spacecraft state description is matched against the predictions of models that were developed from information found in the pages and sections in the relevant International Space Station (ISS) documentation and reference materials. By annotating each model fragment with the domain knowledge sources from which it was derived we can develop a system that automatically selects those documents representing the domain knowledge encapsulated by the models that compute the current spacecraft state. In this manner, when the spacecraft state changes, the relevant documentation context and presentation will also change.
    Keywords: Documentation and Information Science
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: To ensure space flight safety, it is necessary to monitor myriad sensor readings on the ground and in flight. Since a space shuttle has many sensors, monitoring data and drawing conclusions from information contained within the data in real time is challenging. The nature of the information can be critical to the success of the mission and safety of the crew and therefore, must be processed with minimal data-processing time. Data analysis algorithms could be used to synthesize sensor readings and compare data associated with normal operation with the data obtained that contain fault patterns to draw conclusions. Detecting abnormal operation during early stages in the transition from safe to unsafe operation requires a large amount of historical data that can be categorized into different classes (non-risk, risk). Even though the 40 years of shuttle flight program has accumulated volumes of historical data, these data don t comprehensively represent all possible fault patterns since fault patterns are usually unknown before the fault occurs. This paper presents a method that uses a similarity measure between fuzzy clusters to detect possible faults in real time. A clustering technique based on a fuzzy equivalence relation is used to characterize temporal data. Data collected during an initial time period are separated into clusters. These clusters are characterized by their centroids. Clusters formed during subsequent time periods are either merged with an existing cluster or added to the cluster list. The resulting list of cluster centroids, called a cluster group, characterizes the behavior of a particular set of temporal data. The degree to which new clusters formed in a subsequent time period are similar to the cluster group is characterized by a similarity measure, q. This method is applied to downlink data from Columbia flights. The results show that this technique can detect an unexpected fault that has not been present in the training data set.
    Keywords: Space Transportation and Safety
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: This paper outlines various mission requirements and technical approaches that support the potential use of portable computers in several defined activities within the Space Station Freedom (SSF) program. Specifically, the use of portable computers as consoles for both spacecraft control and payload applications is presented. Various issues and proposed solutions regarding the incorporation of portable computers within the program are presented. The primary issues presented regard architecture (standard interface for expansion, advanced processors and displays), integration (methods of high-speed data communication, peripheral interfaces, and interconnectivity within various support networks), and evolution (wireless communications and multimedia data interface methods).
    Keywords: COMPUTER SYSTEMS
    Type: AIAA PAPER 93-4602 , In: AIAA Computing in Aerospace Conference, 9th, San Diego, CA, Oct. 19-21, 1993, Technical Papers. Pt. 2 (A94-11401 01-62); p. 774-784.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Attention is given to current activities in the Embedded Data Processor and Portable Computer Technology testbed configurations that are part of the Advanced Data Systems Architectures Testbed at the Information Sciences Division at NASA Ames Research Center. The Embedded Data Processor Testbed evaluates advanced microprocessors for potential use in mission and payload applications within the Space Station Freedom Program. The Portable Computer Technology (PCT) Testbed integrates and demonstrates advanced portable computing devices and data system architectures. The PCT Testbed uses both commercial and custom-developed devices to demonstrate the feasibility of functional expansion and networking for portable computers in flight missions.
    Keywords: COMPUTER SYSTEMS
    Type: AIAA PAPER 93-4601 , In: AIAA Computing in Aerospace Conference, 9th, San Diego, CA, Oct. 19-21, 1993, Technical Papers. Pt. 2 (A94-11401 01-62); p. 764-773.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: We have developed and tested an advanced EVA communications and computing system to increase astronaut self-reliance and safety, reducing dependence on continuous monitoring and advising from mission control on Earth. This system, called Mobile Agents (MA), is voice controlled and provides information verbally to the astronauts through programs called personal agents. The system partly automates the role of CapCom in Apollo-including monitoring and managing EVA navigation, scheduling, equipment deployment, telemetry, health tracking, and scientific data collection. EVA data are stored automatically in a shared database in the habitat/vehicle and mirrored to a site accessible by a remote science team. The program has been developed iteratively in the context of use, including six years of ethnographic observation of field geology. Our approach is to develop automation that supports the human work practices, allowing people to do what they do well, and to work in ways they are most familiar. Field experiments in Utah have enabled empirically discovering requirements and testing alternative technologies and protocols. This paper reports on the 2004 system configuration, experiments, and results, in which an EVA robotic assistant (ERA) followed geologists approximately 150 m through a winding, narrow canyon. On voice command, the ERA took photographs and panoramas and was directed to move and wait in various locations to serve as a relay on the wireless network. The MA system is applicable to many space work situations that involve creating and navigating from maps (including configuring equipment for local topology), interacting with piloted and unpiloted rovers, adapting to environmental conditions, and remote team collaboration involving people and robots.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: 1st Space Exploration Conference; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Traditional mission and vehicle management involves teams of highly trained specialists monitoring vehicle status and crew activities, responding rapidly to any anomalies encountered during operations. These teams work from the Mission Control Center and have access to engineering support teams with specialized expertise in International Space Station (ISS) subsystems. Integrated System Health Management (ISHM) applications can significantly augment these capabilities by providing enhanced monitoring, prognostic and diagnostic tools for critical decision support and mission management. The Intelligent Systems Division of NASA Ames Research Center is developing many prototype applications using model-based reasoning, data mining and simulation, working with Mission Control through the ISHM Testbed and Prototypes Project. This paper will briefly describe information technology that supports current mission management practice, and will extend this to a vision for future mission control workflow incorporating new ISHM applications. It will describe ISHM applications currently under development at NASA and will define technical approaches for implementing our vision of future human exploration mission management incorporating artificial intelligence and distributed web service architectures using specific examples. Several prototypes are under development, each highlighting a different computational approach. The ISStrider application allows in-depth analysis of Caution and Warning (C&W) events by correlating real-time telemetry with the logical fault trees used to define off-nominal events. The application uses live telemetry data and the Livingstone diagnostic inference engine to display the specific parameters and fault trees that generated the C&W event, allowing a flight controller to identify the root cause of the event from thousands of possibilities by simply navigating animated fault tree models on their workstation. SimStation models the functional power flow for the ISS Electrical Power System and can predict power balance for nominal and off-nominal conditions. SimStation uses realtime telemetry data to keep detailed computational physics models synchronized with actual ISS power system state. In the event of failure, the application can then rapidly diagnose root cause, predict future resource levels and even correlate technical documents relevant to the specific failure. These advanced computational models will allow better insight and more precise control of ISS subsystems, increasing safety margins by speeding up anomaly resolution and reducing,engineering team effort and cost. This technology will make operating ISS more efficient and is directly applicable to next-generation exploration missions and Crew Exploration Vehicles.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: 56th International Astronautics Congress; Oct 17, 2005 - Oct 21, 2005; Fukuoka; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments. Test results from our prototype WSN running the Mobitrum software system are summarized and the implications to the scalability and reliability for DFI applications are discussed. Our demonstration system, incorporating sensors for life support system and structural health monitoring is described along with test results obtained by running the demonstration prototype in relevant environments such as the Wireless Habitat Testbed at Johnson Space Center in Houston. An operations concept for improved sensor process flow from design to flight test is outlined specific to the areas of Environmental Control and Life Support System performance characterization and structural health monitoring of human-rated spacecraft. This operations concept will be used to highlight the areas where WSN technology, particularly plug-and-play software based on IEEE 1451, can improve the current process, resulting in significant reductions in the technical effort, overall cost and schedule for providing DFI capability for future spacecraft. RELEASED -
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: SSTI-2200-0120 , AIAA Infotech at Aerospace 2011 Conference; Mar 29, 2011 - Mar 31, 2011; St. Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 PRO Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. This technology is supported by System-on-a-Chip solutions, resulting in extremely small and low-power nodes. The Wireless Connections in Space Project addresses the aerospace flight domain for both flight-critical and non-critical avionics. WSNs provide the inherent fault tolerance required for aerospace applications utilizing such technology. The team from Ames Research Center has developed techniques for assessing the fault tolerance of ZigBee WSNs challenged by radio frequency (RF) interference or WSN node failure.
    Keywords: Electronics and Electrical Engineering
    Type: IEEE Paper 1480 , ARC-E-DAA-TN2724 , IEEE Aerospace Conference; Mar 05, 2011 - Mar 12, 2011; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the performance characteristics of wireless data links in the spacecraft environment will be discussed. Network performance and operation will be modeled and preliminary test results presented. A crew support application will be demonstrated in conjunction with the network metrics experiment.
    Keywords: Computer Programming and Software
    Type: AIAA Aerospace 10th Conference; Mar 28, 1995 - Mar 30, 1995; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...