ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Male  (41)
  • Molecular Sequence Data  (25)
  • Mice, Inbred C57BL  (16)
  • Nature Publishing Group (NPG)  (40)
  • American Association for the Advancement of Science (AAAS)  (30)
  • American Geophysical Union (AGU)
  • National Academy of Sciences
  • 2010-2014  (70)
Collection
Keywords
Publisher
  • Nature Publishing Group (NPG)  (40)
  • American Association for the Advancement of Science (AAAS)  (30)
  • American Geophysical Union (AGU)
  • National Academy of Sciences
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-03-01
    Description: Female rodents are known to terminate pregnancies after exposure to unfamiliar males ("Bruce effect"). Although laboratory support abounds, direct evidence for a Bruce effect under natural conditions is lacking. Here, we report a strong Bruce effect in a wild primate, the gelada (Theropithecus gelada). Female geladas terminate 80% of pregnancies in the weeks after a dominant male is replaced. Further, data on interbirth intervals suggest that pregnancy termination offers fitness benefits for females whose offspring would otherwise be susceptible to infanticide. Taken together, data support the hypothesis that the Bruce effect can be an adaptive strategy for females.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roberts, Eila K -- Lu, Amy -- Bergman, Thore J -- Beehner, Jacinta C -- New York, N.Y. -- Science. 2012 Mar 9;335(6073):1222-5. doi: 10.1126/science.1213600. Epub 2012 Feb 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22362878" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Wild ; *Behavior, Animal ; Birth Rate ; Estrogens/analysis ; Ethiopia ; Feces/chemistry ; Female ; *Genetic Fitness ; Gestational Age ; Male ; Pregnancy ; Pregnancy Outcome ; *Pregnancy, Animal ; Sexual Behavior, Animal ; Social Behavior ; *Social Dominance ; *Theropithecus/physiology/psychology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-17
    Description: The Paisley Caves in Oregon record the oldest directly dated human remains (DNA) in the Western Hemisphere. More than 100 high-precision radiocarbon dates show that deposits containing artifacts and coprolites ranging in age from 12,450 to 2295 (14)C years ago are well stratified. Western Stemmed projectile points were recovered in deposits dated to 11,070 to 11,340 (14)C years ago, a time contemporaneous with or preceding the Clovis technology. There is no evidence of diagnostic Clovis technology at the site. These two distinct technologies were parallel developments, not the product of a unilinear technological evolution. "Blind testing" analysis of coprolites by an independent laboratory confirms the presence of human DNA in specimens of pre-Clovis age. The colonization of the Americas involved multiple technologically divergent, and possibly genetically divergent, founding groups.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenkins, Dennis L -- Davis, Loren G -- Stafford, Thomas W Jr -- Campos, Paula F -- Hockett, Bryan -- Jones, George T -- Cummings, Linda Scott -- Yost, Chad -- Connolly, Thomas J -- Yohe, Robert M 2nd -- Gibbons, Summer C -- Raghavan, Maanasa -- Rasmussen, Morten -- Paijmans, Johanna L A -- Hofreiter, Michael -- Kemp, Brian M -- Barta, Jodi Lynn -- Monroe, Cara -- Gilbert, M Thomas P -- Willerslev, Eske -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):223-8. doi: 10.1126/science.1218443.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum of Natural and Cultural History, University of Oregon, Eugene, OR 97403, USA. djenkins@uoregon.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22798611" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Archaeology ; *Caves ; DNA/analysis ; Emigration and Immigration/history ; Feces ; *Fossils ; History, Ancient ; Humans ; Molecular Sequence Data ; North America ; Oregon ; Population Dynamics ; Radiometric Dating ; Rodentia ; Technology/history ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-16
    Description: The rhg1-b allele of soybean is widely used for resistance against soybean cyst nematode (SCN), the most economically damaging pathogen of soybeans in the United States. Gene silencing showed that genes in a 31-kilobase segment at rhg1-b, encoding an amino acid transporter, an alpha-SNAP protein, and a WI12 (wound-inducible domain) protein, each contribute to resistance. There is one copy of the 31-kilobase segment per haploid genome in susceptible varieties, but 10 tandem copies are present in an rhg1-b haplotype. Overexpression of the individual genes in roots was ineffective, but overexpression of the genes together conferred enhanced SCN resistance. Hence, SCN resistance mediated by the soybean quantitative trait locus Rhg1 is conferred by copy number variation that increases the expression of a set of dissimilar genes in a repeated multigene segment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cook, David E -- Lee, Tong Geon -- Guo, Xiaoli -- Melito, Sara -- Wang, Kai -- Bayless, Adam M -- Wang, Jianping -- Hughes, Teresa J -- Willis, David K -- Clemente, Thomas E -- Diers, Brian W -- Jiang, Jiming -- Hudson, Matthew E -- Bent, Andrew F -- New York, N.Y. -- Science. 2012 Nov 30;338(6111):1206-9. doi: 10.1126/science.1228746. Epub 2012 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23065905" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; *Gene Dosage ; Gene Expression Regulation, Plant ; *Genetic Loci ; Genetic Variation ; Haplotypes ; Male ; Molecular Sequence Data ; Plant Diseases/*genetics/*parasitology ; Plant Proteins/*genetics ; Plant Roots/genetics/parasitology ; Protein Structure, Tertiary/genetics ; Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/genetics ; Soybeans/*genetics/*parasitology ; *Tylenchoidea
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-23
    Description: Oxamniquine resistance evolved in the human blood fluke (Schistosoma mansoni) in Brazil in the 1970s. We crossed parental parasites differing ~500-fold in drug response, determined drug sensitivity and marker segregation in clonally derived second-generation progeny, and identified a single quantitative trait locus (logarithm of odds = 31) on chromosome 6. A sulfotransferase was identified as the causative gene by using RNA interference knockdown and biochemical complementation assays, and we subsequently demonstrated independent origins of loss-of-function mutations in field-derived and laboratory-selected resistant parasites. These results demonstrate the utility of linkage mapping in a human helminth parasite, while crystallographic analyses of protein-drug interactions illuminate the mode of drug action and provide a framework for rational design of oxamniquine derivatives that kill both S. mansoni and S. haematobium, the two species responsible for 〉99% of schistosomiasis cases worldwide.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Valentim, Claudia L L -- Cioli, Donato -- Chevalier, Frederic D -- Cao, Xiaohang -- Taylor, Alexander B -- Holloway, Stephen P -- Pica-Mattoccia, Livia -- Guidi, Alessandra -- Basso, Annalisa -- Tsai, Isheng J -- Berriman, Matthew -- Carvalho-Queiroz, Claudia -- Almeida, Marcio -- Aguilar, Hector -- Frantz, Doug E -- Hart, P John -- LoVerde, Philip T -- Anderson, Timothy J C -- 098051/Wellcome Trust/United Kingdom -- 5R21-AI072704/AI/NIAID NIH HHS/ -- 5R21-AI096277/AI/NIAID NIH HHS/ -- C06 RR013556/RR/NCRR NIH HHS/ -- HHSN272201000005I/PHS HHS/ -- R01 AI097576/AI/NIAID NIH HHS/ -- R01-AI097576/AI/NIAID NIH HHS/ -- R21 AI072704/AI/NIAID NIH HHS/ -- R21 AI096277/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1385-9. doi: 10.1126/science.1243106. Epub 2013 Nov 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Biochemistry and Pathology, University of Texas Health Science Center, San Antonio, TX 78229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24263136" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Drug Resistance/*genetics ; Gene Knockdown Techniques ; Genetic Linkage ; Helminth Proteins/*genetics ; Humans ; Molecular Sequence Data ; Mutation ; Oxamniquine/*pharmacology ; Phylogeny ; Protein Conformation ; Quantitative Trait Loci ; RNA Interference ; Schistosoma mansoni/*drug effects/*genetics ; Schistosomicides/*pharmacology ; Sulfotransferases/chemistry/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-06
    Description: DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Mukamel, Eran A -- Nery, Joseph R -- Urich, Mark -- Puddifoot, Clare A -- Johnson, Nicholas D -- Lucero, Jacinta -- Huang, Yun -- Dwork, Andrew J -- Schultz, Matthew D -- Yu, Miao -- Tonti-Filippini, Julian -- Heyn, Holger -- Hu, Shijun -- Wu, Joseph C -- Rao, Anjana -- Esteller, Manel -- He, Chuan -- Haghighi, Fatemeh G -- Sejnowski, Terrence J -- Behrens, M Margarita -- Ecker, Joseph R -- AI44432/AI/NIAID NIH HHS/ -- CA151535/CA/NCI NIH HHS/ -- HD065812/HD/NICHD NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- K99NS080911/NS/NINDS NIH HHS/ -- MH094670/MH/NIMH NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 CA151535/CA/NCI NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- R01 MH094670/MH/NIMH NIH HHS/ -- R01 MH094774/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):1237905. doi: 10.1126/science.1237905. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA. ryan.lister@uwa.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828890" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Adult ; Animals ; Base Sequence ; Conserved Sequence ; Cytosine/*analogs & derivatives/metabolism ; *DNA Methylation ; *Epigenesis, Genetic ; Epigenomics ; Frontal Lobe/*growth & development ; *Gene Expression Regulation, Developmental ; Genome-Wide Association Study ; Humans ; Longevity ; Mice ; Mice, Inbred C57BL ; X Chromosome Inactivation/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-04-13
    Description: Since the announcement of the species Australopithecus sediba, questions have been raised over whether the Malapa fossils represent a valid taxon or whether inadequate allowance was made for intraspecific variation, in particular with reference to the temporally and geographically proximate species Au. africanus. The morphology of mandibular remains of Au. sediba, including newly recovered material discussed here, shows that it is not merely a late-surviving morph of Au. africanus. Rather-as is seen elsewhere in the cranium, dentition, and postcranial skeleton-these mandibular remains share similarities with other australopiths but can be differentiated from the hypodigm of Au. africanus in both size and shape as well as in their ontogenetic growth trajectory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Ruiter, Darryl J -- DeWitt, Thomas J -- Carlson, Keely B -- Brophy, Juliet K -- Schroeder, Lauren -- Ackermann, Rebecca R -- Churchill, Steven E -- Berger, Lee R -- New York, N.Y. -- Science. 2013 Apr 12;340(6129):1232997. doi: 10.1126/science.1232997.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, Texas A&M University, College Station, TX 77843, USA. deruiter@tamu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23580533" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dentition ; Female ; *Fossils ; Hominidae/*anatomy & histology/*classification/growth & development ; Male ; Mandible/*anatomy & histology/growth & development ; Paleodontology ; South Africa ; Tooth/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-07-28
    Description: Memories can be unreliable. We created a false memory in mice by optogenetically manipulating memory engram-bearing cells in the hippocampus. Dentate gyrus (DG) or CA1 neurons activated by exposure to a particular context were labeled with channelrhodopsin-2. These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context, in which a foot shock was never delivered. The recall of this false memory was context-specific, activated similar downstream regions engaged during natural fear memory recall, and was also capable of driving an active fear response. Our data demonstrate that it is possible to generate an internally represented and behaviorally expressed fear memory via artificial means.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramirez, Steve -- Liu, Xu -- Lin, Pei-Ann -- Suh, Junghyup -- Pignatelli, Michele -- Redondo, Roger L -- Ryan, Tomas J -- Tonegawa, Susumu -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):387-91. doi: 10.1126/science.1239073.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN-Massachusetts Institute of Technology Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology, MIT, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888038" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/physiology ; Animals ; Association ; CA1 Region, Hippocampal/cytology/*physiology ; *Conditioning (Psychology) ; Dentate Gyrus/cytology/*physiology ; Dependovirus/genetics ; Doxycycline/administration & dosage ; Fear ; Genes, fos ; Light ; Memory/*physiology ; Mental Recall/physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neurons/*physiology ; Optogenetics ; Rhodopsin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-12-03
    Description: How an individual's longevity is affected by the opposite sex is still largely unclear. In the nematode Caenorhabditis elegans, the presence of males accelerated aging and shortened the life span of individuals of the opposite sex (hermaphrodites), including long-lived or sterile hermaphrodites. The male-induced demise could occur without mating and required only exposure of hermaphrodites to medium in which males were once present. Such communication through pheromones or other diffusible substances points to a nonindividual autonomous mode of aging regulation. The male-induced demise also occurred in other species of nematodes, suggesting an evolutionary conserved process whereby males may induce the disposal of the opposite sex to save resources for the next generation or to prevent competition from other males.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126796/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126796/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maures, Travis J -- Booth, Lauren N -- Benayoun, Berenice A -- Izrayelit, Yevgeniy -- Schroeder, Frank C -- Brunet, Anne -- DP1 AG044848/AG/NIA NIH HHS/ -- DP1AG044848/AG/NIA NIH HHS/ -- F32AG37254/AG/NIA NIH HHS/ -- R01 AG031198/AG/NIA NIH HHS/ -- R01 GM088290/GM/NIGMS NIH HHS/ -- R01AG031198/AG/NIA NIH HHS/ -- R01GM088290/GM/NIGMS NIH HHS/ -- T32 GM008500/GM/NIGMS NIH HHS/ -- T32 HG000044/HG/NHGRI NIH HHS/ -- T32GM008500/GM/NIGMS NIH HHS/ -- T32HG000044/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 31;343(6170):541-4. doi: 10.1126/science.1244160. Epub 2013 Nov 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24292626" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Caenorhabditis elegans/drug effects/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics ; Carrier Proteins/genetics ; Culture Media, Conditioned/metabolism/pharmacology ; Female ; Gene Expression Regulation ; Genes, Helminth/genetics ; Longevity/drug effects/genetics/*physiology ; Male ; Peptide Hormones/genetics ; RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-03-01
    Description: The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes' genes owing to genetic decay. This evolutionary decay was driven by a series of five 'stratification' events. Each event suppressed X-Y crossing over within a chromosome segment or 'stratum', incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1-4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292678/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292678/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, Jennifer F -- Skaletsky, Helen -- Brown, Laura G -- Pyntikova, Tatyana -- Graves, Tina -- Fulton, Robert S -- Dugan, Shannon -- Ding, Yan -- Buhay, Christian J -- Kremitzki, Colin -- Wang, Qiaoyan -- Shen, Hua -- Holder, Michael -- Villasana, Donna -- Nazareth, Lynne V -- Cree, Andrew -- Courtney, Laura -- Veizer, Joelle -- Kotkiewicz, Holland -- Cho, Ting-Jan -- Koutseva, Natalia -- Rozen, Steve -- Muzny, Donna M -- Warren, Wesley C -- Gibbs, Richard A -- Wilson, Richard K -- Page, David C -- R01 HG000257/HG/NHGRI NIH HHS/ -- R01 HG000257-17/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 22;483(7387):82-6. doi: 10.1038/nature10843.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA. jhughes@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22367542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human, Y/*genetics ; Conserved Sequence/*genetics ; Crossing Over, Genetic/genetics ; *Evolution, Molecular ; Gene Amplification/genetics ; *Gene Deletion ; Humans ; In Situ Hybridization, Fluorescence ; Macaca mulatta/*genetics ; Male ; Models, Genetic ; Molecular Sequence Data ; Pan troglodytes/genetics ; Radiation Hybrid Mapping ; Selection, Genetic/genetics ; Time Factors ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-10-13
    Description: The morphological and functional development of the vertebrate nervous system is initially governed by genetic factors and subsequently refined by neuronal activity. However, fundamental features of the nervous system emerge before sensory experience is possible. Thus, activity-dependent development occurring before the onset of experience must be driven by spontaneous activity, but the origin and nature of activity in vivo remains largely untested. Here we use optical methods to show in live neonatal mice that waves of spontaneous retinal activity are present and propagate throughout the entire visual system before eye opening. This patterned activity encompassed the visual field, relied on cholinergic neurotransmission, preferentially initiated in the binocular retina and exhibited spatiotemporal correlations between the two hemispheres. Retinal waves were the primary source of activity in the midbrain and primary visual cortex, but only modulated ongoing activity in secondary visual areas. Thus, spontaneous retinal activity is transmitted through the entire visual system and carries patterned information capable of guiding the activity-dependent development of complex intra- and inter-hemispheric circuits before the onset of vision.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962269/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962269/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ackman, James B -- Burbridge, Timothy J -- Crair, Michael C -- P30 EY000785/EY/NEI NIH HHS/ -- R01 EY015788/EY/NEI NIH HHS/ -- R01 EY023105/EY/NEI NIH HHS/ -- T15LM070506/LM/NLM NIH HHS/ -- T32 EY017353/EY/NEI NIH HHS/ -- T32 EY022312/EY/NEI NIH HHS/ -- T32 NS007224/NS/NINDS NIH HHS/ -- T32NS007224/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Oct 11;490(7419):219-25. doi: 10.1038/nature11529.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23060192" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Bicyclo Compounds, Heterocyclic/pharmacology ; Calcium/metabolism ; Gene Expression Regulation, Developmental/drug effects ; Mice ; Mice, Inbred C57BL ; Nicotinic Agonists/pharmacology ; Pyridines/pharmacology ; Retina/drug effects/growth & development ; Retinal Neurons/cytology/drug effects ; Visual Cortex/cytology/drug effects/*growth & development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...