ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rats  (22)
  • American Association for the Advancement of Science (AAAS)  (22)
  • Springer Nature
  • 2000-2004  (22)
  • 1995-1999
  • 1980-1984
  • 1970-1974
  • 1940-1944
  • 2004  (22)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (22)
  • Springer Nature
Years
  • 2000-2004  (22)
  • 1995-1999
  • 1980-1984
  • 1970-1974
  • 1940-1944
Year
  • 1
    Publication Date: 2004-10-30
    Description: The prefrontal cortex is a higher brain region that regulates thought, behavior, and emotion using representational knowledge, operations often referred to as working memory. We tested the influence of protein kinase C (PKC) intracellular signaling on prefrontal cortical cognitive function and showed that high levels of PKC activity in prefrontal cortex, as seen for example during stress exposure, markedly impair behavioral and electrophysiological measures of working memory. These data suggest that excessive PKC activation can disrupt prefrontal cortical regulation of behavior and thought, possibly contributing to signs of prefrontal cortical dysfunction such as distractibility, impaired judgment, impulsivity, and thought disorder.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Birnbaum, S G -- Yuan, P X -- Wang, M -- Vijayraghavan, S -- Bloom, A K -- Davis, D J -- Gobeske, K T -- Sweatt, J D -- Manji, H K -- Arnsten, A F T -- AG06036/AG/NIA NIH HHS/ -- P50 MH068789/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 29;306(5697):882-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Yale Medical School, 333 Cedar Street, New Haven, CT 06520-8001, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15514161" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic alpha-Agonists/pharmacology ; Alkaloids ; Animals ; Benzophenanthridines ; Carbolines/pharmacology ; Electrophysiology ; Enzyme Activation ; Female ; Imidazoles/pharmacology ; Lithium Carbonate/pharmacology ; Macaca mulatta ; Male ; Memory/drug effects/*physiology ; Neurons/drug effects/physiology ; Phenanthridines/pharmacology ; Prefrontal Cortex/enzymology/*physiology ; Protein Kinase C/antagonists & inhibitors/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, Adrenergic, alpha-1/physiology ; Signal Transduction ; Stress, Physiological/physiopathology ; Tetradecanoylphorbol Acetate/pharmacology ; Valproic Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-18
    Description: Olig1 and Olig2 are closely related basic helix-loop-helix (bHLH) transcription factors that are expressed in myelinating oligodendrocytes and their progenitor cells in the developing central nervous system (CNS). Olig2 is necessary for the specification of oligodendrocytes, but the biological functions of Olig1 during oligodendrocyte lineage development are poorly understood. We show here that Olig1 function in mice is required not to develop the brain but to repair it. Specifically, we demonstrate a genetic requirement for Olig1 in repairing the types of lesions that occur in patients with multiple sclerosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnett, Heather A -- Fancy, Stephen P J -- Alberta, John A -- Zhao, Chao -- Plant, Sheila R -- Kaing, Sovann -- Raine, Cedric S -- Rowitch, David H -- Franklin, Robin J M -- Stiles, Charles D -- 689/Multiple Sclerosis Society/United Kingdom -- NS08952/NS/NINDS NIH HHS/ -- NS11920/NS/NINDS NIH HHS/ -- NS4051/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2111-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604411" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Basic Helix-Loop-Helix Transcription Factors ; Brain/growth & development/*physiology ; Cell Nucleus/metabolism ; Cuprizone/pharmacology ; Cytoplasm/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Demyelinating Diseases/*physiopathology ; Ethidium/pharmacology ; Humans ; Lysophosphatidylcholines/pharmacology ; Mice ; Mice, Inbred C57BL ; Multiple Sclerosis/physiopathology ; Myelin Sheath/*physiology ; Nerve Tissue Proteins/genetics/*metabolism/physiology ; Oligodendroglia/*physiology ; Rats ; Rats, Sprague-Dawley ; Spinal Cord/growth & development/*physiology ; Stem Cells/physiology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-08-25
    Description: Intracellular acidification of skeletal muscles is commonly thought to contribute to muscle fatigue. However, intracellular acidosis also acts to preserve muscle excitability when muscles become depolarized, which occurs with working muscles. Here, we show that this process may be mediated by decreased chloride permeability, which enables action potentials to still be propagated along the internal network of tubules in a muscle fiber (the T system) despite muscle depolarization. These results implicate chloride ion channels in muscle function and emphasize that intracellular acidosis of muscle has protective effects during muscle fatigue.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pedersen, Thomas H -- Nielsen, Ole B -- Lamb, Graham D -- Stephenson, D George -- New York, N.Y. -- Science. 2004 Aug 20;305(5687):1144-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Aarhus, DK-8000, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15326352" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Calcium/metabolism ; Chloride Channels/*metabolism ; Chlorides/metabolism ; Electric Stimulation ; Hydrogen-Ion Concentration ; In Vitro Techniques ; Lactic Acid/metabolism ; Membrane Potentials ; Muscle Contraction ; *Muscle Fatigue ; Muscle Fibers, Skeletal/metabolism/*physiology ; Muscle, Skeletal/metabolism/*physiology ; Permeability ; Potassium/metabolism ; Rats ; Sarcoplasmic Reticulum/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-06-26
    Description: The ability of rats to use their whiskers for fine tactile discrimination rivals that of humans using their fingertips. Rats perform discriminations rapidly and accurately while palpating the environment with their whiskers. This suggests that whisker deflections produce a robust and reliable neural code. Whisker primary afferents respond with highly reproducible temporal spike patterns to transient stimuli. Here we show that, with the use of a linear kernel, any of these reproducible response trains recorded from an individual neuron can reliably predict complex whisker deflections. These predictions are significantly improved by integrating responses from neurons with opposite angular preferences.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557422/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557422/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Lauren M -- Depireux, Didier A -- Simons, Daniel J -- Keller, Asaf -- F31 NS046100/NS/NINDS NIH HHS/ -- F31 NS46100-01/NS/NINDS NIH HHS/ -- NS19950/NS/NINDS NIH HHS/ -- R01 DC-05937-01/DC/NIDCD NIH HHS/ -- R01 DC005937/DC/NIDCD NIH HHS/ -- R01 NS019950/NS/NINDS NIH HHS/ -- R01 NS031078/NS/NINDS NIH HHS/ -- R01 NS31078/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1986-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Neuroscience and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218153" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustic Stimulation ; Action Potentials ; Afferent Pathways ; Analysis of Variance ; Animals ; Female ; Neurons/*physiology ; Rats ; Touch ; Trigeminal Ganglion/cytology/*physiology ; Vibrissae/*innervation/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-11-13
    Description: NKT cells represent a distinct lineage of T cells that coexpress a conserved alphabeta T cell receptor (TCR) and natural killer (NK) receptors. Although the TCR of NKT cells is characteristically autoreactive to CD1d, a lipid-presenting molecule, endogenous ligands for these cells have not been identified. We show that a lysosomal glycosphingolipid of previously unknown function, isoglobotrihexosylceramide (iGb3), is recognized both by mouse and human NKT cells. Impaired generation of lysosomal iGb3 in mice lacking beta-hexosaminidase b results in severe NKT cell deficiency, suggesting that this lipid also mediates development of NKT cells in the mouse. We suggest that expression of iGb3 in peripheral tissues may be involved in controlling NKT cell responses to infections and malignancy and in autoimmunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Dapeng -- Mattner, Jochen -- Cantu, Carlos 3rd -- Schrantz, Nicolas -- Yin, Ning -- Gao, Ying -- Sagiv, Yuval -- Hudspeth, Kelly -- Wu, Yun-Ping -- Yamashita, Tadashi -- Teneberg, Susann -- Wang, Dacheng -- Proia, Richard L -- Levery, Steven B -- Savage, Paul B -- Teyton, Luc -- Bendelac, Albert -- AI053725/AI/NIAID NIH HHS/ -- AI50847/AI/NIAID NIH HHS/ -- P20RR16459/RR/NCRR NIH HHS/ -- R01 AI38339/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1786-9. Epub 2004 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Chicago, Department of Pathology, Chicago, IL 60637, USA. dzhou@midway.uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15539565" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Antigens, CD1/immunology/metabolism ; Antigens, CD1d ; Autoimmunity ; Cell Line ; Cell Line, Tumor ; Cells, Cultured ; Dendritic Cells/immunology ; Galactosyltransferases/genetics/metabolism ; Globosides/chemistry/*immunology/metabolism ; Humans ; Hybridomas ; Infection/immunology ; Killer Cells, Natural/*immunology ; Ligands ; Lymphocyte Activation ; Lymphocyte Count ; Lysosomes/*metabolism ; Mice ; Mice, Inbred C57BL ; Neoplasms/immunology ; Plant Lectins/immunology ; Rats ; Receptors, Antigen, T-Cell, alpha-beta/immunology ; Saposins/metabolism ; T-Lymphocyte Subsets/*immunology ; beta-N-Acetylhexosaminidases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-11-06
    Description: Modulation of calcium-sensitive potassium (BK) channels by oxygen is important in several mammalian tissues, and in the carotid body it is crucial to respiratory control. However, the identity of the oxygen sensor remains unknown. We demonstrate that hemoxygenase-2 (HO-2) is part of the BK channel complex and enhances channel activity in normoxia. Knockdown of HO-2 expression reduced channel activity, and carbon monoxide, a product of HO-2 activity, rescued this loss of function. Inhibition of BK channels by hypoxia was dependent on HO-2 expression and was augmented by HO-2 stimulation. Furthermore, carotid body cells demonstrated HO-2-dependent hypoxic BK channel inhibition, which indicates that HO-2 is an oxygen sensor that controls channel activity during oxygen deprivation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Sandile E J -- Wootton, Phillippa -- Mason, Helen S -- Bould, Jonathan -- Iles, David E -- Riccardi, Daniela -- Peers, Chris -- Kemp, Paul J -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2093-7. Epub 2004 Nov 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15528406" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbon Monoxide/*metabolism ; Carotid Body/*cytology/*physiology ; Cell Hypoxia ; Cell Line ; Heme/metabolism ; Heme Oxygenase (Decyclizing)/genetics/*metabolism ; Humans ; Immunoprecipitation ; Large-Conductance Calcium-Activated Potassium Channel alpha Subunits ; Large-Conductance Calcium-Activated Potassium Channels ; Membrane Potentials ; NADP/metabolism ; Oxygen/*physiology ; Patch-Clamp Techniques ; Potassium Channels, Calcium-Activated ; RNA Interference ; RNA, Small Interfering/pharmacology ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-11-06
    Description: In RNA interference (RNAi), double-stranded RNA (dsRNA) triggers degradation of homologous messenger RNA. In many organisms, RNA-dependent RNA polymerase (RdRp) is required to initiate or amplify RNAi, but the substrate for dsRNA synthesis in vivo is not known. Here, we show that RdRp-dependent transgene silencing in Arabidopsis was caused by mutation of XRN4, which is a ribonuclease (RNase) implicated in mRNA turnover by means of decapping and 5'-3' exonucleolysis. When both XRN4 and the RdRp were mutated, the plants accumulated decapped transgene mRNA. We propose that mRNAs lacking a cap structure become exposed to RdRp to initiate or maintain RNAi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gazzani, S -- Lawrenson, T -- Woodward, C -- Headon, D -- Sablowski, R -- BBS/E/J/00000594/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2004 Nov 5;306(5698):1046-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15528448" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/*genetics ; Arabidopsis Proteins/genetics ; Exoribonucleases/genetics ; Gene Silencing ; Homeodomain Proteins/genetics ; Mutation ; Plant Proteins/genetics ; Plants, Genetically Modified ; RNA Caps ; *RNA Interference ; RNA Replicase/metabolism ; RNA, Messenger/*metabolism ; RNA, Plant/*metabolism ; Rats ; Recombinant Fusion Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-01-13
    Description: The development of osteoporosis involves the interaction of multiple environmental and genetic factors. Through combined genetic and genomic approaches, we identified the lipoxygenase gene Alox15 as a negative regulator of peak bone mineral density in mice. Crossbreeding experiments with Alox15 knockout mice confirmed that 12/15-lipoxygenase plays a role in skeletal development. Pharmacologic inhibitors of this enzyme improved bone density and strength in two rodent models of osteoporosis. These results suggest that drugs targeting the 12/15-lipoxygenase pathway merit investigation as a therapy for osteoporosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klein, Robert F -- Allard, John -- Avnur, Zafrira -- Nikolcheva, Tania -- Rotstein, David -- Carlos, Amy S -- Shea, Marie -- Waters, Ruth V -- Belknap, John K -- Peltz, Gary -- Orwoll, Eric S -- AR44659/AR/NIAMS NIH HHS/ -- HG02322/HG/NHGRI NIH HHS/ -- R01 AR044659/AR/NIAMS NIH HHS/ -- R01 AR044659-08/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 9;303(5655):229-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bone and Mineral Research Unit, Department of Medicine, School of Medicine, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA. kleinro@ohsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14716014" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arachidonate 12-Lipoxygenase/*genetics/*metabolism ; Arachidonate 15-Lipoxygenase/*genetics/*metabolism ; Bone Density/drug effects/*genetics ; Bone Marrow Cells/metabolism ; Cell Differentiation ; Cells, Cultured ; Crosses, Genetic ; Enzyme Inhibitors/pharmacology ; Female ; Fluorenes/pharmacology ; Gene Expression Profiling ; Genetic Linkage ; Kidney/metabolism ; Lipoxygenase Inhibitors ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Mice, Knockout ; Mice, Transgenic ; Oligonucleotide Array Sequence Analysis ; Osteoblasts/cytology/metabolism/physiology ; Osteogenesis ; Osteoporosis/enzymology ; Polymorphism, Genetic ; Quantitative Trait Loci ; Rats ; Receptors, Cytoplasmic and Nuclear/metabolism ; Stromal Cells/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-07-27
    Description: Inherited channelopathies are at the origin of many neurological disorders. Here we report a form of channelopathy that is acquired in experimental temporal lobe epilepsy (TLE), the most common form of epilepsy in adults. The excitability of CA1 pyramidal neuron dendrites was increased in TLE because of decreased availability of A-type potassium ion channels due to transcriptional (loss of channels) and posttranslational (increased channel phosphorylation by extracellular signal-regulated kinase) mechanisms. Kinase inhibition partly reversed dendritic excitability to control levels. Such acquired channelopathy is likely to amplify neuronal activity and may contribute to the initiation and/or propagation of seizures in TLE.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernard, Christophe -- Anderson, Anne -- Becker, Albert -- Poolos, Nicholas P -- Beck, Heinz -- Johnston, Daniel -- MH44754/MH/NIMH NIH HHS/ -- MH48432/MH/NIMH NIH HHS/ -- NS37444/NS/NINDS NIH HHS/ -- NS39943/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 23;305(5683):532-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA. cbernard@inmed.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15273397" target="_blank"〉PubMed〈/a〉
    Keywords: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology ; 4-Aminopyridine/pharmacology ; Action Potentials/drug effects ; Animals ; Butadienes/pharmacology ; Dendrites/*physiology ; Enzyme Inhibitors/pharmacology ; Epilepsy, Temporal Lobe/*physiopathology ; Hippocampus/cytology/*physiopathology ; Male ; Membrane Potentials ; Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism ; Nitriles/pharmacology ; Phosphorylation ; Pilocarpine/administration & dosage ; Potassium Channel Blockers/pharmacology ; Potassium Channels/drug effects/metabolism/*physiology ; *Potassium Channels, Voltage-Gated ; Protein Kinase C/antagonists & inhibitors/metabolism ; Pyramidal Cells/*physiology ; Rats ; Rats, Sprague-Dawley ; Shal Potassium Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-08-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bilkey, David K -- New York, N.Y. -- Science. 2004 Aug 27;305(5688):1245-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, University of Otago, Dunedin, New Zealand. dbilkey@psy.otago.ac.nz〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15333826" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Cues ; Entorhinal Cortex/cytology/*physiology ; Hippocampus/cytology/*physiology ; Humans ; *Memory ; Nerve Net/*physiology ; Neurons/physiology ; Pyramidal Cells/physiology ; Rats ; *Space Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...