ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-12-01
    Print ISSN: 0273-1177
    Electronic ISSN: 1879-1948
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Here we present the evolution of a student satellite mission: CHOMPTT (CubeSat Handling of Multisystem Precision Time Transfer), from its original concept as a candidate for the University NanoSatellite Program 8 (UNP8), to a spacecraft ready for launch in Fall of 2017 on ELaNa XIX (Educational Launch of Nanosatellites). The 3U CubeSat houses a 1 kg, 1U OPTI (Optical Precision Timing Instrument) payload, designed and built at the University of Florida, and a 1.5U EDSNNODeS-derived bus from NASA Ames Research Center. The OPTI payload comprises of: 1) a supervisor board that handles payload data, power regulation, and mode settings, 2) an optics assembly of six 1 cm retroreflectors and four laser beacon diodes for ground-tracking; and 3) two fully redundant timing channels, each consisting of: a chip-scale atomic clock, a microprocessor with clock counter, a picosecond event timer, and an avalanche photodetector (APD) with band-pass filter. Several iterations of OPTI have been developed, tested, and designed to achieve its current functionality and design a laboratory breadboard design, a 1.5U high altitude balloon design, engineering unit design, and its current flight unit design. In-lab testing of the current OPTI design indicates a short-term precision of 100 ps, equivalent to a range accuracy of 3 cm necessary to achieve our primary objective of 200 ps time transfer error, and a long-term timing accuracy of 20 ns over one orbit (1.5 hours). After the spacecraft reaches its nominal 500 km orbit at a 85 degree inclination, an experimental laser ranging facility at Kennedy Space Center in Florida, will track and emit 1064 nm nanosecond optical pulses at the CHOMPTT spacecraft. The laser pulses will then reflect off the retroreflector array mounted on the nadir face of CHOMPTT, and return the pulse to the laser ranging facility where the laser ranging facility will record the round-trip duration of the laser pulses. At the same time the pulse arrives at the spacecraft and is reflected by the array, an APD will record the arrival time of the pulses at the nanosatellite. By comparing the arrival of the pulse at the CubeSat and the duration of the round-trip of the laser pulse, the clock discrepancy between the ground and CubeSat atomic clocks can be determined, in addition to the CubeSats range from the facility. The design and verification of the flight version of CHOMPTT will be reviewed and an overview of the lifetime development and progression of CHOMPTT from the inception to launch pad will be presented.
    Keywords: Instrumentation and Photography
    Type: ARC-E-DAA-TN39313 , AIAA & Utah State University Conference on Small Satellites; Aug 05, 2017 - Aug 10, 2017; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: This paper explores the differences between, and shares the lessons learned from, two hypervelocity impact experiments critical to the update of orbital debris environment models. The procedures and processes of the fourth Satellite Orbital Debris Characterization Impact Test (SOCIT) were analyzed and related to the ongoing DebriSat experiment. SOCIT was the first hypervelocity impact test designed specifically for satellites in Low Earth Orbit (LEO). It targeted a 1960's U.S. Navy satellite, from which data was obtained to update pre-existing NASA and DOD breakup models. DebriSat is a comprehensive update to these satellite breakup models- necessary since the material composition and design of satellites have evolved from the time of SOCIT. Specifically, DebriSat utilized carbon fiber, a composite not commonly used in satellites during the construction of the US Navy Transit satellite used in SOCIT. Although DebriSat is an ongoing activity, multiple points of difference are drawn between the two projects. Significantly, the hypervelocity tests were conducted with two distinct satellite models and test configurations, including projectile and chamber layout. While both hypervelocity tests utilized soft catch systems to minimize fragment damage to its post-impact shape, SOCIT only covered 65% of the projected area surrounding the satellite, whereas, DebriSat was completely surrounded cross-range and downrange by the foam panels to more completely collect fragments. Furthermore, utilizing lessons learned from SOCIT, DebriSat's post-impact processing varies in methodology (i.e., fragment collection, measurement, and characterization). For example, fragment sizes were manually determined during the SOCIT experiment, while DebriSat utilizes automated imaging systems for measuring fragments, maximizing repeatability while minimizing the potential for human error. In addition to exploring these variations in methodologies and processes, this paper also presents the challenges DebriSat has encountered thus far and how they were addressed. Accomplishing DebriSat's goal of collecting 90% of the debris, which constitutes well over 100,000 fragments, required addressing many challenges stemming from the very large number of fragments. One of these challenges arose in identifying the foam-embedded fragments. DebriSat addressed this by X-raying all of the panels once the loose debris were removed, and applying a detection algorithm developed in-house to automate the embedded fragment identification process. It is easy to see how the amount of data being compiled would be outstanding. Creating an efficient way to catalog each fragment, as well as archiving the data for reproducibility also posed a great challenge for DebriSat. Barcodes to label each fragment were introduced with the foresight that once the characterization process began, the datasheet for each fragment would have to be accessed again quickly and efficiently. The DebriSat experiment has benefited significantly by leveraging lessons learned from the SOCIT experiment along with the technological advancements that have occurred during the time between the experiments. The two experiments represent two ages of satellite technology and, together, demonstrate the continuous efforts to improve the experimental techniques for fragmentation debris characterization.
    Keywords: Computer Programming and Software; Astrodynamics
    Type: JSC-CN-38194 , European Conference on Space Debris; Apr 18, 2017 - Apr 21, 2017; Darmstadt; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...