ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2020-11-01
    Electronic ISSN: 2589-0042
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Natural Sciences in General , Physics
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-26
    Description: The detrimental effects of mechanical unloading in microgravity, including the musculo-skeletal system, are well documented. However, the effects of mechanical unloading on joint health and the interaction between bone and cartilage specifically, are less well known. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. Furthermore, we have identified the cell cycle arrest molecule, CDKN1ap21, as specifically up-regulated during spaceflight exposure and localized to osteoprecursors on the bone surface and chondroprogenitors in articular cartilage that are both required for normal tissue regeneration. The 30-day BionM1 and 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight resulting in significant tissue alterations and we specifically studied the hip joint (pelvis and proximal femur) to elucidate these effects. To test this hypothesis we analyzed bone and bone marrow stem cells using techniques including high-resolution Microcomputed Tomography (MicroCT), in-vivo differentiation and migration assays, and whole transcriptome expression profiling. We found that exposure to spaceflight for 30 days results in a significant decrease in bone volume fraction (-31), trabecular thickness (-14) and trabecular number (-20). Similar decrements in bone volume fraction (-27), trabecular number (-13) and trabecular thickness (-17) were found in female mice exposed to 37 days spaceflight. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. Microarray analysis also revealed that the top pathways altered during spaceflight include activation of matrix metalloproteinases, oxidative stress signaling and inflammation in both whole bone tissue and isolated bone marrow stem cells. In conclusion, the observed inhibition of stem cell-based tissue regeneration persists during long-duration spaceflight. Furthermore, spaceflight mice exhibit disruption of the epiphyseal boundary and endochondral ossification of the femoral head, and an inhibition of stem cell based tissue regeneration, which, taken together, may indicate onset of an accelerated aging phenotype with signs of osteoarthritic disease.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43927 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-26
    Description: Broad tissue degeneration and the failure of normal tissue regenerative processes in microgravity because of mechanical unloading are increasing concerns for sustaining life in space as the duration of future flight missions increases. Work in our laboratory has identified normal adult stem cell-based tissue regenerative processes, such as the formation of new bone, cartilage, and immune cells, as being particularly sensitive to the stresses of mechanical unloading in microgravity. Our studies have also identified the inhibition of differentiation of marrow mesenchymal stem cells and activation of CDKN1ap21-mediated cell cycle arrest in proliferative osteoprecursor cells on the bone surface as potential mechanisms for spaceflight-induced skeletal changes. This finding, in combination with the role of CDKN1ap21 as a suppressor of mammalian tissue regeneration, suggests that this gene could be responsible for suppressing stem cell-based tissue regeneration in response to disuse. In this work, we hypothesized that CDKN1ap21 regulates regenerative bone formation in response to alterations in mechanical load and tested this hypothesis by studying the skeletal phenotype and stem cell regenerative ability of juvenile (4-11 weeks old) and adult (18 weeks-12 months old) p21 (--) knockout (KO) mice. Additionally, we analyzed bone micro-architectural properties, bone formation rates and differentiation capacity of bone marrow stem cells (BMSCs) from male and female KO mice exposed to hindlimb unloading (HU) for 15-30 days. We found that juvenile KO mice exhibited increased femoral trabecular and cortical bone formation, whilst three-point bending of the tibias from KO mice showed decreased bone stiffness. Conversely, adult KO mice exhibited no significant differences in micro-architectural properties compared to WT (wild-type) but woven bone structure was indicative of rapid bone remodeling. Furthermore, cortical bone properties showed similar characteristics to aged bone, including increased cross-sectional area and perimeter, whilst three-point bending showed increased stiffness and toughness. Interestingly, in-vitro, KO mice exhibited increased differentiation and mineralized nodule formation in osteoblastogenesis assays compared to WT. Preliminary results from CDKN1ap21 KO mice subjected to HU suggest altered sensitivity to mechanical unloading resulting in decreased cortical thickness compared to WT mice. However, KO mice subjected to short and long-duration HU show increased in-vitro differentiation potential of BMSCs to from form mature, mineral-forming osteoblasts, indicating maintenance of regenerative potential. Analysis of bone formation rates, cell proliferation rates and key genes of interest are currently underway. These results indicate a novel role for CDKN1ap21 in load-dependent osteoprogenitor proliferation and differentiation and that deletion of CDKN1ap21 results in an age-dependent release of osteoblast proliferation inhibition and increased bone formation and turnover.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43922 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1ap21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23 decrease in bone fraction (p0.005) and 11.91 decrease in bone thickness (p0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n10) and vivarium controls (n10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37-days of spaceflight. To do this, we will analyze differences in bone morphometric parameters using MicroCT. The pelvis, femur, and tibia are key in supporting and distributing weight under normal conditions. Therefore, we expect to see altered remodeling in flight animals in response to microgravity with respect to ground controls. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36752 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31 decrease in bone volume ratio, a 14 decrease in trabecular thickness, and a 20 decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1. This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration persists during long-duration spaceflight. Furthermore, spaceflight femurs from BionM1 indicate onset of an accelerated aging-like phenotype with signs of osteoarthritic disease shown by disruption of the epiphyseal boundary and endochondral ossification. These effects are likely caused by a failure of stem cells to regenerate degraded tissues and may have significant implications for bone and cartilage health following extensive periods of mechanical unloading during long-duration spaceflight.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN36755 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR) 2016; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-26
    Description: Spaceflight factors, such as microgravity and space radiation, are known to put astronauts at risk for negative effects to their tissue regeneration and degenerative conditions. On our previous spaceflight research, we found that long duration spaceflight produced increased oxidative stress and activation of the inflammatory response as a major contributor to physiological changes, including alterations to the cardiovascular and musculoskeletal systems, metabolism, and the liver. Proliferation, apoptosis, and ion-channel remodeling of vascular smooth muscle cells, as well as endothelial inflammation, and nitric oxide synthase-nitric oxide system regulation have been shown by spaceflight and simulated spaceflight projects. CDKN1ap21 is a regulatory gene for tissue regeneration and also plays an important role in upregulating oxidative stress caused by radiation. In further research, we have also determined CDKN1ap21 to be overexpressed during spaceflight. When knocked out in mice, however, it protects against unloading-induced changes to the morphology and physiology of carotid arteries. In this proposal, we seek to test a potential dietary countermeasure to down-regulate CDKN1ap21 in the mice and protect against oxidative stress in the rodents. Specifically, we will expose both Wildtype and CDKN1ap21-null mice to hydrogen peroxide to induce oxidative stress and observe the molecular mechanisms in which a dietary supplement protects vascular smooth muscle cells against the consequences of the apoptotic environment within Wildtype mice versus the, hypothetically, sound physiology of CDKN1ap21-null mice. The successful completion of this experiment will conclusively determine accuracy of a dietary supplement as a CDKN1ap21 suppressor. This will provide a new perspective on the problem of increased oxidative stress developing into cardiovascular disease as a result of long-term space flight. This research will address the Human Research Plan Roadmaps Risk of Cardiac Rhythm Problems including CV-8, the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure including Degen-6 and Degen-7, and the Risk of Adverse Health Event from Radiation Exposure including IM-8. Additionally, this research will address Space Biology Research Plans questions SBP CMB-1, SBP CMB-3, and SB AN-2.
    Keywords: Aerospace Medicine; Life Sciences (General)
    Type: ARC-E-DAA-TN44112 , Annual Meeting American Society for Gravitational and Space Research; Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-26
    Description: Spaceflight environments and their associated conditions, such as microgravity and space radiation, cause many biological functions formerly considered to be standard to behave in nonstandard ways. Exposure to microgravity has shown to induce deleterious effects in stem cell-based tissue regeneration, leading to immune system and healing response impairments as well as muscle and bone density loss. Such risks must be mitigated in order for long-term human space exploration to proceed. Thus, our work seeks to explore mechanisms of stem cell-based tissue regeneration that experience changes in spaceflight environments. Cellular senescence is a process of inducing cell cycle arrest that can be initiated by various stimuli. This function is influenced by two major pathways, controlled by p53 and pRB tumor suppressor proteins. p53 activity targets the cyclin-dependent kinase inhibitor gene p21Cdkn1a in osteogenic cell cycle arrest. Under conditions of mechanical unloading, stem cell-based tissue regeneration has shown to be decreased in both proliferation and differentiation, as many cells are arrested in progenitor states. p21 has shown upregulation in expression under conditions of microgravity, suggesting its role in regenerative bone formation arrest in space. p21 levels are found to be elevated independent of p53, suggesting a decrease in proliferation and regeneration without apoptosis, but rather through cell cycle arrest alone. Thus, we hypothesize that p21 is a mediator of cellular senescence in bone marrow stem cells. Culturing of bone marrow stem cells from wild type and p21 knockout mice under osteoblastogenic conditions will be completed to explore the role of p21Cdkn1a in stem cell proliferation and maturation. We believe that decreases in somatic stem cell differentiation may occur after spaceflight due to signal pathway alterations that result in downstream inhibition of genes involved in differentiation, preventing tissue from repairing and regenerating normally.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43925 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-18
    Description: Unloading during spaceflight is known to adversely affect mammalian physiology. Mechanical stimulation is required for repair and regeneration by stem cell lineages to maintain tissue health and mass. CDKN1a/p21 functions as a potent cell cycle arrest molecule and we previously found that CDKN1a/p21 was overexpressed in mouse bone during 15-days of spaceflight on STS-131 and localized to osteoprecursor cells in the femur. Therefore, we hypothesized that altered expression of CDKN1a/p21 leads to an arrest of bone formation during spaceflight in response to altered load. To study CDKN1a/p21 and its role in stem cell-based tissue regeneration, we use a CDKN1a/p21 knockout (KO) mouse to investigate the impact on bone structure, osteoprogenitor proliferation, and mineralized nodule formation. We have shown that bone marrow stem cells isolated from juvenile (11-week-old) and skeletally mature (18-week-old) KO mice have an increased bone formation potential as evidenced by increased proliferation and mineralization rates. In addition, we have shown that juvenile KO mice display significantly increased bone volume fraction (BV/TV) relative to wildtype (WT) mice, but not in skeletally mature KO mice, indicating increased resorption and bone turnover in adult mice. To more closely examine age differences in the KO mouse, we will study a wider spectrum of mice ranging from 4 weeks to 12 months in age. To do this, we will analyze differences in bone morphometric parameters using MicroCT and osteoblastogenesis assays. The pelvis, femur, and tibia are key in distributing weight and we expect to see altered remodeling and stem cell potential with age. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN57675 , ARC-E-DAA-TN43924 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 29, 2018 - Nov 03, 2018; Bethesda, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...