ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (14)
  • Maps
  • Humans  (8)
  • Male  (7)
  • Chemical Engineering
  • Life and Medical Sciences
  • 2010-2014  (14)
Collection
  • Articles  (14)
  • Maps
Year
  • 1
    Publication Date: 2010-10-26
    Description: In songbirds, the remarkable temporal precision of song is generated by a sparse sequence of bursts in the premotor nucleus HVC. To distinguish between two possible classes of models of neural sequence generation, we carried out intracellular recordings of HVC neurons in singing zebra finches (Taeniopygia guttata). We found that the subthreshold membrane potential is characterized by a large, rapid depolarization 5-10 ms before burst onset, consistent with a synaptically connected chain of neurons in HVC. We found no evidence for the slow membrane potential modulation predicted by models in which burst timing is controlled by subthreshold dynamics. Furthermore, bursts ride on an underlying depolarization of approximately 10-ms duration, probably the result of a regenerative calcium spike within HVC neurons that could facilitate the propagation of activity through a chain network with high temporal precision. Our results provide insight into the fundamental mechanisms by which neural circuits can generate complex sequential behaviours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998755/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998755/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Michael A -- Jin, Dezhe Z -- Fee, Michale S -- DC009280/DC/NIDCD NIH HHS/ -- MH067105/MH/NIMH NIH HHS/ -- R01 MH067105/MH/NIMH NIH HHS/ -- R01 MH067105-06/MH/NIMH NIH HHS/ -- R01 MH067105-07/MH/NIMH NIH HHS/ -- England -- Nature. 2010 Nov 18;468(7322):394-9. doi: 10.1038/nature09514. Epub 2010 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20972420" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Channels, L-Type/metabolism ; Calcium Signaling/drug effects ; Finches/*physiology ; Male ; Membrane Potentials/drug effects ; *Models, Neurological ; Neural Pathways/drug effects/*physiology ; Neurons/drug effects/*metabolism ; Sleep/physiology ; Synapses/*metabolism ; Vocalization, Animal/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-04-03
    Description: Semiconservative DNA replication ensures the faithful duplication of genetic information during cell divisions. However, how epigenetic information carried by histone modifications propagates through mitotic divisions remains elusive. To address this question, the DNA replication-dependent nucleosome partition pattern must be clarified. Here, we report significant amounts of H3.3-H4 tetramers split in vivo, whereas most H3.1-H4 tetramers remained intact. Inhibiting DNA replication-dependent deposition greatly reduced the level of splitting events, which suggests that (i) the replication-independent H3.3 deposition pathway proceeds largely by cooperatively incorporating two new H3.3-H4 dimers and (ii) the majority of splitting events occurred during replication-dependent deposition. Our results support the idea that "silent" histone modifications within large heterochromatic regions are maintained by copying modifications from neighboring preexisting histones without the need for H3-H4 splitting events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Mo -- Long, Chengzu -- Chen, Xiuzhen -- Huang, Chang -- Chen, She -- Zhu, Bing -- New York, N.Y. -- Science. 2010 Apr 2;328(5974):94-8. doi: 10.1126/science.1178994.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360108" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aphidicolin/pharmacology ; Cell Cycle ; Chromatin/metabolism ; *Chromatin Assembly and Disassembly ; *DNA Replication ; Epigenesis, Genetic ; HeLa Cells ; Heterochromatin/metabolism ; Histones/*chemistry/*metabolism ; Humans ; Hydroxyurea/pharmacology ; Mass Spectrometry ; Molecular Sequence Data ; Nucleosomes/*metabolism ; Protein Multimerization ; S Phase ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-20
    Description: Immune clearance and resource limitation (via red blood cell depletion) shape the peaks and troughs of malaria parasitemia, which in turn affect disease severity and transmission. Quantitatively partitioning the relative roles of these effects through time is challenging. Using data from rodent malaria, we estimated the effective propagation number, which reflects the relative importance of contrasting within-host control mechanisms through time and is sensitive to the inoculating parasite dose. Our analysis showed that the capacity of innate responses to restrict initial parasite growth saturates with parasite dose and that experimentally enhanced innate immunity can affect parasite density indirectly via resource depletion. Such a statistical approach offers a tool to improve targeting of drugs or vaccines for human therapy by revealing the dynamics and interactions of within-host regulatory mechanisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891600/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891600/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Metcalf, C J E -- Graham, A L -- Huijben, S -- Barclay, V C -- Long, G H -- Grenfell, B T -- Read, A F -- Bjornstad, O N -- R01 GM089932/GM/NIGMS NIH HHS/ -- R01GM089932/GM/NIGMS NIH HHS/ -- R24 HD047879/HD/NICHD NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):984-8. doi: 10.1126/science.1204588.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, Oxford University, Oxford OX1 3PS, UK. charlotte.metcalf@zoo.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21852493" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity ; Animals ; Antibodies/immunology ; CD4-Positive T-Lymphocytes/immunology ; Erythrocyte Aging ; Erythrocyte Count ; Erythrocytes/*parasitology/physiology ; Host-Parasite Interactions ; Humans ; Immunity, Innate ; Interleukin-10/immunology/metabolism ; Malaria/blood/*immunology/*parasitology ; Mice ; Models, Biological ; Models, Statistical ; *Parasitemia/blood/immunology/parasitology ; Plasmodium chabaudi/immunology/*physiology ; Receptors, Interleukin-10/immunology ; Regression Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-28
    Description: Trenbolone acetate (TBA) is a high-value steroidal growth promoter often administered to beef cattle, whose metabolites are potent endocrine-disrupting compounds. We performed laboratory and field phototransformation experiments to assess the fate of TBA metabolites and their photoproducts. Unexpectedly, we observed that the rapid photohydration of TBA metabolites is reversible under conditions representative of those in surface waters (pH 7, 25 degrees C). This product-to-parent reversion mechanism results in diurnal cycling and substantial regeneration of TBA metabolites at rates that are strongly temperature- and pH-dependent. Photoproducts can also react to produce structural analogs of TBA metabolites. These reactions also occur in structurally similar steroids, including human pharmaceuticals, which suggests that predictive fate models and regulatory risk assessment paradigms must account for transformation products of high-risk environmental contaminants such as endocrine-disrupting steroids.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096139/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096139/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qu, Shen -- Kolodziej, Edward P -- Long, Sarah A -- Gloer, James B -- Patterson, Eric V -- Baltrusaitis, Jonas -- Jones, Gerrad D -- Benchetler, Peter V -- Cole, Emily A -- Kimbrough, Kaitlin C -- Tarnoff, Matthew D -- Cwiertny, David M -- 8 P20 GM103440-11/GM/NIGMS NIH HHS/ -- P20 GM103440/GM/NIGMS NIH HHS/ -- P30 ES005605/ES/NIEHS NIH HHS/ -- S10 RR025500/RR/NCRR NIH HHS/ -- S10-RR025500/RR/NCRR NIH HHS/ -- UL1 RR024979/RR/NCRR NIH HHS/ -- UL1RR024979/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 18;342(6156):347-51. doi: 10.1126/science.1243192. Epub 2013 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242-1527, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24072818" target="_blank"〉PubMed〈/a〉
    Keywords: Anabolic Agents/adverse effects/*chemistry/metabolism ; Animals ; Cattle ; Darkness ; Desiccation ; Endocrine Disruptors/adverse effects/*chemistry/*metabolism ; Environmental Health ; Humans ; Hydrogen-Ion Concentration ; *Photolysis ; Risk Assessment ; Temperature ; Trenbolone Acetate/adverse effects/*chemistry/metabolism ; Water/*chemistry ; Water Pollutants/adverse effects/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-03-25
    Description: Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma. We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759979/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759979/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉White, Richard Mark -- Cech, Jennifer -- Ratanasirintrawoot, Sutheera -- Lin, Charles Y -- Rahl, Peter B -- Burke, Christopher J -- Langdon, Erin -- Tomlinson, Matthew L -- Mosher, Jack -- Kaufman, Charles -- Chen, Frank -- Long, Hannah K -- Kramer, Martin -- Datta, Sumon -- Neuberg, Donna -- Granter, Scott -- Young, Richard A -- Morrison, Sean -- Wheeler, Grant N -- Zon, Leonard I -- K08 AR055368/AR/NIAMS NIH HHS/ -- R01 CA103846/CA/NCI NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- R01 HG002668-08/HG/NHGRI NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Mar 24;471(7339):518-22. doi: 10.1038/nature09882.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stem Cell Program and Hematology/Oncology, Children's Hospital Boston, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21430780" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Animals, Genetically Modified ; Cell Differentiation/drug effects ; Cell Line, Tumor ; Cell Lineage/drug effects ; Disease Models, Animal ; Gene Expression Regulation, Neoplastic ; Genes, p53/genetics ; Humans ; Isoxazoles/pharmacology/therapeutic use ; Melanoma/drug therapy/enzymology/*genetics/*pathology ; Mice ; Neural Crest/drug effects/*enzymology/metabolism/pathology ; Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins B-raf/antagonists & ; inhibitors/chemistry/genetics/metabolism ; Rats ; Stem Cells/cytology/drug effects/pathology ; *Transcription, Genetic/drug effects/physiology ; Xenograft Model Antitumor Assays ; Zebrafish/embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-03-04
    Description: Apoptosis and necroptosis are complementary pathways controlled by common signalling adaptors, kinases and proteases; among these, caspase-8 (Casp8) is critical for death receptor-induced apoptosis. This caspase has also been implicated in non-apoptotic pathways that regulate Fas-associated via death domain (FADD)-dependent signalling and other less defined biological processes as diverse as innate immune signalling and myeloid or lymphoid differentiation patterns. Casp8 suppresses RIP3-RIP1 (also known as RIPK3-RIPK1) kinase complex-dependent necroptosis that follows death receptor activation as well as a RIP3-dependent, RIP1-independent necrotic pathway that has emerged as a host defence mechanism against murine cytomegalovirus. Disruption of Casp8 expression leads to embryonic lethality in mice between embryonic days 10.5 and 11.5 (ref. 7). Thus, Casp8 may naturally hold alternative RIP3-dependent death pathways in check in addition to promoting apoptosis. We find that RIP3 is responsible for the mid-gestational death of Casp8-deficient embryos. Remarkably, Casp8(-/-)Rip3(-/-) double mutant mice are viable and mature into fertile adults with a full immune complement of myeloid and lymphoid cell types. These mice seem immunocompetent but develop lymphadenopathy by four months of age marked by accumulation of abnormal T cells in the periphery, a phenotype reminiscent of mice with Fas-deficiency (lpr/lpr; also known as Fas). Thus, Casp8 contributes to homeostatic control in the adult immune system; however, RIP3 and Casp8 are together completely dispensable for mammalian development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060292/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060292/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, William J -- Upton, Jason W -- Long, Alyssa B -- Livingston-Rosanoff, Devon -- Daley-Bauer, Lisa P -- Hakem, Razqallah -- Caspary, Tamara -- Mocarski, Edward S -- AI30363/AI/NIAID NIH HHS/ -- DP5 OD012198/OD/NIH HHS/ -- R01 AI020211/AI/NIAID NIH HHS/ -- R01 AI020211-24/AI/NIAID NIH HHS/ -- R01 AI030363/AI/NIAID NIH HHS/ -- R01 AI030363-13A2/AI/NIAID NIH HHS/ -- R01 AI20211/AI/NIAID NIH HHS/ -- England -- Nature. 2011 Mar 17;471(7338):368-72. doi: 10.1038/nature09857. Epub 2011 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA. wkaiser@emory.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21368762" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caspase 8/*genetics/*metabolism ; Caspase Inhibitors ; Cell Line ; Embryo Loss/enzymology/*genetics/*metabolism ; Embryo, Mammalian/cytology/embryology ; Female ; GTPase-Activating Proteins/metabolism ; *Gene Deletion ; Immunocompetence/genetics/immunology ; Lymphatic Diseases/genetics/immunology/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; *Necrosis ; Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & ; inhibitors/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-01-13
    Description: Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional co-activator PPAR-gamma co-activator-1 alpha (PGC1-alpha). Here we show in mouse that PGC1-alpha expression in muscle stimulates an increase in expression of FNDC5, a membrane protein that is cleaved and secreted as a newly identified hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown-fat-like development. Irisin is induced with exercise in mice and humans, and mildly increased irisin levels in the blood cause an increase in energy expenditure in mice with no changes in movement or food intake. This results in improvements in obesity and glucose homeostasis. Irisin could be therapeutic for human metabolic disease and other disorders that are improved with exercise.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522098/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522098/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bostrom, Pontus -- Wu, Jun -- Jedrychowski, Mark P -- Korde, Anisha -- Ye, Li -- Lo, James C -- Rasbach, Kyle A -- Bostrom, Elisabeth Almer -- Choi, Jang Hyun -- Long, Jonathan Z -- Kajimura, Shingo -- Zingaretti, Maria Cristina -- Vind, Birgitte F -- Tu, Hua -- Cinti, Saverio -- Hojlund, Kurt -- Gygi, Steven P -- Spiegelman, Bruce M -- DK31405/DK/NIDDK NIH HHS/ -- DK54477/DK/NIDDK NIH HHS/ -- K99 DK087853/DK/NIDDK NIH HHS/ -- R01 DK054477/DK/NIDDK NIH HHS/ -- R01 DK061562/DK/NIDDK NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- England -- Nature. 2012 Jan 11;481(7382):463-8. doi: 10.1038/nature10777.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237023" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology/drug effects/metabolism ; Adipose Tissue, Brown/*cytology/drug effects/metabolism ; Adipose Tissue, White/*cytology/drug effects/metabolism ; Animals ; Cell Respiration/drug effects ; Cells, Cultured ; Culture Media, Conditioned/pharmacology ; Energy Metabolism/drug effects/genetics/physiology ; Exercise/physiology ; Gene Expression Regulation/drug effects/genetics ; Hormones/metabolism/secretion ; Humans ; Insulin Resistance/physiology ; Intracellular Signaling Peptides and Proteins/genetics/metabolism ; Ion Channels/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Transgenic ; Mitochondrial Proteins/metabolism ; Models, Animal ; Muscle Cells/metabolism ; Obesity/blood/chemically induced/prevention & control ; Physical Conditioning, Animal/physiology ; Plasma/chemistry ; Subcutaneous Fat/cytology/drug effects/metabolism ; *Thermogenesis/drug effects/genetics ; Trans-Activators/deficiency/genetics/*metabolism/secretion ; Transcription Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-15
    Description: Cells differentiate when transcription factors bind accessible cis-regulatory elements to establish specific gene expression programs. In differentiating embryonic stem cells, chromatin at lineage-restricted genes becomes sequentially accessible, probably by means of 'pioneer' transcription factor activity, but tissues may use other strategies in vivo. Lateral inhibition is a pervasive process in which one cell forces a different identity on its neighbours, and it is unclear how chromatin in equipotent progenitors undergoing lateral inhibition quickly enables distinct, transiently reversible cell fates. Here we report the chromatin and transcriptional underpinnings of differentiation in mouse small intestine crypts, where notch signalling mediates lateral inhibition to assign progenitor cells into absorptive or secretory lineages. Transcript profiles in isolated LGR5(+) intestinal stem cells and secretory and absorptive progenitors indicated that each cell population was distinct and the progenitors specified. Nevertheless, secretory and absorptive progenitors showed comparable levels of H3K4me2 and H3K27ac histone marks and DNase I hypersensitivity--signifying accessible, permissive chromatin-at most of the same cis-elements. Enhancers acting uniquely in progenitors were well demarcated in LGR5(+) intestinal stem cells, revealing early priming of chromatin for divergent transcriptional programs, and retained active marks well after lineages were specified. On this chromatin background, ATOH1, a secretory-specific transcription factor, controls lateral inhibition through delta-like notch ligand genes and also drives the expression of numerous secretory lineage genes. Depletion of ATOH1 from specified secretory cells converted them into functional enterocytes, indicating prolonged responsiveness of marked enhancers to the presence or absence of a key transcription factor. Thus, lateral inhibition and intestinal crypt lineage plasticity involve interaction of a lineage-restricted transcription factor with broadly permissive chromatin established in multipotent stem cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151315/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151315/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Tae-Hee -- Li, Fugen -- Ferreiro-Neira, Isabel -- Ho, Li-Lun -- Luyten, Annouck -- Nalapareddy, Kodandaramireddy -- Long, Henry -- Verzi, Michael -- Shivdasani, Ramesh A -- K01 DK088868/DK/NIDDK NIH HHS/ -- K01DK088868/DK/NIDDK NIH HHS/ -- K99 DK095983/DK/NIDDK NIH HHS/ -- K99DK095983/DK/NIDDK NIH HHS/ -- P50 CA127003/CA/NCI NIH HHS/ -- P50CA127003/CA/NCI NIH HHS/ -- R01 DK081113/DK/NIDDK NIH HHS/ -- R01 DK082889/DK/NIDDK NIH HHS/ -- R01DK081113/DK/NIDDK NIH HHS/ -- R01DK082889/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Feb 27;506(7489):511-5. doi: 10.1038/nature12903. Epub 2014 Jan 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA. ; Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24413398" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/deficiency/metabolism ; Cell Differentiation/*genetics ; Cell Lineage/genetics ; Chromatin/*genetics/*metabolism ; Deoxyribonuclease I/metabolism ; Enhancer Elements, Genetic/genetics ; Enterocytes/cytology/metabolism ; Female ; *Gene Expression Regulation ; Histones/metabolism ; Intestine, Small/cytology/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Receptors, Notch/metabolism ; Stem Cells/cytology/metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2014-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Bryan -- England -- Nature. 2014 Mar 6;507(7490):40. doi: 10.1038/507040b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24598632" target="_blank"〉PubMed〈/a〉
    Keywords: Gross Domestic Product/*trends ; Humans ; *Quality of Life ; Sociology/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-03-06
    Description: The ability to learn new skills and perfect them with practice applies not only to physical skills but also to abstract skills, like motor planning or neuroprosthetic actions. Although plasticity in corticostriatal circuits has been implicated in learning physical skills, it remains unclear if similar circuits or processes are required for abstract skill learning. Here we use a novel behavioural task in rodents to investigate the role of corticostriatal plasticity in abstract skill learning. Rodents learned to control the pitch of an auditory cursor to reach one of two targets by modulating activity in primary motor cortex irrespective of physical movement. Degradation of the relation between action and outcome, as well as sensory-specific devaluation and omission tests, demonstrate that these learned neuroprosthetic actions are intentional and goal-directed, rather than habitual. Striatal neurons change their activity with learning, with more neurons modulating their activity in relation to target-reaching as learning progresses. Concomitantly, strong relations between the activity of neurons in motor cortex and the striatum emerge. Specific deletion of striatal NMDA receptors impairs the development of this corticostriatal plasticity, and disrupts the ability to learn neuroprosthetic skills. These results suggest that corticostriatal plasticity is necessary for abstract skill learning, and that neuroprosthetic movements capitalize on the neural circuitry involved in natural motor learning.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477868/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477868/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koralek, Aaron C -- Jin, Xin -- Long, John D 2nd -- Costa, Rui M -- Carmena, Jose M -- 243393/European Research Council/International -- Z01 AA000416-03/Intramural NIH HHS/ -- England -- Nature. 2012 Mar 4;483(7389):331-5. doi: 10.1038/nature10845.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22388818" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustic Stimulation ; Algorithms ; Animals ; Cues ; Learning/*physiology ; Male ; *Man-Machine Systems ; Mice ; Motor Cortex/cytology/*physiology ; Motor Skills/physiology ; Movement/physiology ; Neostriatum/cytology/*physiology ; Neuronal Plasticity/*physiology ; *Prostheses and Implants ; Psychomotor Performance/*physiology ; Rats ; Rats, Long-Evans ; Receptors, N-Methyl-D-Aspartate/deficiency/genetics/metabolism ; Reward
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...