ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (362)
  • Mutation  (207)
  • Male  (195)
  • Cell & Developmental Biology
  • American Association for the Advancement of Science (AAAS)  (362)
  • 1995-1999  (362)
  • Biology  (362)
Collection
  • Articles  (362)
Publisher
Years
Year
  • 1
    Publication Date: 1997-04-18
    Description: Multiple endocrine neoplasia-type 1 (MEN1) is an autosomal dominant familial cancer syndrome characterized by tumors in parathyroids, enteropancreatic endocrine tissues, and the anterior pituitary. DNA sequencing from a previously identified minimal interval on chromosome 11q13 identified several candidate genes, one of which contained 12 different frameshift, nonsense, missense, and in-frame deletion mutations in 14 probands from 15 families. The MEN1 gene contains 10 exons and encodes a ubiquitously expressed 2.8-kilobase transcript. The predicted 610-amino acid protein product, termed menin, exhibits no apparent similarities to any previously known proteins. The identification of MEN1 will enable improved understanding of the mechanism of endocrine tumorigenesis and should facilitate early diagnosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chandrasekharappa, S C -- Guru, S C -- Manickam, P -- Olufemi, S E -- Collins, F S -- Emmert-Buck, M R -- Debelenko, L V -- Zhuang, Z -- Lubensky, I A -- Liotta, L A -- Crabtree, J S -- Wang, Y -- Roe, B A -- Weisemann, J -- Boguski, M S -- Agarwal, S K -- Kester, M B -- Kim, Y S -- Heppner, C -- Dong, Q -- Spiegel, A M -- Burns, A L -- Marx, S J -- New York, N.Y. -- Science. 1997 Apr 18;276(5311):404-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Transfer, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9103196" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chromosome Mapping ; Chromosomes, Human, Pair 11 ; *Cloning, Molecular ; DNA, Complementary/genetics ; Exons ; Frameshift Mutation ; *Genes, Tumor Suppressor ; Humans ; Molecular Sequence Data ; Multiple Endocrine Neoplasia Type 1/*genetics ; Mutation ; Neoplasm Proteins/chemistry/*genetics ; *Proto-Oncogene Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-06-23
    Description: A gene, ATM, that is mutated in the autosomal recessive disorder ataxia telangiectasia (AT) was identified by positional cloning on chromosome 11q22-23. AT is characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, cancer predisposition, radiation sensitivity, and cell cycle abnormalities. The disease is genetically heterogeneous, with four complementation groups that have been suspected to represent different genes. ATM, which has a transcript of 12 kilobases, was found to be mutated in AT patients from all complementation groups, indicating that it is probably the sole gene responsible for this disorder. A partial ATM complementary DNA clone of 5.9 kilobases encoded a putative protein that is similar to several yeast and mammalian phosphatidylinositol-3' kinases that are involved in mitogenic signal transduction, meiotic recombination, and cell cycle control. The discovery of ATM should enhance understanding of AT and related syndromes and may allow the identification of AT heterozygotes, who are at increased risk of cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Savitsky, K -- Bar-Shira, A -- Gilad, S -- Rotman, G -- Ziv, Y -- Vanagaite, L -- Tagle, D A -- Smith, S -- Uziel, T -- Sfez, S -- Ashkenazi, M -- Pecker, I -- Frydman, M -- Harnik, R -- Patanjali, S R -- Simmons, A -- Clines, G A -- Sartiel, A -- Gatti, R A -- Chessa, L -- Sanal, O -- Lavin, M F -- Jaspers, N G -- Taylor, A M -- Arlett, C F -- Miki, T -- Weissman, S M -- Lovett, M -- Collins, F S -- Shiloh, Y -- HG00882/HG/NHGRI NIH HHS/ -- NS31763/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1995 Jun 23;268(5218):1749-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, Sackler School of Medicine, Tel Aviv University, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7792600" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ataxia Telangiectasia/*genetics ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle ; Cell Cycle Proteins ; Chromosome Mapping ; Chromosomes, Artificial, Yeast ; *Chromosomes, Human, Pair 11 ; Cloning, Molecular ; DNA, Complementary/genetics ; DNA-Binding Proteins ; Female ; Genetic Complementation Test ; Genetic Predisposition to Disease ; Heterozygote ; Humans ; Male ; Meiosis ; Molecular Sequence Data ; Neoplasms/genetics ; Nucleic Acid Hybridization ; Phosphatidylinositol 3-Kinases ; Phosphotransferases (Alcohol Group Acceptor)/chemistry/*genetics/physiology ; *Protein-Serine-Threonine Kinases ; Proteins/chemistry/*genetics/physiology ; Radiation Tolerance ; Sequence Deletion ; Signal Transduction ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-08-08
    Description: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by the widespread development of distinctive tumors termed hamartomas. TSC-determining loci have been mapped to chromosomes 9q34 (TSC1) and 16p13 (TSC2). The TSC1 gene was identified from a 900-kilobase region containing at least 30 genes. The 8.6-kilobase TSC1 transcript is widely expressed and encodes a protein of 130 kilodaltons (hamartin) that has homology to a putative yeast protein of unknown function. Thirty-two distinct mutations were identified in TSC1, 30 of which were truncating, and a single mutation (2105delAAAG) was seen in six apparently unrelated patients. In one of these six, a somatic mutation in the wild-type allele was found in a TSC-associated renal carcinoma, which suggests that hamartin acts as a tumor suppressor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Slegtenhorst, M -- de Hoogt, R -- Hermans, C -- Nellist, M -- Janssen, B -- Verhoef, S -- Lindhout, D -- van den Ouweland, A -- Halley, D -- Young, J -- Burley, M -- Jeremiah, S -- Woodward, K -- Nahmias, J -- Fox, M -- Ekong, R -- Osborne, J -- Wolfe, J -- Povey, S -- Snell, R G -- Cheadle, J P -- Jones, A C -- Tachataki, M -- Ravine, D -- Sampson, J R -- Reeve, M P -- Richardson, P -- Wilmer, F -- Munro, C -- Hawkins, T L -- Sepp, T -- Ali, J B -- Ward, S -- Green, A J -- Yates, J R -- Kwiatkowska, J -- Henske, E P -- Short, M P -- Haines, J H -- Jozwiak, S -- Kwiatkowski, D J -- New York, N.Y. -- Science. 1997 Aug 8;277(5327):805-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Clinical Genetics, Erasmus University and University Hospital, Rotterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9242607" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chromosome Mapping ; Chromosomes, Human, Pair 9/*genetics ; Exons ; *Genes, Tumor Suppressor ; Humans ; Microsatellite Repeats ; Molecular Sequence Data ; Molecular Weight ; Mutation ; Polymerase Chain Reaction ; Proteins/chemistry/*genetics/physiology ; Repressor Proteins/genetics/physiology ; Tuberous Sclerosis/*genetics ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-09-11
    Description: The localization of substance P in brain regions that coordinate stress responses and receive convergent monoaminergic innervation suggested that substance P antagonists might have psychotherapeutic properties. Like clinically used antidepressant and anxiolytic drugs, substance P antagonists suppressed isolation-induced vocalizations in guinea pigs. In a placebo-controlled trial in patients with moderate to severe major depression, robust antidepressant effects of the substance P antagonist MK-869 were consistently observed. In preclinical studies, substance P antagonists did not interact with monoamine systems in the manner seen with established antidepressant drugs. These findings suggest that substance P may play an important role in psychiatric disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kramer, M S -- Cutler, N -- Feighner, J -- Shrivastava, R -- Carman, J -- Sramek, J J -- Reines, S A -- Liu, G -- Snavely, D -- Wyatt-Knowles, E -- Hale, J J -- Mills, S G -- MacCoss, M -- Swain, C J -- Harrison, T -- Hill, R G -- Hefti, F -- Scolnick, E M -- Cascieri, M A -- Chicchi, G G -- Sadowski, S -- Williams, A R -- Hewson, L -- Smith, D -- Carlson, E J -- Hargreaves, R J -- Rupniak, N M -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1640-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Merck Research Laboratories, West Point, PA 19456, USA. Mark_Kramer@merck.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733503" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Amygdala/drug effects/metabolism ; Animals ; Antidepressive Agents, Second-Generation/adverse ; effects/metabolism/pharmacology/*therapeutic use ; Behavior, Animal/drug effects ; Brain/drug effects/metabolism ; Depressive Disorder/*drug therapy/etiology/metabolism ; Female ; Gerbillinae ; Guinea Pigs ; Humans ; Male ; Middle Aged ; Morpholines/adverse effects/metabolism/pharmacology/*therapeutic use ; *Neurokinin-1 Receptor Antagonists ; Norepinephrine/physiology ; Paroxetine/therapeutic use ; Receptors, Neurokinin-1/metabolism ; Serotonin/physiology ; Stress, Psychological/drug therapy ; Substance P/*antagonists & inhibitors/metabolism ; Vocalization, Animal/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-09-04
    Description: Cyanobacteria are the simplest organisms known to have a circadian clock. A circadian clock gene cluster kaiABC was cloned from the cyanobacterium Synechococcus. Nineteen clock mutations were mapped to the three kai genes. Promoter activities upstream of the kaiA and kaiB genes showed circadian rhythms of expression, and both kaiA and kaiBC messenger RNAs displayed circadian cycling. Inactivation of any single kai gene abolished these rhythms and reduced kaiBC-promoter activity. Continuous kaiC overexpression repressed the kaiBC promoter, whereas kaiA overexpression enhanced it. Temporal kaiC overexpression reset the phase of the rhythms. Thus, a negative feedback control of kaiC expression by KaiC generates a circadian oscillation in cyanobacteria, and KaiA sustains the oscillation by enhancing kaiC expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ishiura, M -- Kutsuna, S -- Aoki, S -- Iwasaki, H -- Andersson, C R -- Tanabe, A -- Golden, S S -- Johnson, C H -- Kondo, T -- MH01179/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1998 Sep 4;281(5382):1519-23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan. ishiura@bio.nagoya-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9727980" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*genetics ; Biological Clocks/*genetics ; Circadian Rhythm/*genetics ; Circadian Rhythm Signaling Peptides and Proteins ; Cloning, Molecular ; Cyanobacteria/*genetics/physiology ; Feedback ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Genes, Reporter ; Luminescence ; Models, Biological ; Molecular Sequence Data ; Multigene Family ; Mutation ; Promoter Regions, Genetic ; Recombinant Fusion Proteins ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1995-05-05
    Description: The aryl hydrocarbon (Ah) receptor (AHR) mediates many carcinogenic and teratogenic effects of environmentally toxic chemicals such as dioxin. An AHR-deficient (Ahr-/-) mouse line was constructed by homologous recombination in embryonic stem cells. Almost half of the mice died shortly after birth, whereas survivors reached maturity and were fertile. The Ahr-/- mice showed decreased accumulation of lymphocytes in the spleen and lymph nodes, but not in the thymus. The livers of Ahr-/- mice were reduced in size by 50 percent and showed bile duct fibrosis Ahr-/- mice were also nonresponsive with regard to dioxin-mediated induction of genes encoding enzymes that catalyze the metabolism of foreign compounds. Thus, the AHR plays an important role in the development of the liver and the immune system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fernandez-Salguero, P -- Pineau, T -- Hilbert, D M -- McPhail, T -- Lee, S S -- Kimura, S -- Nebert, D W -- Rudikoff, S -- Ward, J M -- Gonzalez, F J -- P30 ES06096/ES/NIEHS NIH HHS/ -- R01 ES06811/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1995 May 5;268(5211):722-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7732381" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Gene Expression Regulation/physiology ; Immunity/*physiology ; Liver/*physiology ; Liver Cirrhosis, Experimental/genetics/pathology ; Lymphoid Tissue/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Receptors, Aryl Hydrocarbon/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-12-22
    Description: The SGS1 gene of the yeast Saccharomyces cerevisiae encodes a DNA helicase with homology to the human Bloom's syndrome gene BLM and the Werner's syndrome gene WRN. The SRS2 gene of yeast also encodes a DNA helicase. Simultaneous deletion of SGS1 and SRS2 is lethal in yeast. Here, using a conditional mutation of SGS1, it is shown that DNA replication and RNA polymerase I transcription are drastically inhibited in the srs2Delta sgs1-ts strain at the restrictive temperature. Thus, SGS1 and SRS2 function in DNA replication and RNA polymerase I transcription. These functions may contribute to the various defects observed in Werner's and Bloom's syndromes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, S K -- Johnson, R E -- Yu, S L -- Prakash, L -- Prakash, S -- CA80882/CA/NCI NIH HHS/ -- GM19261/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2339-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, 6.104 Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600744" target="_blank"〉PubMed〈/a〉
    Keywords: Bloom Syndrome/genetics ; Codon ; DNA Helicases/genetics/*physiology ; *DNA Replication ; DNA, Fungal/biosynthesis ; Fungal Proteins/genetics/*physiology ; Gene Deletion ; Genes, Fungal ; Humans ; Mutation ; RNA Polymerase I/metabolism ; RNA Polymerase II/metabolism ; RNA Polymerase III/metabolism ; RNA, Fungal/biosynthesis ; RNA, Messenger/biosynthesis/genetics ; RNA, Ribosomal/biosynthesis ; RNA, Transfer, Amino Acid-Specific/biosynthesis ; RecQ Helicases ; Saccharomyces cerevisiae/*genetics/metabolism ; *Saccharomyces cerevisiae Proteins ; *Transcription, Genetic ; Werner Syndrome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-09-08
    Description: Photoperiodic responses in plants include flowering that is day-length-dependent. Mutations in the Arabidopsis thaliana GIGANTEA (GI) gene cause photoperiod-insensitive flowering and alteration of circadian rhythms. The GI gene encodes a protein containing six putative transmembrane domains. Circadian expression patterns of the GI gene and the clock-associated genes, LHY and CCA1, are altered in gi mutants, showing that GI is required for maintaining circadian amplitude and appropriate period length of these genes. The gi-1 mutation also affects light signaling to the clock, which suggests that GI participates in a feedback loop of the plant circadian system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, D H -- Somers, D E -- Kim, Y S -- Choy, Y H -- Lim, H K -- Soh, M S -- Kim, H J -- Kay, S A -- Nam, H G -- GM56006/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Sep 3;285(5433):1579-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10477524" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/*physiology ; *Arabidopsis Proteins ; *Circadian Rhythm ; Cloning, Molecular ; Crosses, Genetic ; DNA-Binding Proteins/genetics ; Darkness ; Feedback ; Gene Expression Regulation, Plant ; *Genes, Plant ; Light ; Molecular Sequence Data ; Mutation ; Photoperiod ; Plant Leaves/physiology ; Plant Proteins/chemistry/*genetics/physiology ; Plant Structures/physiology ; Sequence Deletion ; Transcription Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1999-05-15
    Description: Glutamic acid decarboxylase (GAD) is a pancreatic beta cell autoantigen in humans and nonobese diabetic (NOD) mice. beta Cell-specific suppression of GAD expression in two lines of antisense GAD transgenic NOD mice prevented autoimmune diabetes, whereas persistent GAD expression in the beta cells in the other four lines of antisense GAD transgenic NOD mice resulted in diabetes, similar to that seen in transgene-negative NOD mice. Complete suppression of beta cell GAD expression blocked the generation of diabetogenic T cells and protected islet grafts from autoimmune injury. Thus, beta cell-specific GAD expression is required for the development of autoimmune diabetes in NOD mice, and modulation of GAD might, therefore, have therapeutic value in type 1 diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoon, J W -- Yoon, C S -- Lim, H W -- Huang, Q Q -- Kang, Y -- Pyun, K H -- Hirasawa, K -- Sherwin, R S -- Jun, H S -- DK 45735/DK/NIDDK NIH HHS/ -- DK 53015-01/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 May 14;284(5417):1183-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Viral and Immunopathogenesis of Diabetes, Julia McFarlane Diabetes Research Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada. yoon@ucalgary.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10325232" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; Autoantigens/genetics/*immunology/physiology ; Autoimmunity ; DNA, Antisense ; Diabetes Mellitus, Type 1/*enzymology/*immunology/pathology ; Female ; Gene Expression ; Glutamate Decarboxylase/genetics/*immunology/physiology ; Insulin/blood/metabolism ; Islets of Langerhans/*enzymology/immunology/metabolism/pathology ; Islets of Langerhans Transplantation ; Lymphocyte Activation ; Male ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mice, Transgenic ; T-Lymphocytes/immunology ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1999-05-15
    Description: Bone marrow stem cells develop into hematopoietic and mesenchymal lineages but have not been known to participate in production of hepatocytes, biliary cells, or oval cells during liver regeneration. Cross-sex or cross-strain bone marrow and whole liver transplantation were used to trace the origin of the repopulating liver cells. Transplanted rats were treated with 2-acetylaminofluorene, to block hepatocyte proliferation, and then hepatic injury, to induce oval cell proliferation. Markers for Y chromosome, dipeptidyl peptidase IV enzyme, and L21-6 antigen were used to identify liver cells of bone marrow origin. From these cells, a proportion of the regenerated hepatic cells were shown to be donor-derived. Thus, a stem cell associated with the bone marrow has epithelial cell lineage capability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petersen, B E -- Bowen, W C -- Patrene, K D -- Mars, W M -- Sullivan, A K -- Murase, N -- Boggs, S S -- Greenberger, J S -- Goff, J P -- New York, N.Y. -- Science. 1999 May 14;284(5417):1168-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA. bryon+@pitt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10325227" target="_blank"〉PubMed〈/a〉
    Keywords: 2-Acetylaminofluorene/pharmacology ; Animals ; Bone Marrow Cells/*cytology ; Bone Marrow Transplantation ; Carbon Tetrachloride/pharmacology ; Cell Differentiation ; Cell Division ; DNA-Binding Proteins/genetics ; Dipeptidyl Peptidase 4/metabolism ; Epithelial Cells/cytology ; Female ; Hematopoietic Stem Cells/cytology ; In Situ Hybridization ; Liver/*cytology/drug effects/physiology ; *Liver Regeneration ; Liver Transplantation ; Male ; *Nuclear Proteins ; Polymerase Chain Reaction ; Rats ; Rats, Inbred F344 ; Rats, Inbred Lew ; Sex-Determining Region Y Protein ; Stem Cells/*cytology ; *Transcription Factors ; Y Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...