ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-07-19
    Description: NASA Ames Research Center and the George Washington University have developed an electric propulsion subsystem that can be integrated into the PhoneSat bus. Experimental tests have shown a reliable performance by firing three different thrusters at various frequencies in vacuum conditions. The three thrusters were controlled by a SmartPhone that was running the PhoneSat software. The subsystem is fully operational and it requires low average power to function (about 0.1 W). The interface consists of a microcontroller that sends a trigger pulses to the PPU (Plasma Processing Unit), which is responsible for the thruster operation. Frequencies ranging from 1 to 50Hz have been tested, showing a strong flexibility. A SmartPhone acts as the main user interface for the selection of commands that control the entire system. The micro cathode arc thruster MicroCAT provides a high 1(sub sp) of 3000s that allows a 4kg satellite to obtain a (delta)V of 300m/s. The system mass is only 200g with a total of volume of 200(cu cm). The propellant is based on a solid cylinder made of Titanium, which is the cathode at the same time. This simplicity in the design avoids miniaturization and manufacturing problems. The characteristics of this thruster allow an array of MicroCATs to perform attitude control and orbital correcton maneuvers that will open the door for the implementation of an extensive collection of new mission concepts and space applications for CubeSats. NASA Ames is currently working on the integration of the system to fit the thrusters and PPU inside a 1.5U CubeSat together with the PhoneSat bus into a 1.5U CubeSat. This satellite is intended to be deployed from the ISS in 2015 and test the functionality of the thrusters by spinning the satellite around its long axis and measure the rotational speed with the phone byros. This test flight will raise the TRL of the propulsion system from 5 to 7 and will be a first test for further CubeSats with propulsion systems, a key subsystem for long duration or interplanetary CubeSat missions.
    Keywords: Engineering (General)
    Type: ARC-E-DAA-TN12909 , 4S Symposium Small Satellites Systems and Services Symposium; May 26, 2014 - May 30, 2014; Porto Petro, Majorca; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: NASA Ames Research Center and the George Washington University are developing an electric propulsion subsystem that will be integrated into the PhoneSat bus. Experimental tests have shown a reliable performance by firing three different thrusters at various frequencies in vacuum conditions. The interface consists of a microcontroller that sends a trigger pulse to the Pulsed Plasma Unit that is responsible for the thruster operation. A Smartphone is utilized as the main user interface for the selection of commands that control the entire system. The propellant, which is the cathode itself, is a solid cylinder made of Titanium. This simplicity in the design avoids miniaturization and manufacturing problems. The characteristics of this thruster allow an array of CATs to perform attitude control and orbital correction maneuvers that will open the door for the implementation of an extensive collection of new mission concepts and space applications for CubeSats. NASA Ames is currently working on the integration of the system to fit the thrusters and the PPU inside a 1.5U CubeSat together with the PhoneSat bus. This satellite is intended to be deployed from the ISS in 2015 and test the functionality of the thrusters by spinning the satellite around its long axis and measure the rotational speed with the phone gyros. This test flight will raise the TRL of the propulsion system from 5 to 7 and will be a first test for further CubeSats with propulsion systems, a key subsystem for long duration or interplanetary small satellite missions.
    Keywords: Spacecraft Propulsion and Power
    Type: ARC-E-DAA-TN14562 , Small Satellite Systems and Services (4S) Symposium; May 26, 2014 - May 30, 2014; Porto Petro, Mojorca; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Current capabilities of CubeSats must be improved in order to perform more ambitious missions. Electric propulsion systems will play a key role due to their large specific impulse. Compared to other propulsion alternatives, their simplicity allows an easier miniaturization and manufacturing of autonomous modules into the nano and pico-satellite platform. Pulsed Plasma Thrusters (PPTs) appear as one of the most promising technologies for the near term. The utilization of solid and non-volatile propellants, their low power requirements and their proven reliability in the large scale make them great candidates for rapid implementation. The main challenges are the integration and miniaturization of all the electronic circuitry into a printed circuit board (PCB) that can satisfy the strict requirements that CubeSats present. NASA Ames and the George Washington University have demonstrated functionality and control of three discrete Micro-Cathode Arc Thrusters (CAT) using a bench top configuration that was compatible with the ARC PhoneSat Bus. This demonstration was successfully conducted in a vaccum chamber at the ARC Environmental Test Laboratory. A new effort will integrate a low power Plasma Processing Unit and two plasma thrusters onto a single printed circuit board that will utilize less than 13 U of Bus volume. The target design will be optimized for the accommodation into the PhoneSatEDISON Demonstration of SmallSatellite Networks (EDSN) bus as it uses the same software interface application, which was demonstrated in the previous task. This paper describes the design, integration and architecture of the proposed propulsion subsystem for a planned Technology Demonstration Mission. In addition, a general review of the Pulsed Plasma technology available for CubeSats is presented in order to assess the necessary challenges to overcome further development.
    Keywords: Spacecraft Propulsion and Power; Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN16554 , AIAA/USU Small Satellite Conference; Aug 02, 2014 - Aug 07, 2014; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...