ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
  • Elsevier  (86)
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
Sammlung
Schlagwörter
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2017-04-04
    Beschreibung: Here we report results from a multidisciplinary field campaign at Villarrica volcano, Chile, in March 2009. A range of direct sampling and remote sensing techniqueswas employed to assess gas and aerosol emissions from the volcano, and extend the time series of measurements that have been made during recent years. Airborne traverses beneath the plume with an ultraviolet spectrometer yielded an average SO2 flux of 3.7 kg s−1. This value is similar to previous measurements made at Villarrica during periods of quiescent activity. The composition of the plume was measured at the crater rim using electrochemical sensors and, for the first time, open-path Fourier transforminfrared spectroscopy, yielding a composition of 90.5 mol% H2O, 5.7% CO2, 2.6%SO2, 0.9% HCl, 0.3% HF and b0.01% H2S. Comparison with previous gas measurements made between 2000 and 2004 shows a correlation between increased SO2/HCl ratios and periods of increased activity. Base-treated filter packs were also employed during our campaign, yielding molar ratios of HBr/SO2=1.1×10−4, HI/SO2=1.4×10−5 and HNO3/SO2=1.1×10−3 in the gas phase. Our data represent the most comprehensive gas inventory at Villarrica to date, and the first evaluation of HBr and HI emissions from a South American volcano. Sun photometry of the plume showed the near-source aerosol size distributions were bimodal with maxima at b0.1 and ~1 μm. These findings are consistent with results from analyses in 2003. Electron microscope analysis of particulatematter collected on filters showed an abundance of sphericalmicron-sized particles that are rich in Si, Mg and Al. Non-spherical, S-rich particles were also observed.
    Beschreibung: Antofagasta plc via the University of Cambridge Centre for Latin American Studies, NERC Field Spectroscopy Facility, NERC projectNE/F004222/1, “Volgaspec” projectANR-06-CATT-012-01 and from the NOVAC project. Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento di Protezione Civile-Regione Sicilia. Christ's College, University of Cambridge, NERC IKIMP project, (NE/G001219/1) and NERC grantNE/G01700X/1 for financial support. NERC National Centre for EarthObservation (“Dynamic Earth and geohazards”)
    Beschreibung: Published
    Beschreibung: 62-75
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Villarrica ; FTIR ; SO2 flux ; DOAS ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: In recent years, progress in geographic information systems (GIS) and remote sensing techniques have allowed the mapping and studying of lava flows in unprecedented detail. A composite GIS technique is introduced to obtain high resolution boundaries of lava flow fields. This technique is mainly based on the processing of LIDAR-derived maps and digital elevation models (DEMs). The probabilistic code DOWNFLOW is then used to simulate eight large flow fields formed at Mount Etna in the last 25 years. Thanks to the collection of 6 DEMs representing Mount Etna at different times from 1986 to 2007, simulated outputs are obtained by running the DOWNFLOW code over pre-emplacement topographies. Simulation outputs are compared with the boundaries of the actual flow fields obtained here or derived from the existing literature. Although the selected fields formed in accordance with different emplacement mechanisms, flowed on different zones of the volcano over different topographies and were fed by different lava supplies of different durations, DOWNFLOW yields results close to the actual flow fields in all the cases considered. This outcome is noteworthy because DOWNFLOW has been applied by adopting a default calibration, without any specific tuning for the new cases considered here. This extensive testing proves that, if the pre-emplacement topography is available, DOWNFLOW yields a realistic simulation of a future lava flow based solely on a knowledge of the vent position. In comparison with deterministic codes, which require accurate knowledge of a large number of input parameters, DOWNFLOW turns out to be simple, fast and undemanding, proving to be ideal for systematic hazard and risk analyses.
    Beschreibung: Published
    Beschreibung: 27-39
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: 5.5. TTC - Sistema Informativo Territoriale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): LIDAR ; lava flow field ; lava flow simulation ; Digital elevation model ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-04
    Beschreibung: In the texture analysis of volcanic rocks, the preferred orientation of the constituents can provide useful information for the interpretation of the processes involved in the rock formation. We present here a new data analysis technique, based on X-ray microtomography measurements and on shape preferred orientation analysis, to obtain the orientation distribution functions of the constituents of volcanic rocks. This procedure proved to be very suitable for volcanic samples, where diffraction-based techniques, developed for crystallographic preferred orientation studies, are of limited utilization, in addition to the fact that they cannot provide any information about vesicles or bubbles. Moreover the analysis performed directly in three dimensions (3D) overcomes the problems that usually occur when employing stereological methods for the analysis of the images obtained via microscopy-based techniques. In this study, two scoriae (from Stromboli and Etna) and a tube pumice (from Campi Flegrei) were measured via X-ray microtomography and then the resulting volumes were analyzed following the proposed procedure. Results highlight little preferred orientation for the vesicles in the two scoria samples, whereas the pumice shows a marked preferred orientation. Crystals (also divided by mineral species) were taken into account as well and in the two scoria samples there is no crystal preferred orientation, in contrast with the pumice, where crystal preferred orientation features are very similar to the ones found for the vesicles. Overall we found strong differences in preferred orientation: weak for vesicles in scoriae, showing an axial symmetry with the axis parallel to the elongation axis of the sample, and a stronger and more complex orientation texture in the pumice sample for both crystals and vesicles. The promising results obtained suggest that this procedure is potentially very useful for the analysis of preferred orientation in volcanic rocks and geomaterials in general.
    Beschreibung: Published
    Beschreibung: 83-95
    Beschreibung: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): X-ray computed microtomography ; preferred orientation ; texture analysis ; volcanic scoria ; synchrotron X-rays ; pumice ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-04-04
    Beschreibung: Infrared satellite images measured with the MODIS instrument of the volcanic plume produced during the 2006 eruption of Mt. Etna were analysed to produce maps of SO2 amount. We used these maps to reconstruct time series of SO2 fluxes by integrating profiles of SO2 orthogonal to the plume advection direction and multiplying with wind speeds from a meteorological model. These data were then compared with a reconstructed time series of SO2 fluxes measured with the FLAME ground-based network of ultraviolet DOAS systems surrounding the volcano. We found weak agreement on 3rd December when little ash was emitted, but this agreement improved when a 0.3 m s−1 wind speed correction factor was used. FLAME and MODIS results were in good agreement on the 6th December, and improved when a –0.3 m s−1 offset was applied. The corrected data revealed that the only period of time when FLAME and MODIS did not track together was coincident with the presence of ash, which interferes with the IR imagery and retrieval of SO2. We highlight that combining two independent time series of SO2 flux allows a precise determination of wind speed, if there is sufficient time-dependent structure in the SO2 signal. The observed increase in SO2 flux prior to the ash emission is interpreted as a quiescent release of an accumulated gas phase that drive eruptive activity, as previously suggested for the southeast crater system of Etna. In this case the SO2 flux signal therefore acted as a precursor to the eruptive ash events. This work demonstrates that quantitative reconstruction of SO2 flux time series is feasible using MODIS data, opening a new frontier in the use of satellite data to interpret volcanic processes, in particular in poorly monitored remote locations.
    Beschreibung: European Space Agency's Earth Observation Envelope Programme (EOEP) – Data User Element (project SAVAA).
    Beschreibung: Published
    Beschreibung: 80-87
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): SO2 flux ; Modis ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-11-26
    Beschreibung: The volcano–hydrothermal system of El Chichón volcano, Chiapas, Mexico, is characterized by numerous thermal manifestations including an acid lake, steam vents and boiling springs in the crater and acid and neutral hot springs and steaming ground on the flanks. Previous research on major element chemistry reveals that thermal waters of El Chichón can be divided in two groups: (1) neutral waters discharging in the crater and southern slopes of the volcano with chloride content ranging from 1500 to 2200 mg/l and (2) acid-toneutral waters with Cl up to 12,000 mg/l discharging at the western slopes. Our work supports the concept that each group of waters is derived from a separate aquifer (Aq. 1 and Aq. 2). In this study we apply Sr isotopes, Ca/Sr ratios and REE abundances along with the major and trace element water chemistry in order to discriminate and characterize these two aquifers. Waters derived from Aq. 1 are characterized by 87Sr/86Sr ratios ranging from 0.70407 to 0.70419, while Sr concentrations range from 0.1 to 4 mg/l and Ca/Sr weight ratios from 90 to 180, close to average values for the erupted rocks. Waters derived from Aq. 2 have 87Sr/86Sr between 0.70531 and 0.70542, high Sr concentrations up to 80 mg/l, and Ca/Sr ratio of 17–28. Aquifer 1 is most probably shallow, composed of volcanic rocks and situated beneath the crater, within the volcano edifice. Aquifer 2 may be situated at greater depth in sedimentary rocks and by some way connected to the regional oil-gas field brines. The relative water output (l/s) from both aquifers can be estimated as Aq. 1/Aq. 2– 30. Both aquifers are not distinguishable by their REE patterns. The total concentration of REE, however, strongly depends on the acidity. All neutral waters including high-salinity waters from Aq. 2 have very low total REE concentrations (b0.6 μg/l) and are characterized by a depletion in LREE relative to El Chichón volcanic rock, while acid waters from the crater lake (Aq. 1) and acid AS springs (Aq. 2) have parallel profile with total REE concentration from 9 to 98 μg/l. The highest REE concentration (207 μg/l) is observed in slightly acid shallow cold Ca-SO4 ground waters draining fresh and old pyroclastic deposits rich in magmatic anhydrite. It is suggested that the main mechanism controlling the concentration of REE in waters of El Chichón is the acidity. As low pH results from the shallow oxidation of H2S contained in hydrothermal vapors, REE distribution in thermal waters reflects the dissolution of volcanic rocks close to the surface or lake sediments as is the case for the crater lake.
    Beschreibung: -
    Beschreibung: Published
    Beschreibung: 55-66
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): hydrogeochemistry ; geothermal systems ; Sr isotopes ; REE ; El Chichón Volcano ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2021-05-11
    Beschreibung: The CO2 laser-based lidar ATLAS has been used to study the Stromboli volcano plume. ATLAS measured water vapor concentration in cross-sections of the plume and wind speed at the crater. Water vapor concentration and wind speed were retrieved by differential absorption lidar and correlation technique, respectively. Lidar returns were obtained up to a range of 3 km. The spatial resolution was 15 mand the temporal resolution was 20 s. By combining these measurements, the water vapor flux in the Stromboli volcano plume was found. To our knowledge, it is the first time that lidar retrieves water vapor concentrations in a volcanic plume.
    Beschreibung: Published
    Beschreibung: 1295–1298
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Lidar ; Volcanic plume ; DIAL ; Water vapor ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2017-04-04
    Beschreibung: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.
    Beschreibung: Published
    Beschreibung: 1-33
    Beschreibung: 3.7. Dinamica del clima e dell'oceano
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Seafloor and water columnobservatories ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2017-04-04
    Beschreibung: A better understanding of degassing processes at open-vent basaltic volcanoes requires collection of new datasets of H2O–CO2–SO2 volcanic gas plume compositions, which acquisition has long been hampered by technical limitations. Here, we use the MultiGAS technique to provide the best-documented record of gas plume discharges from Stromboli volcano to date. We show that Stromboli's gases are dominated by H2O (48–98 mol%; mean, 80%), and by CO2 (2–50 mol%; mean, 17%) and SO2 (0.2–14 mol%; mean, 3%). The significant temporal variability in our dataset reflects the dynamic nature of degassing process during Strombolian activity; which we explore by interpreting our gas measurements in tandem with the melt inclusion record of pre-eruptive dissolved volatile abundances, and with the results of an equilibrium saturation model. Comparison between natural (volcanic gas and melt inclusion) and modelled compositions is used to propose a degassing mechanism for Stromboli volcano, which suggests surface gas discharges are mixtures of CO2-rich gas bubbles supplied from the deep (〉 4 km) plumbing system, and gases released from degassing of dissolved volatiles in the magma filling the upper conduits. The proposed mixing mechanism offers a viable and general model to account for composition of gas discharges at all volcanoes for which petrologic evidence of CO2 fluxing exists. A combined volcanic gas-melt inclusion-modelling approach, as used in this paper, provides key constraints on degassing processes, and should thus be pursued further.
    Beschreibung: Published
    Beschreibung: 195-204
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): volcanic degassing ; Stromboli ; volcanic gases ; CO2 fluxing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2017-04-04
    Beschreibung: We studied the shape of the most regular-shaped stratovolcanoes of the world to mathematically define the form of the ideal stratovolcano. Based on the Shuttle Radar Topographic Mission data we selected 19 of the most circular and symmetrical volcanoes, which incidentally all belong to subduction-related arcs surrounding the Pacific. The selection of volcanoes benefitted from the introduction of a new definition of circularity which is more robust than previous definitions, being independent of the erosional dissection of the cone. Our study on the shape of stratovolcanoes was based on the analysis of the radial elevation profiles of each volcano. The lower half section of the volcanoes is always well fitted by a logarithmic curve, while the upper half section is not, and falls into two groups: it is fitted either by a line (“C-type”, conical upper part) or by a parabolic arc (“P-type”, parabolic/concave upper part). A quantitative discrimination between these groups is obtained by fitting their upper slope with a linear function: C-type volcanoes show small, whereas P-type volcanoes show significant negative angular coefficient. The proposed threshold between the two groups is − 50 × 10− 4°/m. Chemical composition of eruptive products indicates higher SiO2 and/or higher H2O content for C-type volcanoes, which could imply a higher incidence of mildly explosive (e.g. strombolian) eruptions. We propose that this higher explosivity is responsible for forming the constant uppermost slopes by the deposition of ballistic tephra and its subsequent stabilisation at a constant angle. By contrast, P-type volcanoes are characterized by a smaller SiO2 and H2O content, which can be responsible for a higher incidence of effusive events and/or a lower incidence of upper flank-forming (i.e. mild) explosive eruptions. Therefore, the concave upper flanks of these volcanoes may be shaped typically by lava flows. Based on this hypothesis, we propose that the morphometric analysis of the elevation profile of stratovolcanoes can provide insights into their dominant eruptive style.
    Beschreibung: Published
    Beschreibung: 171-181
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): stratovolcano ; SRTM ; shape analysis ; elevation profile ; circularity ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-04-04
    Beschreibung: In addition to rhythmic slug-driven Strombolian activity, Stromboli volcano occasionally produces discrete explosive paroxysms (2 per year on average for the most frequent ones) that constitute a major hazard and whose origin remains poorly elucidated. Partial extrusion of the volatile-rich feeding basalt as aphyric pumice during these events has led to consider their triggering by the fast ascent of primitive magma blobs from possibly great depth. Here I examine and discuss the alternative hypothesis that most of the paroxysms could be triggered and driven by the fast upraise of CO2-rich gas pockets generated by bubble foam growth and collapse in the sub-volcano plumbing system. Data for the SO2 and CO2 crater plume emissions are used to show that Stromboli's feeding magma may originally contain as much as 2 wt.% of carbon dioxide and early coexists with an abundant CO2-rich gas phase with high CO2/SO2 molar ratio (≥60 at 10 km depth below the vents, compared to ∼7 in time-averaged crater emissions). Pressure-related modelling indicates that the time-averaged crater gas composition and output are well accounted for by closed system decompression of the basalt–gas mixture until the volcano–crust interface (∼3 km depth), followed by open degassing and crystallization in the volcano conduits. However, both the low viscosity and high vesicularity of the basaltic magma permit bubble segregation and bubble foam growth at deep sill-like feeder discontinuities and at shallower physical boundaries (such as the volcano–crust interface) where the gasrich aphyric basalt interacts with the unerupted crystal-rich and viscous magma drained back from the volcano conduits. Gas pressure build-up and bubble foam collapse at these boundaries will intermittently trigger the sudden upraise of CO2-rich gas blobs that constitute the main driving force of the paroxysms. Deeper-sourced gas blobs, driving the most powerful explosions, will be the richest in CO2 and have highest CO2/SO2 ratios. This mechanism is shown to account well for the dynamic, seismic and petrologic features of Stromboli's paroxysms and, hence, to provide a potential alternative interpretation for their genesis and their forecasting. Enhanced bubble foam leakage prior to a paroxysm, or foam emptying in several steps, should lead indeed to precursory upstream of CO2-rich gas and increasing CO2/SO2 ratio in crater plume emissions. The recent detection of such signals prior to two explosions in December 2006 and March 2007 strongly supports this expectation and the model proposed in this study.
    Beschreibung: Published
    Beschreibung: 363–374
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): basaltic volcanoes ; magma degassing ; explosive paroxysms ; CO2 ; gas bubbles ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2022-06-13
    Beschreibung: On March 15th 2007 a paroxysmal explosion occurred at the Stromboli volcano. This event generated a large amount of products,mostly lithic blocks, someofwhich impacted the ground as far as down to 200 m a.s.l., about 1.5 kmfaraway fromthe active vents. Two days after the explosion, a newvapouremissionwas discovered on the north-eastern flank of the volcanic edifice, at 560 m a.s.l., just above the area called “Nel Cannestrà”. This new vapour emission was due to a block impact. In order to investigate the block impact area to understand the appearance of the vapour emission, we conducted on May 2008 a multidisciplinary study involving Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), Self-Potential (SP), CO2 soil diffuse degassing and soil temperature surveys. This complementary data set revealed the presence of an anomalous conductive body, probably related to a shallow hydrothermal level, at about 10–15 m depth, more or less parallel to the topography. It is the first time that such a hydrothermal fluid flow,with a temperature close to thewater boiling point (76 °C) has been evidenced at Stromboli at this low elevation on the flank of the edifice. The ERT results suggest a possible link between (1) the main central hydrothermal system of Stromboli, located just above the plumbing system feeding the active vents, with a maximum of subsurface soil temperature close to 90 °C and limited by the NeoStromboli summit crater boundary and (2) the investigated area of Nel Cannestrà, at ~500 m a.s.l., a buried eruptive fissure active 9 ka ago. In parallel, SP and CO2 soil diffuse degassingmeasurements suggest in this sector at slightly lower elevation fromthe block impact crater a magmatic and hydrothermal fluid rising system along the N41° regional fault. A complementary ERT profile, on May 2009, carried out from the NeoStromboli crater boundary downto the block impact crater displayed a flank fluid flowapparently connected to a deeper system. The concept of shallow hydrothermal level have been compared to similar ERT results recently obtained onMount Etna and La Fossa cone of Vulcano. This information needs to be taken into account in general fluid flow models on volcanoes. In particular, peripheral thermal waters (as those bordering the northeastern coast of Stromboli) could be contaminated by hydrothermal and magmatic fluids coming from regional faults but also from the summit.
    Beschreibung: Published
    Beschreibung: 111-119
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Stromboli ; hydrothermal system ; adventive hydrothermal flow ; electrical resistivity tomography ; self-potential ; soil diffuse degassing ; temperature ; 2007 Stromboli eruptive crisis ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2021-01-27
    Beschreibung: Na–HCO3–CO2-rich thermomineral waters issue in the N of Portugal, within the Galicia-Trás-os-Montes region, linked to a major NNE-trending fault, the so-called Penacova-Régua-Verin megalineament. Along this tectonic structure different occurrences of CO2-rich thermomineral waters are found: Chaves hot waters (67 °C) and also several cold (16.1 °C) CO2-rich waters. The δ2H and δ18O values of the thermomineral waters are similar to those of the local meteoric waters. The chemical composition of both hot and cold mineral waters suggests that water–rock reactions are mainly controlled by the amount of dissolved CO2 (g) rather than by the water temperature. Stable carbon isotope data indicate an external CO2 inorganic origin for the gas. δ13CCO2 values ranging between −7.2‰ and −5.1‰ are consistent with a two-component mixture between crustal and mantle-derived CO2. Such an assumption is supported by the 3He/4He ratios measured in the gas phase, are between 0.89 and 2.68 times the atmospheric ratio (Ra). These ratios which are higher than that those expected for a pure crustal origin (≈0.02 Ra), indicating that 10 to 30% of the He has originated from the upper mantle. Release of deep-seated fluids having a mantle-derived component in a region without recent volcanic activity indicates that extensive neo-tectonic structures originating during the Alpine Orogeny are still active (i.e., the Chaves Depression).
    Beschreibung: Published
    Beschreibung: 49-56
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): CO2-rich thermomineral waters ; mantle volatiles ; isotopes ; Chaves geothermal system ; N-Portugal ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2017-04-04
    Beschreibung: SO2 fluxes emitted by Stromboli during the 27th February–2nd April 2007 effusive eruption were regularly measured both by an automatic network of scanning ultraviolet spectrometers and by traverse measurements conducted by boat and helicopter. The results from both methodologies agree reasonably well, providing a validation for the automatic flux calculations produced by the network. Approximately 22,000 t of SO2 were degassed during the course of the 35 day eruption at an average rate of 620 t per day. Such a degassing rate is much higher than that normally observed (150–200 t/d), because the cross-sectional area occupied by ascending degassed magma is much greater than normal during the effusion, as descending, degassed magma that would normally occupy a large volume of the conduit is absent. We propose that the hydrostatically controlled magma level within Stromboli's conduit is the main control on eruptive activity, and that a high effusion rate led to the depressurisation of an intermediate magma reservoir, creating a decrease in the magma level until it dropped beneath the eruptive fissure, causing the rapid end of the eruption. A significant decrease in SO2 flux was observed prior to a paroxysm on 15th March 2007, suggesting that choking of the gas flowing in the conduit may have induced a coalescence event, and consequent rapid ascent of gas and magma that produced the explosion.
    Beschreibung: Published
    Beschreibung: 214-220
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): SO2 flux ; Stromboli ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2017-04-04
    Beschreibung: Nitrogen isotopes , N2/36Ar and 3He/4He were measured in volcanic fluids within different geodynamic settings. Subduction zones are represented by Aeolian archipelago, Mexican volcanic belt and Hellenic arc, spreading zones – by Socorro island in Mexico and Iceland and hot spots by Iceland and Islands of Cabo Verde. The δ15N values, corrected for air contamination of volcanic fluids, discharged from Vulcano Island (Italy), highlighted the presence of heavy nitrogen (around +4.3 ±0.5‰). Similar 15N values (around +5‰), have been measured for the fluids collected in the Jalisco Block, that is a geologically and tectonically complex forearc zone of the northwestern Mexico [1]. Positive values (15N around +3‰) have been also measured in the volcanic fluids discharged from Nysiros island located in the Ellenic Arc characterized by subduction processes. All uncorrected data for the Socorro island are in the range of -1 to -2‰. The results of raw nitrogen isotope data of Iceland samples reveal more negative isotope composition (about -4.4‰). On the basis of the non-atmospheric N2 fraction (around 50%) the corrected data of 15N for Iceland are around -16‰, very close to the values proposed by [2]. In a volcanic gas sample from Fogo volcano (Cabo Verde islands) we found a very negative value: -9.9‰ and -15‰ for raw and corrected values, respectively.
    Beschreibung: Published
    Beschreibung: Davos, Switzerland
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: open
    Schlagwort(e): Nitrogen Isotopes ; Subduction ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Poster session
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2017-04-04
    Beschreibung: The recent availability of small, cheap ultraviolet spectrometers has facilitated the rapid deployment of automated networks of scanning instruments at several volcanoes, measuring volcanic SO2 gas flux at high frequency. These networks open up a range of other applications, including tomographic reconstruction of the gas distribution which is of potential use for both risk mitigation, particularly to air traffic, and environmental impact modelling. Here we present a methodology for visualising reconstructed plumes using virtual globes, such as GoogleEarth, which allows animations of the evolution of the gas plume to be displayed and easily shared on a common platform. We detail the process used to convert tomographically reconstructed cross-sections into animated gas plume models, describe how this process is automated and present results from the scanning network around Mt.Etna, Sicily. We achieved an average rate of one frame every12 min, providing a good visual representation of the plume which can be examined from all angles. Increating these models, an approximation to turbulent diffusion in the atmosphere was required. To this end we derived the value of the turbulent diffusion coefficient for quiescent conditions near Etna to be around 200–500 m2s-1.
    Beschreibung: Published
    Beschreibung: 1837-1842
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Volcanic Plumes ; Tomography ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2017-04-04
    Beschreibung: By using new high-resolution (2 m) digital elevation model derived from the 2005 LiDAR survey of Mt. Etna volcano (Italy), our study measured the classical morphometrical parameters for scoria cones, i.e. Wco (cone width), Wcr (crater diameter), H (cone height) as well as volume, inclination of cone slope and substrate, and a number of other parameters for 135 scoria cones of Mt. Etna. Volume and age distribution of cones shows that there is no direct structural control on their emplacement in terms of Etna's rift zones. The cones are progressively smaller in size toward summit, which can be explained by the large volcano's feeding system and progressively frequent lava burial toward top. A careful analysis of H/Wco ratio (determined as 0.18 for other volcanic fields worldwide) shows that this ratio strongly depends on (1) the calculation method of H and (2) lava burial of cone. For Etnean cones, applying an improved method for calculating H relative to the dipping substrate results in a significantly lowered standard H/Wco ratio (0.137), which in turn questions the validity of the classical value of 0.18 in the case of large central volcanoes. The reduction of the ratio is not only due to methodology but also to the common lava burial. This can be expressed even better if Hmean is used instead of Hmax (Hmean/Wco = 0.098). Using this measure, at Etna, well formed cones have higher ratios than structurally deformed (e. g. double or rifted) cones. Furthermore, although the sampled scoria cones at Etna have formed in a relatively narrow time interval (〈 6500 yrs BP), there is a slight decrease in H/Wco corresponding to erosional changes detected globally (H/Wco = 0.143, 0.135 and 0.115 for three age classes of Etna's scoria cones, corresponding to average slopes of 26.6, 23.9 and 23.7°). Because the morphometrical effect of position on a dipping substrate as well as lava burial exceeds the effect of erosion, we call attention to use caution in simply using the H/Wco ratio of scoria cones for detecting age, especially on large active volcanoes.
    Beschreibung: Published
    Beschreibung: 320-330
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): scoria cone ; morphometry ; Etna ; H/Wco ratio ; DEM analysis ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.06. Methods::05.06.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2017-04-04
    Beschreibung: DEMs derived from LIDAR data are nowadays largely used for quantitative analyses and modelling in geology and geomorphology. High-quality DEMs are required for the accurate morphometric and volumetric measurement of land features. We propose a rigorous automatic algorithm for correcting systematic errors in LIDAR data in order to assess sub-metric variations in surface morphology over wide areas, such as those associated with landslide, slump, and volcanic deposits. Our procedure does not require a priori knowledge of the surface, such as the presence of known ground control points. Systematic errors are detected on the basis of distortions in the areas of overlap among different strips. Discrepancies between overlapping strips are assessed at a number of chosen computational tie points. At each tie point a local surface is constructed for each strip containing the point. Displacements between different strips are then calculated at each tie point, and minimization of these discrepancies allows the identification of major systematic errors. These errors are identified as a function of the variables that describe the data acquisition system. Significant errors mainly caused by a non-constant misestimation of the roll angle are highlighted and corrected. Comparison of DEMs constructed using first uncorrected and then corrected LIDAR data from different Mt. Etna surveys shows a meaningful improvement in quality: most of the systematic errors are removed and the accuracy of morphometric and volumetric measurements of volcanic features increases. These corrections are particularly important for the following studies of Mt. Etna: calculation of lava flow volume; calculation of erosion and deposition volume of pyroclastic cones; mapping of areas newly covered by volcanic ash; and morphological evolution of a portion of an active lava field over a short time span.
    Beschreibung: Published
    Beschreibung: 123-135
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): LIDAR ; Calibration ; DEM ; Etna ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.06. Methods::05.06.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2017-04-04
    Beschreibung: We investigated the dynamics of explosive activity at Mt. Etna between 31 August and 15 December 2006 by combining vesicle studies in the erupted products with measurements of the gas composition at the active, summit crater. The analysed scoria clasts present large, connected vesicles with complex shapes and smaller, isolated, spherical vesicles, the content of which increases in scoriae from the most explosive events. Gas geochemistry reports CO2/SO2 and SO2/HCl ratios supporting a deep-derived gas phase for fire-fountain activity. By integrating results from scoria vesiculation and gas analysis we find that the highest energy episodes of Mt. Etna activity in 2006 were driven by a previously accumulated CO2-rich gas phase but we highlight the lesser role of syn-eruptive vesicle nucleation driven by water exsolution during ascent. We conclude that syn-eruptive vesiculation is a common process in Etnean magmas that may promote a deeper conduit magma fragmentation and increase ash formation.
    Beschreibung: Published
    Beschreibung: 265-269
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Etna ; fire-fountains ; vesicle textures ; volcanic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2017-04-04
    Beschreibung: Mt. Etna is one of the most studied and extensively monitored volcanoes on earth (Bonaccorso et al., 2004). One of the most frequent hazards are due to the eruption of lava flows, more specifically those flows produced during flank eruptions. These eruptions potentially can produce extensive flows that can inundate densely populated communities of the lower slopes (Guest and Murray, 1979; Behncke et al., 2005). Satellite remote sensing can be used during effusive eruptions to help monitoring the volcano, by determining effusion rates of the flows, aiding in hazard management. The degassing that takes place when magma is rising to the surface can be regularly monitored using ultraviolet spectroscopic methods (e.g. Andres et al., 2001, Sutton et al., 2001). Sulfur Dioxide (SO2) fluxes have been derived from correlation spectrometer (COSPEC) measurements at Mt. Etna (Italy) on a regular basis since 1987 (e.g. Caltabiano et al., 1994; Allard, 1997; Andronico et al., 2005; Burton et al., 2005; Burton et al., in press). Previous studies have compared field-based effusion rates with the measured SO2 fluxes to determine how much of the degassed magma is erupted onto Etna’s flanks in the form of lava flows (Allard, 1997; Harris et al., 2000). However, most of these studies examine bulk volumes erupted over an eruption rather than examining the short-term variations during eruptions. Determining the amount of lava erupted and/or the balance between the amount supplied and the amount erupted remains an unresolved issue. The main objectives of this paper are to examine such short-term variations using satellite-based effusion rates along with regularly measured SO2 fluxes. Using these measurements we determine how and when the volume of supplied magma is balanced by the volume of erupted lava during individual effusive eruptions.
    Beschreibung: In press
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Etna ; Thermal Remote Sensing ; SO2 ; Mass Balance ; Effusive Eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2017-04-04
    Beschreibung: We measured volcanic gas emissions from the northeast crater (NEC) and central crater (CC) of Mount Etna on 21st July 2008, and 3rd and 31st August 2009, using a novel, lightweight open-path Fourier transform infrared spectrometry (OP-FTIR) in active mode with a portable infrared lamp. Contemporaneously we measured the SO2 flux of the total gas emission released by the combined summit craters 14 km downwind and the SO2 flux emitted by the NEC measured at the summit. Combining these data we determined the flux of the major volcanic components H2O, CO2, SO2, HCl and HF emitted individually from CC and NEC craters. The results reveal similar SO2/HCl ratios but distinct CO2/SO2 ratios (1.3 and 10.9 for NEC and CC, respectively) and an order of magnitude greater CO2 flux from the CC compared with the NEC. A simple model in which the NEC branches from a central feeding conduit at a depth of ~2 km can reproduce these observations. We highlight that in such a system short-term variations in CO2/SO2 ratios at each crater can occur due to minor variations in the magma/gas flux entering each conduit at the branch, without an overall change in magma supply. CO2/ SO2 variations measured at individual craters may therefore be unrepresentative of the volcanic system and require cautious interpretation. Monitoring of the total CO2 and SO2 fluxes emitted from each crater is, on the contrary, an optimal monitoring strategy and can be achieved using a combination of CO2/SO2 instruments and SO2 imaging cameras
    Beschreibung: INGV-DPC “Sicilia” Project (Gas plumeTask).
    Beschreibung: Published
    Beschreibung: 368-376
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): magma degassing, OP-FTIR, Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2017-04-04
    Beschreibung: The complex magnetic and gravity anomaly fields of the Southern Tyrrhenian Sea provide a record of the complicated properties and evolution of the underlying crust. Geologic interpretation of these anomalies is hindered by the effects of anomaly superposition and source ambiguity inherent to potential field analysis. A common approach to minimizing interpretational ambiguities is to consider analyses of anomaly correlations. Spectral correlation filters are used to separate positively and negatively correlated anomaly features based on the correlation coefficient given by the cosine of the phase difference between common wavenumber components. This procedure is applied to reduced-to-pole magnetic and first vertical derivative gravity anomalies for mapping correlative crustal magnetization and density contrasts. Adding and subtracting the standardized outputs of the filters yield summed (SLFI) and differenced (DLFI) local favorability indices that, respectively highlight positive and negative feature correlations in the anomaly data sets. Correlative maxima mainly reflect volcanic structures, and secondarily intrusive bodies and pre- Tortonian carbonates of the Maghrebian chain and the basement rocks of the Sardinia eastern margin. Correlative minima mostly mark sediment-filled peri-Tyrrhenian structural basins related to the Pliocene extensional tectonics, and intra-slope marine depressions related to post-Pliocene and still-active compressional tectonics off Northern Sicily. Prominent inverse anomaly correlations mainly reflect crustal features around the southern margin of the Tyrrhenian Sea that include higher density, lower magnetization pelagic-to-terrigenous and flysch-type nappes of the Sicilian-Maghrebian chain, as well as lower density, higher magnetization sediments filling depressions of the chain, and syn-rift sediments of Southeastern Sardinia.
    Beschreibung: Published
    Beschreibung: 27-41
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 3.4. Geomagnetismo
    Beschreibung: 5.7. Consulenze in favore di istituzioni nazionali e attività nell'ambito di trattati internazionali
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Magnetism ; Gravity ; Modelling ; Back-arc basin ; Volcanism ; Tectonics ; Tyrrhenian Sea ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2017-04-04
    Beschreibung: A remote sensing approach permits for the first time the derivation of a map of the carbon dioxide concentration in a volcanic plume. The airborne imaging remote sensing overcomes the typical difficulties associated with the ground measurements and permits rapid and large views of the volcanic processes together with the measurements of volatile components exolving from craters. Hyperspectral images in the infrared range (1900–2100 nm), where carbon dioxide absorption lines are present, have been used. These images were acquired during an airborne campaign by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Pu`u` O`o Vent situated at the Kilauea East Rift zone, Hawaii. Using a radiative transfer model to simulate the measured up-welling spectral radiance and by applying the newly developed mapping technique, the carbon dioxide concentration map of the Pu`u` O`o Vent plume were obtained. The carbon dioxide integrated flux rate were calculated and a mean value of 396±138 t d−1 was obtained. This result is in agreement, within the measurements errors, with those of the ground measurements taken during the airborne campaign.
    Beschreibung: Published
    Beschreibung: 3192–3199
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: JCR Journal
    Beschreibung: partially_open
    Schlagwort(e): Hyperspectral data ; Volcanic plume ; Carbon dioxide ; AVIRIS ; Kilauea ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 23
    Publikationsdatum: 2017-04-04
    Beschreibung: Quantifying mercury (Hg) emissions from active volcanoes is of particular interest for better constraining the global cycle and environmental impact of this highly toxic element. Here we report on the abundance of total gaseous (TGM=Hg0 (g)+HgII (g)) and particulate (Hg(p)) mercury in the summit gas emissions of La Soufrière andesitic volcano (Guadeloupe island, Lesser Antilles), where enhanced degassing of mixed hydrothermalmagmatic volatiles has been occurring since 1992 from the Southern summit crater.We demonstrate that Hg in volcanic plume occurs predominantly as gaseous mercury, with a mean TGM/Hg(p) mass ratio of ~63. Combining the mean TGM/H2S mass ratio of the volcanic plume (~3.2×10−6), measured close to the source vent, with the H2S plume flux (~0.7 t d−1), determined simultaneously, allows us to estimate a gaseous mercury emission rate of 0.8 kg yr−1 from La Soufrière summit dome. Somewhat lower TGM/Stot mass ratio in fumarolic gases from the source vent (4.4×10−7) suggests that plume chemical composition is not well represented by the emission source (fumaroles) due to chemical processes prior to (or upon) discharge. Current mercury emission from La Soufrìere volcano represents a very small contribution to the estimated global volcanic budget for this element.
    Beschreibung: Published
    Beschreibung: 276-282
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mercury ; Fumaroles ; Volcanic plume ; Trace metals ; Gaseous and particulate mercury ; Emission rate ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 24
    Publikationsdatum: 2017-04-04
    Beschreibung: The multi-parametric permanent system (tilt and GPS networks, robotized geodetic station) for monitoring ground deformation at Stromboli volcano was set up in the 1990s and later greatly improved during the effusive event of 2002–2003. Unlike other volcanoes, e.g. Mt. Etna, the magnitude of ground deformation signals of Stromboli is very small and through the entire period of operation of the monitoring system, only two major episodes of deformation, in 1994–1995 and 2000, which did not lead to an eruption but rather pure intrusion, were measured. Similarly to the 2002–2003 eruption, no important deformations were detected in the months before the 2007 eruption. However, unlike the 2002–2003 eruption, GPS and tilt stations recorded a continuous deflation during the entire 2007 eruption, which allowed us to infer a vertical elongated prolate ellipsoidal source, centered below the summit craters at depth of about 2.8 km b.s.l. Due to its geometry and position, this source simulates an elongated plumbing system connecting the deeper LP magma storage (depth from 5 to 10 km) with the HP shallower storage (0.8–3 km), both previously identified by petrologic and geochemical studies. This result represents the first contribution of geophysics to the definition of the plumbing system of Stromboli at intermediate depth. Finally, no deformation due to the plumbing system was measured for a long time after the end of the eruption. Meanwhile, the new terrestrial geodetic monitoring system installed within the Sciara del Fuoco, on the lava fan formed during the eruption, indicated that during the first months after the end of the eruption the ground velocity progressively decreased in time, suggesting that part of the deformation was due to the thermal contraction of the lava flow.
    Beschreibung: Published
    Beschreibung: 172-181
    Beschreibung: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Stromboli ; Ground Deformation ; source modelling ; flank instability ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 25
    facet.materialart.
    Unbekannt
    Elsevier
    Publikationsdatum: 2017-04-04
    Beschreibung: The transport, degassing and atmospheric release of halogens from active volcanism on Earth have been the focus of increasing interest over the last few decades, and have recently been the subject of the 1st workshop on “Halogens in volcanic systems and their environmental impacts” that was held in December of 2007 at Yosemite Lodge in Yosemite National Park, California. As an introduction to this Chemical Geology special issue, collecting contributions from many of the participants at the workshop, we review here recent advances in this field, including experimental and theoretical investigations of halogen behaviour in volcanic and related magmatic systems. We discuss previous research on several aspects of halogen geochemistry, including halogen abundances in the mantle and magmas on Earth; the effects of halogens on phase equilibria and melt viscosities; their partitioning between melt and fluid phase(s) upon decompression, cooling and crystallisation of magmas in the Earth's crust; and their final atmospheric release as volcanic gases. The role of halogens in the genesis of hydrothermal systems and in the transport of ore-forming metals is also reviewed, and we discuss our current understanding of atmospheric processing of volcanic halogens in both the troposphere and stratosphere, and their consequent impacts. In spite of these recent advancements, our current understanding of halogen geochemistry at active volcanoes is still far too fragmentary, and the key questions that require answers from future research are summarised in our conclusions.
    Beschreibung: Published
    Beschreibung: 1-18
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Halogens ; Magmatic fluids ; Ore deposits ; Volcanic degassing ; Volcanic gas ; Atmospheric effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 26
    Publikationsdatum: 2017-04-03
    Beschreibung: The currently available data set of S–Cl–F abundances in volcanic gas plumes and high-temperature fumarolic gas samples from basaltic volcanism is reviewed here in the attempt to derive constraints on the modes of halogen degassing from mafic silicate melts. Apart from large volcano-to-volcano variations, reflecting remarkable differences in volatile abundances in the source magmas, each of the explored volcanoes displays large changes of SO2/HCl and SO2/HF ratios with the style of volcanic activity, with HCl/HF staying fairly constant. Halogen abundances are low and SO2/HCl and SO2/HF are high when fresh (volatile-rich) magmas sustain degassing, as during explosive eruptions, at the onset of eruptive cycles, or shortly before paroxysmal events. Low SO2/HCl and SO2/HF ratios are instead characteristic of late stages of volcanic degassing, typically being observed in the concluding stages of basaltic eruptions, or during periods of reduced magma supply at persistently degassing volcanoes. These observations are taken as evidence of halogens being less keen to enter the gas phase (relative to S) during degassing of basaltic magmas; and quantitatively interpreted in light of a Rayleigh-type open-system degassing model. The model, though simple, quantitatively reproduces the range of volcanic gas compositions observed at basaltic volcanoes worldwide, and allows prediction of vapour/melt partitioning contrasts of factors ~9 and ~36 for the volatile couples S–Cl and S–F, respectively. These predictions require validation from appropriately designed experiments of halogen partitioning between magmatic vapours and silicate melts over a range of P–T–X conditions.
    Beschreibung: Published
    Beschreibung: 99-109
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Volcanic degassing ; Halogens ; Volcanic gases ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 27
    Publikationsdatum: 2017-04-04
    Beschreibung: Dynamic accumulation chamber methods have been extensively used to estimate the total output of CO2 released from active volcanic area. In order to asses the performance and reliability of a closed dynamic system several tests were carried out with different soil permeabilities and soil CO2 fluxes. A special device was used to create a constant one-dimensional CO2 flux through a soil column with a known permeability. Three permeabilities were investigated, ranging between 3.6 × 10− 2 and 3.5 × 10 μm2, as were several CO2 fluxes (ranging between 1.1 × 10− 6 and 6.3 × 10− 5 kg m− 2 s− 1). The results highlight that the accuracy of soil CO2 flux measurements strictly depends on the soil gas permeability and the soil CO2 flux regimen. Generally chamber measurements underestimate CO2 fluxes at low soil permeability and low soil CO2 fluxes, whereas appreciable overestimations occur for high permeability soil, especially for high soil CO2 fluxes. Other tests carried out with different settings for the measurement device, such as the chamber volume and the flux of the pump used to recirculate air through the chamber and the gas analyzer (recirculation flux), revealed a strong dependence of the closed dynamic chamber measurements on the recirculation flux. Low recirculation fluxes (0.2–0.4 l min− 1) decreased the performance of the measurement system, causing underestimations of the actual soil CO2 flux, whereas higher values (0.6–1.0 l min− 1) resulted in overestimations, especially for elevated soil CO2 fluxes. An empirical equation was deduced to allow accumulation chamber fluxes to be calculated very accurately based on soil gas permeabilities measured in the field.
    Beschreibung: Published
    Beschreibung: 387-393
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Soil CO2 flux measuraments ; Closed dynamic chamber ; soil gas permeability ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 28
    Publikationsdatum: 2017-04-04
    Beschreibung: Methane, the most abundant hydrocarbon in the atmosphere, plays an important role in the Earth’s atmospheric chemistry and radiative balance being the second most important greenhouse gas after CO2. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (Kvenvolden and Rogers, 2005). It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere (Etiope, 2004). Among natural sources the volcanic/geothermal emissions are probably the least constrained. Recent estimations for volcanic and geothermal systems in Europe (Etiope et al. 2007) gave a rather large provisional range (4-16 kt/a) that claims for much more field measurements in order to widen the current database and decrease the present uncertainties. Pantelleria is an active volcanic complex, at present in quiescent status, hosting a high enthalpy geothermal system. Explorative geothermal wells tapped an exploitable water-dominated reservoir at 600-800 m depth with maximum measured temperatures of 250 °C. While some data are available on diffuse CO2 fluxes, data on CH4 are available only for fumarolic fluids. In the present study we measured CH4 fluxes in the area of Favara Grande characterized by intense diffuse degassing and widespread signs of geothermal activity (fumaroles, steaming grounds and large zones devoid of vegetation). Values range from negative (-43 to 0 mgCH4 m2 day), typical of soils with methanotrophic activity, up to 3500 mgCH4 m2 day in the most thermalized area. The preliminary estimate of the methane release from the area of Favara Grande is about 2.5 t/a. Extrapolation to the whole volcanic/geothermal system of Pantelleria gives about 10 t/a.
    Beschreibung: Published
    Beschreibung: Davos, Switzerland
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: open
    Schlagwort(e): soil gases ; methane output ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Poster session
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 29
    Publikationsdatum: 2017-04-04
    Beschreibung: On February 27, 2007 a new eruption started at Stromboli that lasted until April 2 and included a paroxysmal explosion on March 15. Geochemical monitoring carried out over several years revealed some appreciable variations that preceded both the eruption onset and the explosion. The carbon dioxide (CO2) flux from the soil at Pizzo Sopra La Fossa markedly increased a few days before the eruption onset, and continued during lava effusion to reach its maximum value (at 90,000 g m−2 d−1) a few days before the paroxysm. Almost contemporarily, the δ13CCO2 of the SC5 fumarole located in the summit area increased markedly, peaking just before the explosion (δ13CCO2~−1.8‰). Following the paroxysm, helium (He) isotopes measured in the gases dissolved in the basal thermal aquifer sharply increased. Almost contemporarily, the automatic station of CO2 flux recorded an anomalous degassing rate. Also temperatures and the vertical thermal gradient, which had been measured since November 2006 in the soil at Pizzo Sopra La Fossa, showed appreciable variabilities that lasted until the end of the eruption. The geochemical variations indicated the degassing of a new batch of volatile-rich magma that preceded and probably fed the paroxysm. The anomalous 3He/4He ratio suggested that the ascent of a second batch of volatile-rich magma toward the surface was probably responsible of the resumption of the ordinary activity. A comparison with the geochemical variations observed during the 2002–2003 eruption indicated that the 2007 eruption was less energetic.
    Beschreibung: Published
    Beschreibung: 246-254
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): geochemistry ; eruption ; dissolved gases ; Stromboli ; volcanic activity ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 30
    Publikationsdatum: 2017-04-04
    Beschreibung: Electric resistivity tomography (ERT), self-potential (SP), soil CO2 flux, and temperature are used to study the inner structure of La Fossa cone (Vulcano, Aeolian Islands). Nine profiles were performed across the cone with a measurement spacing of 20 m. The crater rims of La Fossa cone are underlined by sharp horizontal resistivity contrasts. SP, CO2 flux, and temperature anomalies underline these boundaries which we interpret as structural limits associated to preferential circulation of fluids. The Pietre Cotte crater and Gran Cratere crater enclose the main hydrothermal system, identified at the centre of the edifice on the base of low electrical resistivity values (b20 Ω m) and strong CO2 degassing, SP, and temperature anomalies. In the periphery, the hydrothermal activity is also visible along structural boundaries such as the Punte Nere, Forgia Vecchia, and Palizzi crater rims and at the base of the cone, on the southern side of the edifice, along a fault attributed to the NW main tectonic trend of the island. Inside the Punte Nere crater, the ERT sections show an electrical resistive body that we interpret as an intrusion or a dome. This magmatic body is reconstructed in 3D using the available ERT profiles. Its shape and position, with respect to the Pietre Cotte crater fault, allows replacing this structure in the chronology of the development of the volcano. It corresponds to a late phase of activity of the Punte Nere edifice. Considering the position of the SP, soil CO2 flux, and temperature maxima and the repartition of conductive zones related to hydrothermal circulation with respect to the main structural features, La Fossa cone could be considered as a relevant example of the strong influence of preexisting structures on hydrothermal fluid circulation at the scale of a volcanic edifice.
    Beschreibung: Published
    Beschreibung: 231-245
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: JCR Journal
    Beschreibung: partially_open
    Schlagwort(e): electrical resistivity ; self-potential ; soil CO2 degassing ; temperature ; fluid circulation ; hydrothermal system ; structural boundary ; Vulcano ; La Fossa cone ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 04. Solid Earth::04.01. Earth Interior::04.01.01. Composition and state ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 31
    Publikationsdatum: 2017-04-04
    Beschreibung: An infrared absorption spectroscopy remote sensing technique was used to determine the S02/HCl ratio in fumarolic plumes at Vulcano, Italy. The measurements were made from the southern crater rim of Fossa Grande Crater, about 400 m from the fumarolic area in the crater. Infrared absorption spectra of HCl and SO, were observed for four fumaroles a few tens of metres apart using the hot fumarolic surface as an infrared light source. The measured S02/HCl ratios in the FA, F47, FW and lower parti of the F21 fumaroles were 4.5-5.4, 3.5, 9.5-11.2 and 5.8 respectively. The S02/HCl ratio of the FA fumarole was higher than that of the gas collected directly in the fumarolic vent (S02/HCl ratio = 2.9), and was closer to the S~,,,,,,/HCl ratio (= 4.6) of the collected gas. Our results show that the SO,/HCl ratios of two fumaroles only a few tens of metres apart exhibits differences of about twofold. This suggests that this remote monitoring technique is capable of detecting spatial distribution in the S02/HCl ratios of volcanic plumes. Because temporal variations in S/Cl ratios can provide precursory signals for volcanic eruptions [l-31, this remote sensing technique can used efficiently for evaluation of volcanic activity.
    Beschreibung: Published
    Beschreibung: 219-224
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Gas chemistry ; FTIR ; Volcano ; fumaroles ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 32
    Publikationsdatum: 2017-04-04
    Beschreibung: Methane (CH4) emanating from a continental volcanichydrothermal system in Nisyros, Greece, is processed through the abiogenic reduction of mantle- and marine limestonederived CO2 [1]. Evidence for the occurrence of abiogenic hydrothermal reduction of CO2 is from the chemical and carbon isotopic equilibrium patterns. We have further characterized this abiogenic methane (C1) source for the concentrations of ethane (C2) and propane (C3), as well as for the hydrogen isotopic composition of CH4, H2O, H2 and H2S. C1/C2+ ratios are significantly higher than those typically observed for purely thermogenic sources. Hydrocarbon distribution ratios for other continental-hydrothermal sources rich in CO2 are comparable to those of the Nisyros fumaroles implying that abiogenic methane might be significantly more widespread than previously assumed [2]. Relative concentrations of hydrocarbons in continental-hydrothermal discharges are even indistinguishable from those measured in ultramafic hydrothermal emissions. The fact that redox conditions do not seem to exert any control on the relative concentrations of hydrocarbons in hydrothermal emissions in general, implies that the same two sources account for hydrocarbon production in continental and ultramafic environments. One source generates methane exclusively through the selective abiogenic reduction of CO2 (Sabatierreaction). The other source produces minor amounts of methane, ethane and propane by a random process and represents either the thermal cracking of organic matter or the polymerization starting from methane. Hydrogen isotope partitioning between H2O, H2S, H2 and CH4 in Nisyros fumaroles reveals that isotopic exchange rates are highest for H2O-H2S followed by H2O-H2. In contrast to H2 and H2S, the hydrogen isotopic composition of methane exhibits almost no local variations. This is in agreement with its predominantly abiogenic hydrothermal origin and with the low temperature sensitivity of the hydrogen isotope fractionation factor between water vapor and methane.
    Beschreibung: Published
    Beschreibung: Davos, Switzerland
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: open
    Schlagwort(e): hydrothermal gases ; methane ; ethane ; propane ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Oral presentation
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 33
    Publikationsdatum: 2017-04-04
    Beschreibung: Nitrogen isotopes , N2/36Ar and 3He/4He were measured in volcanic fluids within different geodynamic settings. Subduction zones are represented by Aeolian archipelago, Mexican volcanic belt and Hellenic arc, spreading zones – by Socorro island in Mexico and Iceland and hot spots by Iceland and Islands of Cabo Verde. The δ15N values, corrected for air contamination of volcanic fluids, discharged from Vulcano Island (Italy), highlighted the presence of heavy nitrogen (around +4.3 ±0.5‰). Similar 15N values (around +5‰), have been measured for the fluids collected in the Jalisco Block, that is a geologically and tectonically complex forearc zone of the northwestern Mexico [1]. Positive values (15N around +3‰) have been also measured in the volcanic fluids discharged from Nysiros island located in the Ellenic Arc characterized by subduction processes. All uncorrected data for the Socorro island are in the range of -1 to -2‰. The results of raw nitrogen isotope data of Iceland samples reveal more negative isotope composition (about -4.4‰). On the basis of the non-atmospheric N2 fraction (around 50%) the corrected data of 15N for Iceland are around -16‰, very close to the values proposed by [2]. In a volcanic gas sample from Fogo volcano (Cabo Verde islands) we found a very negative value: -9.9‰ and -15‰ for raw and corrected values, respectively.
    Beschreibung: Geochimica et Cosmochimica Acta
    Beschreibung: Published
    Beschreibung: Davos, Switzerland
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: open
    Schlagwort(e): Nitrogen Isotopes ; Helium Isotopes ; Volcanic fluids ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Poster session
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 34
    Publikationsdatum: 2017-04-04
    Beschreibung: Chemical and isotopic analyses of the main gas manifestations of the island of Pantelleria (Italy) were used to gain insight on the origin of the released methane. Results indicate that the most probable origin is through abiogenic reactions within the hydrothermal system. Methane and CO2 flux measurements from the soils were made with the accumulation chamber method in an area of about 0.015 km2 within the main fumarolic area of the island (Favara Grande). The 23 measurements range from –34 to 3550 mg m-2 d-1 for CH4 and from 0.6 to 379 g m-2 d-1 for CO2. The relationships between CH4 and CO2 fluxes and the CH4/CO2 ratios in the gases collected between 25 and 100 cm depth provide evidence for methanotrophic processes within the soils. Methane output for the surveyed area was calculated in 2.5 t a-1 and extrapolated to about 5-10 t a-1 for the entire volcanic/hydrothermal system of the island. Previous higher estimates of the CH4 output at Pantelleria (Etiope et al., 2007 - J. Volcanol. Geotherm. Res., 165, 76 – 86) were based on soil CO2 output and CH4/CO2 ratios in fumarolic gases; the present work provides the first direct CH4 flux data and it suggests that methanotrophic activity in the soil could be substantial in reducing the CH4 emission to the atmosphere.
    Beschreibung: Published
    Beschreibung: 147-157
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): hydrothermal systems ; gas geochemistry ; isotope composition ; methane output ; methanotrophic consumption ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 35
    Publikationsdatum: 2020-10-29
    Beschreibung: Two sets of cooling experiments were run at atmospheric conditions for two anhydrous starting latitic and trachytic melts: 1) five cooling rates (25, 12.5, 3, 0.5, and 0.125 °C/min) between 1300° and 800 °C, and 2) a 11 0.5 °C/min cooling rate from 1300 °C with quench temperatures at 1200°, 1100°, 1000° and 900 °C. Trachytic run-products are invariably glassy. Nucleation is also suppressed in the latitic run-products at the three highest 13 cooling rates. Conversely, in the 0.5 and 0.125 °C/min runs, latites have a crystal content of 90 vol.%. The 14 phases are: plagioclase, clinopyroxene, glass and iron-bearing oxide (in order of abundance). The variable 15 quench temperatures, investigated by coupling experiments with Pt-wire and Pt- capsule sample containers inset 2,again did not produce crystallization of trachyte, whereas latitic samples are characterized by 10 vol.% of oxides, pyroxenes and plagioclase (in order of appearance), at temperature b1000 °C. Effects of (preferential) heterogeneous nucleation on sample holders, of superheating degree, and chemical species loss during cooling are absent for both melt compositions. The difference of solidification paths between these two silicate melts can be ascribed only to their small chemical differences. In comparison with calculated equilibrium conditions all the experimental latitic and trachytic run-products revealed strong kinetic effects, interpretable in the light of the nucleation theory. The glass- forming ability (GFA) of trachyte is higher, whereas their critical cooling rate (Rc) is lower (b0.125 °C/min), in comparison to latitic melts (RcN0.5 °C/min). The experimental results carried out in this study can be applied to lava flows and domes; trachytic lavas are able to flow for longer period with respect to latitic ones in a metastable condition. Glass-rich terrestrial lavas, i.e. obsidians, can be the result of sluggish nucleation kinetics due to the relative high polymerisation of evolved silicate melts.
    Beschreibung: Published
    Beschreibung: 91-101
    Beschreibung: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): crystallization ; lava flows ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 36
    Publikationsdatum: 2021-01-07
    Beschreibung: The CO2 degassing process from a large area on the Tyrrhenian side of central Italy, probably related to the input into the upper crust of mantle fluids, was investigated in detail through the geochemical study of gas emissions and groundwater. Mass-balance calculations and carbon isotopes show that over 50% of the inorganic carbon in regional groundwater is derived from a deep source highlighting gas−liquid separation processes at depth. The deep carbonate−evaporite regional aquifer acts as the main CO2 reservoir and when total pressure of the reservoir fluid exceeds hydrostatic pressure, a free gas phase separates from the parent liquid and escapes toward the surface generating gas emissions which characterise the study area. The distribution of the CO2 flux anomalies and the location of high PCO2 springs and gas emissions suggest that the storage and the expulsion of the CO2 toward the atmosphere are controlled by the geological and structural setting of the shallow crust. The average CO2 flux and the total amount of CO2 discharged by the study area were computed using surface heat flow, enthalpy and CO2 molality of the liquid phase circulating in the deep carbonate−evaporite aquifer. The results show that the CO2 flux varies from 1×104 mol y−1 km−2 to 5×107 mol y−1 km−2, with an average value of 4.8×106 mol y−1 km−2, about five times higher than the value of 1×106 mol y−1 derived by Kerrick et al. [Kerrick, D.M., McKibben, M.A., Seward, T.M., Caldeira, K., 1995. Convective hydrothermal CO2 emission from high heat flow regions. Chem. Geol. 121, 285–293] as baseline for terrestrial CO2 emissions. The total CO2 discharged from the study area is 0.9×1011 mol y−1, confirming that Earth degassing from Tyrrhenian central Italy is a globally relevant carbon source
    Beschreibung: Published
    Beschreibung: 89–102
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: 4.5. Degassamento naturale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Earth degassing ; carbon dioxide ; CO2 flux ; groundwater ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 37
    Publikationsdatum: 2021-05-17
    Beschreibung: Papandayan is a stratovolcano situated in West Java, Indonesia. Since the last magmatic eruption in 1772,only few hydrothermal explosions have occurred. An explosive eruption occurred in November 2002 and ejected ash and altered rocks. The altered rocks show that an advanced argillic alteration took place in the hydrothermal system by interaction between acid fluids and rocks. Four zones of alteration have been defined and are limited in extension and shape along faults or across permeable structures at different levels beneath the active crater of the volcano. At the present time, the activity is centered in the northeast crater with discharge of low temperature fumaroles and acid hot springs. Two types of acid fluids are emitted in the crater of Papandayan volcano: (1) acid sulfate-chloride waters with pH between 1.6 and 4.6 and (2) acid sulfate waters with pH between 1.2 and 2.5. The water samples collected after the eruption on January 2003 reveal an increase in the SO4/Cl and Mg/Cl ratios. This evolution is likely explained by an increase in the neutralization of acid fluids and tends to show that water–rock interactions were more significant after the eruption. The evolution in the chemistry observed since 2003 is the consequence of the opening of new fractures at depth where unaltered (or less altered) volcanic rocks were in contact with the ascending acid waters. The high δ34S values (9–17‰) observed in acid sulfatechloride waters before the November 2002 eruption suggest that a significant fraction of dissolved sulfates was formed by the disproportionation of magmatic SO2. On the other hand, the low δ34S (−0.3–7‰) observed in hot spring waters sampled after the eruption suggest that the hydrothermal contribution (i.e. the surficial oxidation of hydrogen sulfide) has increased.
    Beschreibung: Published
    Beschreibung: 276-286
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Papandayan volcano ; Indonesia ; phreatic eruption ; hydrothermal system ; fluid geochemistry ; advanced argillic alteration ; gas geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 38
    Publikationsdatum: 2020-11-17
    Beschreibung: TWODEE-2 is a FORTRAN 90 code based on previous code (TWODEE). It is designed to solve the shallow water equations for fluid depth, depth-averaged horizontal velocities and depth-averaged fluid density. The shallow layer approach used by TWODEE-2 is a compromise between the complexity of CFD models and the simpler integral models. It can be used for forecasting gas dispersion near the ground and/or for hazard assessment over complex terrains. The inputs to the model are topography, terrain roughness, wind measurements from meteorological stations and gas flow rate from the ground sources. Optionally the model can be coupled with the output of a meteorological processor which generates a zero-divergence wind field incorporating terrain effects. Model outputs are gas concentration, depth-averaged velocity, averaged cloud thickness and dose. The model can be a useful tool for gas hazard assessment by evaluating where and when lethal concentrations for humans and animals can be reached.
    Beschreibung: Published
    Beschreibung: 667-674
    Beschreibung: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Dense gas transport ; Fortran code ; Gas hazard ; Computational model ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 39
    Publikationsdatum: 2017-04-04
    Beschreibung: The October 17 to November 5, 1999, eruption of Mount Etna’s Bocca Nuova crater emplaced a V15U106 m3 flow field. The eruption was characterized by 11 paroxysmal events during which intense Strombolian and lava fountain activity fed vigorous channelized PaPa flows at eruption rates of up to 120 m3 s31. Each paroxysm lasted between 75 and 450 min, and was separated by periods of less intense Strombolian activity and less vigorous (610 m3 s31) effusion. Ground-based, satellite- and model-derived volumetric data show that the eruption was characterized by two periods during which eruption rates and cumulative volume showed exponential decay. This is consistent with a scenario whereby the system was depressurized during the first eruptive period (October 17^23), repressurized during an October 24 pause, and then depressurized again during the second period (October 25^28). The imbalance between the erupted and supplied volumes mean that the two periods involved the collection of 1.5^5.7U106 m3 and 1.2^ 3.6U106 m3, respectively, or an increase in the time-averaged supply to 11.6^13.6 m3 s31 and 12.5^14.9 m3 s31. Two models are consistent with the observed episodic fountaining, derived volumetric trends and calculated volume imbalance: a magma collection model and a pulsed supply model. In the former case, depressurization of a shallow reservoir cause the observed volumetric trends and foam collapse at the reservoir roof powers fountaining. In the pulsing case, variations in magma flux account for pressurization^depressurization and supply the excess volume. Increases in rise rate and volatile flux, coupled with rapid exsolution during ascent, trigger fountaining. Limiting equations that define critical foam layer volumes and magma rise rates necessary for Hawaiian-style fountaining favor the latter model.
    Beschreibung: Published
    Beschreibung: 79-95
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.5. Geologia e storia dei sistemi vulcanici
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Etna ; lava fountaining ; eruption rates ; lava channel ; foam layers ; rise rates ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 40
    Publikationsdatum: 2017-04-04
    Beschreibung: El Chichón volcano (Chiapas, Mexico) erupted violently in March–April 1982, breaching through the former volcano–hydrothermal system. Since then, the 1982 crater has hosted a shallow (1–3.3 m, acidic (pH ∼ 2.2) and warm (∼ 30 °C) crater lake with a strongly varying chemistry (Cl/SO4=0–79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake,meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009±1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake–spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.
    Beschreibung: Published
    Beschreibung: 237–248
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): El Chichón volcano ; crater lake–Spring dynamics ; fluid geochemistry ; stable isotopes ; monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 41
    Publikationsdatum: 2017-04-04
    Beschreibung: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamic of the volcano, marking the passage from a period (March 1993 – June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveal a southward motion of the upper southern part of the volcano, driven by a NNW-SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Beschreibung: In press
    Beschreibung: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Beschreibung: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Beschreibung: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 3.5. Geologia e storia dei sistemi vulcanici
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: 4.4. Scenari e mitigazione del rischio ambientale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Stress release ; Dike ; Volcano-tectonics ; Flank instability ; Mount Etna ; Instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 42
    Publikationsdatum: 2017-04-04
    Beschreibung: Three different methodologies were used to measure Radon (222Rn) in soil, based on both passive and active detection system. The first technique consisted of Solid State Nuclear Track Detectors (SSNTD), CR-39 type, and allowed integrated measurements. The second one consisted of a portable device for short time measurements. The last consisted of a continuous measurement device for extended monitoring, placed in selected sites. Soil 222Rn activity was measured together with soil Thoron (220Rn) and soil carbon dioxide (CO2) efflux, and it was compared with the content of radionuclides in the rocks. Two different soil gas horizontal transects were investigated across the Pernicana fault system (NE flank of Mount Etna), from November 2006 to April 2007. The results obtained with the three methodologies are in a general agreement with each other and reflect the tectonic settings of the investigated study area. The lowest 222Rn values were recorded just on the fault plane, and relatively higher values were recorded a few tens of meters from the fault axis on both of its sides. This pattern could be explained as a dilution effect resulting from high rates of soil CO2 efflux. Time variations of 222Rn activity were mostly linked to atmospheric influences, whereas no significant correlation with the volcanic activity was observed. In order to further investigate regional radon distributions, spot measurements were made to identify sites having high Rn emissions that could subsequently be monitored for temporal radon variations.. SSNTD measurements allow for extended-duration monitoring of a relatively large number of sites, although with some loss of temporal resolution due to their long integration time. Continuous monitoring probes are optimal for detailed time monitoring, but because of their expense, they can best be used to complement the information acquired with SSNTD in a network of monitored sites.
    Beschreibung: In press
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 4.4. Scenari e mitigazione del rischio ambientale
    Beschreibung: 4.5. Degassamento naturale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Soil Radon and Thoron activity ; soil CO2 efflux ; Pernicana fault system ; Mount Etna ; volcano-tectonic monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 43
    Publikationsdatum: 2017-04-04
    Beschreibung: In this paper we will discuss a simplified thermodynamic description for the saturation of FeS, either liquid or solid, in magmatic melts. The Conjugated-Toop–Samis–Flood–Grjotheim model [Moretti R. and Ottonello G., 2005. Solubility and speciation of sulfur in silicate melts, the Conjugated-Toop–Samis–Flood–Grjotheim (CTSFG) model. Geochimica et Cosmochimica Acta, 69, 801–823] has furnished the theoretical reference frame, since it already accounts for the solubility of gaseous sulfur and the speciation and oxidation state of sulfur in silicate melts. We provide a new model to predict the saturation of magmatic silicate melts with an FeS phase that is internally consistent with these previous parameterizations. The derived model provides an effective sulfogeobarometer, which is superior with respect to previous models. For magmas rising from depth to surface, our appraisal of molar volumes of sulfur-bearing species in silicate melts allows us to model oxidation–reduction processes at different pressures, and sulfur concentrations for saturationwith either liquid or solid phases. In this respect, the nature of the oxygen fugacity buffer is critical. On the basis of model results on some typical compositions of volcanological interest, the sulfur contents at sulfide saturation (SCSS) have been calculated and the results duplicate the experimental observations that the SCSS is positively correlatedwith pressure forwatersaturated acidic melts and negatively correlated with pressure for water-poor basaltic melts. This new model provides fO2–fS2 pairs of FeS saturation of natural silicatemelts. In caseswhere the redox constraint is lacking, the model can be used to investigate whether the dissolved sulfur content approaches SCSS or not, and if so, to estimate at which fO2 value the silicate melt is saturated with a sulfide phase
    Beschreibung: Published
    Beschreibung: 286–298
    Beschreibung: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Sulfur ; Silicate melt ; Iron sulfide ; Chemical thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 44
    Publikationsdatum: 2017-04-04
    Beschreibung: Using constraints from literature data on the petrology and texture of erupted material from Stromboli and geochemical measurements of gas emissions together with a model of gas solubility we construct a conceptual model of quiescent degassing for this volcano. We find that within a pressure range between 100 MPa and 50 MPa (∼3.6 km and ∼1.8 km depth respectively) vesiculating magma ascending within the conduit becomes permeable to gas flow and a transition from closed- to open-system degassing takes place. Above the transition, gas, rich in the most insoluble gases, flows up through degassing magma, and thereby becomes enriched in more soluble gases during ascent to the surface. The final gas emission is therefore a superposition of gases released from magma above the percolation transition and gas that has evolved in closed-system below the transition. Steady-state gas release from Stromboli can only be sustained via magma circulation, driven by the density variation between ascending vesiculating magma and descending degassed magma. By balancing the buoyant force of ascending vesiculating magma against the viscous resistance produced by travelling through descending, degassed magma in a simple flow model we determine that a cylindrical conduit diameter of 2.5–2.9 m produces the magma mass flow rate of 575 kg s−1, required to account for the observed quiescent SO2 gas flux on Stromboli of ∼2.3 kg s−1 (200 td−1).
    Beschreibung: Published
    Beschreibung: 46–60
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Stromboli ; gas ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 45
    Publikationsdatum: 2017-04-04
    Beschreibung: Direct measurement of present day CH4 diffuse degassing from the soil represents an effective tool to better estimate the degassing rate of individual sources and to calibrate global Earth degassing estimates. While many data exist on CH4 emissions from ecosystems, agricultural soils and landfills, few estimates of CH4 emissions from volcanic-geothermal areas have been performed. The authors report results and discuss applications of accumulation-chamber measurements of soil CH4 and CO2 flux from Solfatara of Pozzuoli (Naples), Vulcano Island and Poggio dell’Olivo (Viterbo) volcanic-geothermal areas, and the Palma Campania landfill (Naples). Volcanic-geothermal study areas are characterised by vent discharges of fluids with different CH4/CO2 ratios (from 4.7X1E-5 to 7.5X1E-5, 4.7X1E-4 and 2.5X1E-3 by weight, for Solfatara of Pozzuoli, Vulcano island, and Poggio dell’Olivo areas, respectively). Soil CH4 fluxes range from 0.003 to 48 g m-2 day-1 in the volcanic-geothermal areas and from 0.0021 to 936 g m-2 day-1 in the landfill, with high spatial variability observed in all areas. Using statistical methods different flux populations were distinguished (i.e. background soil gases and deeply derived gases) and the total gas emissions from study sites calculated. The results of this work show that CH4/CO2 ratios of deep fluids, fumarolic fluids in the case of the volcanicgeothermal environment and biogas in landfills, are roughly maintained in the gas phase diffusely degassed by the soil. Due to high spatial variability, a large number of flux measurements and appropriate statistical methods are needed to estimate total gas discharge from study areas. Furthermore, the simultaneous measurement of diffuse CH4 and CO2 fluxes represents a strong constraint for interpretative models of deep processes associated with soil degassing.
    Beschreibung: Published
    Beschreibung: 45-54
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): methane flux ; accumulation chamber ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 46
    Publikationsdatum: 2017-04-04
    Beschreibung: During 2001–2005, Mount Etna was characterized by intense eruptive activity involving the emission of petrologically different products from several vents, which involved at least two types of magma with different degrees of evolution. We investigated the ratios and abundances for noble-gas isotopes in fluid inclusions trapped in olivines and pyroxenes in the erupted products. We confirm that olivine has the most efficient crystalline structure for preserving the pristine composition of entrapped gases, while pyroxene can suffer diffusive He loss. Both the minerals also experience noble gas air contamination after eruption. Helium isotopes of the products genetically linked to the two different magmas fall in the isotopic range typical of the Etnean volcanism. This result is compatible with the metasomatic process that the Etnean mantle is undergoing by fluids from the Ionian slab during the last ten kyr, as previously inferred by isotope and trace element geochemistry. Significant differences were also observed among olivines of the same parental magma that erupted throughout 2001–2005, with 3He/4He ratios moving from about 7.0 Ra in 2001 volcanites, to 6.6 Ra in 2004–2005 products. Changes in He abundances and isotope ratios were attributed to variations in protracted degassing of the same magma bodies from the 2001 to the 2004–2005 events, with the latter lacking any contribution of undegassed magma. The decrease in 3He/4He is similar to that found from measurements carried out every fifteen days during the same period in gases discharged at the periphery of the volcano. To our knowledge this is the first time that such a comparison has been performed so in detail, and provides strong evidence of the real-time feeding of peripheral emissions by magmatic degassing.
    Beschreibung: Published
    Beschreibung: 683-690
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): fluid inclusions ; noble gases ; helium isotopes ; magma degassing ; olivine ; pyroxene ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 47
    Publikationsdatum: 2017-04-04
    Beschreibung: An extensive geochemical survey of the fluids released by the volcanic/geothermal system of Methana was undertaken. Gases were characterized based on the chemical and isotopic [helium (He) and carbon (C)] analysis of 27 samples. Carbon dioxide soil gas concentration and fluxes were measured at 179 sampling sites throughout the peninsula. Forty samples of thermal and cold groundwaters were also sampled and analysed to characterize the geochemistry of the aquifers. Gases of hydrothermal origin gave a preliminary geothermometric estimate of about 210 °C. The He-isotope composition indicated mantle contributions of up to 40%, and the C-isotope composition of CO2 indicated that it predominantly (〉90%) originated from limestone decomposition. The groundwater composition was suggestive of mixing between meteoric and hydrothermally modified sea-water endmembers and water–rock interaction processes limited to simple rock dissolution driven by an increased endogenous CO2 content. All of the thermal manifestations and anomalous degassing areas, although of limited extent, were spatially correlated with the main active tectonic system of the area. The total CO2 output of the volcanic system has been preliminary estimated to be less than 0.05 kg s–1. Although this value is very low compared to those of other volcanic systems, anomalous CO2 degassing at Methana – which is currently restricted to limited areas and at present is the only volcanic risk of the peninsula – is a potential gas hazard that warrants further assessment in future studies.
    Beschreibung: Published
    Beschreibung: 818-828
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Methana ; south Aegean volcanic arc ; fluids geochemistry ; soil gases ; groundwaters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 48
    Publikationsdatum: 2017-04-04
    Beschreibung: The tectonic escarpments locally known as ‘Timpe’ cut a large sector of the eastern flank of Etna, and allow an ancient volcanic succession dating back to 225 ka to be exposed. Geological and volcanological investigations carried out on this succession have allowed us to recognize relevant angular unconformities and volcanic features which are the remnants of eruptive fissures, as well as important changes in the nature, composition and magmatic affinity of the exposed volcanics. In particular, the recognition in the lower part of the succession of important and unequivocal evidence of ancient eruptive fissures led us to propose a local origin for these volcanics and to revise previous interpretations which attributed their westward-dipping to the progressive tectonic tilting of strata. These elements led us to reinterpret the main features of the volcanic activity occurring since 250 ka BP and their relationship with tectonic structures active in the eastern flank of Etna. We propose a complex paleo-environmental and volcanotectonic evolution of the southeastern flank of Mt. Etna, in which the Timpe fault system played the role of the crustal structure that allowed the rise and eruption of magmas in the above considered time span.
    Beschreibung: Published
    Beschreibung: 289-306
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.5. Geologia e storia dei sistemi vulcanici
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mount Etna ; tectonics ; fisssure eruptions ; columnar basalt ; fault escarpment ; xenoliths ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 49
    Publikationsdatum: 2017-04-04
    Beschreibung: A new method combining measurements of soil CO2 flux and determinations of the carbon isotopic composition of soil CO2 efflux was developed in order to qualitatively and quantitatively characterise the CO2 source feeding the soil CO2 diffuse degassing. The method was tested in March 2007 at the Solfatara of Pozzuoli volcano degassing area (Naples, Italy) where more than 300 measurements of soil CO2 flux and determinations of the carbon isotopic composition of soil CO2 efflux were performed, surveying Solfatara crater and its surroundings. The wide range of CO2 flux and CO2 isotopic composition values (from 8.4 g m−2 d−1 to 28,834 g m−2 d−1, and from 0.73‰ to −33.54‰, respectively), together with their statistical distributions suggests the occurrence of multiple CO2 sources feeding soil degassing. The combined interpretation of flux and isotopic data allows us to identify and characterise two distinct gas sources: a hydrothermal and a biogenic source. The soil CO2 from the hydrothermal source is characterised by a mean δ13CCO2 of −2.3‰±0.9‰, hence close to the isotopic composition of the fumarolic CO2 (δ13CCO2=−1.48‰± 0.22‰) and by a mean CO2 flux of 2875 g m−2 d−1. The CO2 from the biogenic source is characterised by a mean δ13CCO2 of −19.4‰±2.1‰, and by a mean CO2 flux of 26 g m−2 d−1, which are both in the range of the typical values for biologic CO2 soil degassing. This reliable characterisation of the biogenic CO2 flux would not have been possible by solely applying a statistical analysis of the CO2 flux values, which is commonly applied in volcanological studies for the partitioning between background fluxes and anomalous CO2 fluxes. A map of the Solfatara diffuse degassing structure was derived from the estimated threshold for the biogenic CO2 flux, highlighting that soil degassing of hydrothermal CO2 mixed in different proportion with biogenic CO2 occurs over a large area (~0.8 km2), which extends over the inner part of the Solfatara crater as well as the eastern periphery, corresponding with a NW–SE fault system. The presented method and data analysis are important means of surveillance of the volcanic activity.
    Beschreibung: Published
    Beschreibung: 372–379
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: 4.5. Degassamento naturale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): CO2 soil degassing ; CO2 flux ; carbon dioxide ; carbon isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 50
    Publikationsdatum: 2017-04-04
    Beschreibung: We investigated the existence of a fractal law (power law) distribution of size pyroclastic fragments erupted during the fallout phase of the 79 A.D. Plinian eruption at Mt. Vesuvius. In particular, we performed a particle size distribution analysis on 18 white and grey pumice samples collected in six sites distributed in the SW sector of Mt. Vesuvius. Our measurements show that the fragmentation of samples in the investigated range (from 32 mm to 850 μm) follows a power law, guaranteeing the scale invariance of the process. The relationship frequency-size distribution of the fragments is verified independently from the nature (i.e., pumices and lithics) and stratigraphic height of the considered samples in the pyroclastic deposit. Therefore, the fractal fragmentation theory can be indicated for evaluating the relationship between the intensity of fragmentation (fractal dimension D) and eruption energy. In this way the apparent chaotic distribution of the particles in the fallout deposits hides a self-organized complexity revealed by the retrieved power law distribution. We further remark that a key aspect of our analysis is the founded evidence that the fractal dimension of the lithics is systematically greater than that of the pumices.
    Beschreibung: Published
    Beschreibung: 288–299
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): fragmentation ; power law distribution ; fractal dimension ; scale invariant ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 51
    Publikationsdatum: 2017-04-04
    Beschreibung: The recent eruption of Stromboli in February–April 2007 offered a unique chance to test our current understanding of processes driving the transition from ordinary (persistent Strombolian) to effusive activity, and the ability of instrumental geophysical and geochemical networks to interpret and predict these events. Here, we report on the results of two years of in-situ sensing of the CO2/SO2 ratio in Stromboli's volcanic gas plume, in the attempt to put constraints on the trigger mechanisms and dynamics of the eruption. We show that large variations of the plume CO2/SO2 ratio (range, 0.9–26) preceded the onset of the eruption (since December 2007), interrupting a period of relatively-steady and low ratios (time-averaged ratio, 4.3) lasting from at least May to November 2006. By contrasting our observations with numerical simulations of volcanic degassing at Stromboli, derived by use of an equilibrium saturation model, we suggest that the pre-eruptive increase of the ratio reflected an enhanced supply of deeply-derived CO2-rich gas bubbles to the shallowplumbing system. This larger-than-normal ascent of gas bubbles was likely sourced by a 1–3 km deep gas– melt separation region (probably a magma storage zone), and caused faster convective overturning of magmas in the shallow conduit; an increase in the explosive rate and in seismic tremor, and finally the collapse of the la Sciara del Fuoco sector triggering the effusive phase. The high CO2/SO2 ratios (up to 21) observed during the effusive phase, and particularly in the days and hours before a paroxysmal explosion on March 15, 2007, indicate the persistence of the same gas source; and suggest that de-pressurization of the same 1–3 km deep magma storage zone could have been the trigger mechanism for the paroxysm itself
    Beschreibung: In press
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Stromboli ; plume chemistry ; magma degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 52
    facet.materialart.
    Unbekannt
    Elsevier
    Publikationsdatum: 2017-04-04
    Beschreibung: Video surveillance systems are consolidated techniques for monitoring eruptive phenomena in volcanic areas. Along with these systems, which use standard video cameras, people working in this field sometimes make use of infrared cameras providing useful information about the thermal evolution of eruptions. Real-time analysis of the acquired frames is required, along with image storing, to analyze and classify the activity of volcanoes. Human effort and large storing capabilities are hence required to perform monitoring tasks. In this paper we present a new strategy aimed at improving the performance of video surveillance systems in terms of human-independent image processing and storing optimization. The proposed methodology is based on real-time thermo-graphic analysis of the area considered. The analysis is performed by processing images acquired with an IR camera and extracting information about meaningful volcanic events. Two software tools were developed. The first provides information about the activity being monitored and automatically adapts the image storing rate. The second tool automatically produces useful information about the eruptive activity encompassed by a selected frame sequence. The software developed includes a suitable user interface allowing for convenient management of the acquired images and easy access to information about the volcanic activity monitored.
    Beschreibung: Published
    Beschreibung: 85-91
    Beschreibung: reserved
    Schlagwort(e): Volcano monitoring ; Image processing ; Smart storing rate ; Eruption data ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 483034 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 53
    Publikationsdatum: 2017-04-04
    Beschreibung: Several sites with anomalous emissions of carbon dioxide were investigated in the region south of Mt. Etna volcano in order to assess the types of emission (focused and/or diffuse), their surface extension and the total output of CO2. Most of the studied emissions are located on the southwest boundary of Mt. Etna, near the town of Paternò. They consist of three mud volcanoes (known as Salinelle), one spring with bubbling gas (Acqua Grassa) and one area of diffuse degassing (Peschería). Another site (Naftía Lake) with remarkable gas emissions (bubbling gas into a lake as well as adjacent areas of diffuse soil degassing) is located further southwest of Mt. Etna in an area of extinct Quaternary volcanism on the northwest margin of Hyblean Mts. In all of these areas the origin of the highest CO2 emissions is clearly magmatic, and degassing to the atmosphere occurs mostly through tectonic structures, probably at a regional scale. The magmatic source that feeds anomalous degassing in the above areas is likely to be the same that feeds volcanic activity at Mt. Etna. Focused degassing was measured at each emission vent using devices that measure the air speed, whereas diffuse soil degassing was measured using the accumulation chamber method. In total, 712 measurements were carried out (146 in focused degassing vents, 566 on diffuse degassing areas). Single CO2 output values ranged from 1.8 10−5 to 1.68 kg s−1. In the case of diffuse degassing areas, statistical analyses allowed to discriminate between biogenic CO2 and CO2 deriving from a magmatichydrothermal source. Only the efflux values from the latter source were considered in the output estimates. The total estimated output thus obtained was about 2.61 kg s−1, relevant to a total surface of about 146,500 m2 (which includes only the magmatic CO2 emissions). This value is comparable with that of most non-volcanic emissions from geothermal and/or faulted areas of centralsouthern Italy, as well with the CO2 output from some of the volcanic areas of Italy.
    Beschreibung: Istituto Nazionale di Geofisica e Vulcanologia; Dipartimento per la Protezione Civile.
    Beschreibung: Published
    Beschreibung: 46–63
    Beschreibung: 4.5. Degassamento naturale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mt. Etna ; mud volcanoes ; soil CO2 effluxes ; magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 54
    Publikationsdatum: 2017-04-04
    Beschreibung: The sustained and uninterrupted plume degassing at Mount Etna volcano, Southern Italy, represents the troposphere’s most prominent natural source of fluorine. Of the ~ 200 Mg of fluorine (as HFg) emitted daily by the volcano, 1.6±2.7 Mg are deposited by wet and dry deposition. Fluorine-deposition via volcanic ash, here characterised for the first time, can be quite significant during volcanic eruptions (i.e. 60 Mg of fluorine were deposited during the 2001 eruption through volcanic ash, corresponding to ~ 85% of the total fluorine deposition). Despite the fact that these depositions are huge, the fate of the deposited fluorine and its impact on the environment are poorly understood. We herein present original data on fluorine abundance in vegetation (Castanea Sativa and Pinus Nigra) and andosoils from the volcano’s flank, in the attempt to reveal the potential impact of volcanogenic fluorine emissions. Fluorine contents in chestnut leaves and pine needles are in the range 1.8-35 µg/g and 2.1-74 µg/g respectively; they exceed the typical background concentrations in plants growing in rural areas, but fall within the lower range of typical concentrations in plants growing near high fluorine anthropogenic emission sources. The rare plume fumigations on the lower flanks of Mt Etna (distance 〉 4 km from summit craters) are probably the cause of the “undisturbed” nature of Etnean vegetation: climatic conditions, which limit the growth of vegetation on the upper regione deserta, are a natural limit to the development of more severe impacts. High fluorine contents, associated with visible symptoms, were only measured in pine needles at three sites, located near recently-active (2001 to 2003) lateral eruptive fractures. Total fluorine contents (FTOT) in the Etnean soils have a range of 112-341 µg/g, and fall within the typical range of undisturbed soils; fluorine extracted with distilled water (FH2O) have a range of 5.1 to 61 µg/g and accounts for 2-40 % of FTOT. FH2O is higher in topsoils from the eastern flank (downwind), while it decreases with depth in soil profiles and on increasing soil grain size (thereby testifying to its association with clay-mineral-rich, fine soil fractions). The fluorine adsorption capacity of the andosoils acts as a natural barrier that protects the groundwater system.
    Beschreibung: Published
    Beschreibung: 87-101
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 4.5. Degassamento naturale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mt. Etna ; Fluorine ; environmental volcanology ; impact of volcanic F ; soils ; vegetation ; volcanic ash ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 55
    Publikationsdatum: 2017-04-04
    Beschreibung: Introduction of a special issue of the journal
    Beschreibung: no abstract
    Beschreibung: Published
    Beschreibung: 1-4
    Beschreibung: 4.5. Degassamento naturale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Earth's degassing ; volcanic areas ; seismic areas ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 56
    Publikationsdatum: 2017-04-04
    Beschreibung: A physical model based on the advective–diffusion theory was developed in order to describe the mixing between a deep gas source and the atmosphere. The model was used to predict the isotopic fractionation of carbon in soil CO2. Gas samples were collected at different depths in areas characterized by different geological settings and CO2 fluxes. The relative theoretical and experimental isotopic profiles were compared and a good agreement was found. These profiles show how the isotopic composition of CO2 changes through the upper few decimeters of soil and how the amount of the isotopic fractionation is strongly influenced by soil CO2 flux. Finally, the model was used to derive the carbon isotopic composition of unfractioned deep CO2 source for all the investigated sites
    Beschreibung: Published
    Beschreibung: 3016–3027
    Beschreibung: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: 4.5. Degassamento naturale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Carbon isotope fractionation ; soil degassing ; gas transport ; D13C(CO2) ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 57
    Publikationsdatum: 2017-04-03
    Beschreibung: Mount Etna has developed at the intersection of two regional tectonic lineaments, the NNW–SSE trending Hybleo–Maltese escarpment, which separates the thick inland continental crust of the African platform from the Ionian Mesozoic oceanic crust, and the NE–SW Messina–Fiumefreddo fault that marks a rift zone between south Calabria and north-eastern Sicily, extending as far as the Mt. Etna area. All tectonic features affect, with outstanding surface features, the eastern side of the volcano. The eastern flank of the volcano is affected by a long-term motion toward ESE. In 1997, in order to increase the detail of the ground deformation pattern on the lower eastern flank of Mt. Etna, a new GPS network, the “Ionica” network, was installed on this sector of the volcano. This GPS network consists of 24 stations and covers the lower eastern flank of the volcano from the town of Catania to Taormina and from the coastline up to an altitude of about 1300 m. All the new stations consist in self-centring benchmarks; this kind of benchmark allows all station set-up errors to be avoided. Before the merging of the Ionica network to the frame of the global GPS network of Mt. Etna (in June 2001), three surveys were carried out on this network: in September 1997, August 1998 and January 2001. From the ground deformation pattern, it is possible to distinguish two different sectors, showing different characteristics of deformation. The southern part of the network shows a more uniform distribution of the vertical motion with a mean SE-ward horizontal component while the northern one shows an heterogeneous vertical motion with a ESE-ward horizontal component. Furthermore, a higher velocity is detected between 1997 and 1998, due to the additional stress induced by a shallow intrusion on the NW flank of the volcano. The model resulting from data inversions defines a wide sliding plane beneath the entire eastern flank of the volcano with a low dip angle. The expected velocity vectors fit well the observed ones, even if the measured velocities are still quite higher than expected, at lowermost stations. The vertical inclination of the velocity vectors measured during the 1998–2001 period, gradually decreases from West to East suggesting a sort of rotational movement of the south-eastern flank, interrupted by some anomalous vectors on the lower part, that show higher vertical velocities. These anomalies, being located on a wedge defined by the intersection of the main NNW–SSE and NE–SW fault systems and near the Timpe faults, are probably due to the activity of the vertical faults cutting the lower eastern flank of Mt. Etna. Stations lying on the hanging wall and on the footwall of the Timpe fault system are affected by similar horizontal displacements, meaning that these structures are moving eastwards together with the sliding flank; this evidence suggests that the Timpe faults are probably second order structures, with respect to the detachment surface. These results depict a structural framework of the eastern flank of Mt. Etna in which the low angle dislocation can be considered as a first order approximation of an actual listric plane and the current active part of the Timpe fault system is confined above the detachment surface.
    Beschreibung: Published
    Beschreibung: 357-369
    Beschreibung: reserved
    Schlagwort(e): ground deformation ; flank dynamics ; volcano–tectonics ; Etna volcano ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 813929 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 58
    Publikationsdatum: 2017-04-04
    Beschreibung: Our knowledge of the degassing pattern of sulphur, chlorine and fluorine during ascent and eruption of basaltic magmas is still fragmental and mainly limited to water-poor basalts. Here we model and discuss the pressure-related degassing behaviour of S, Cl and F during ascent, differentiation and extrusion of H2O–CO2-rich alkali basalt on Mount Etna (Sicily) as a function of eruptive styles. Our modelling is based on published and new melt inclusion data for dissolved volatiles (CO2, H2O, S, Cl, F) in quenched explosive products from both central conduit (1989–2001) and lateral dyke (2001 and 2002) eruptions. Pressures are obtained from the dissolved H2O and CO2 concentrations, and vapour–melt partition coefficients of S, Cl and F are derived from best fitting of melt inclusion data for each step of magma evolution. This allows us to compute the compositional evolution of the gas phase during either open or closed system degassing and to compare it with the measured composition of emitted gases. We find that sulphur, chlorine and fluorine begin to exsolve at respective pressures of ∼140 MPa, ∼100 MPa and ≤10 MPa during Etna basalt ascent and are respectively degassed at 〉95%, 22–55%, and ∼15% upon eruption. Pure open system degassing fails to explain gas compositions measured during either lateral dyke or central conduit eruptions. Instead, closed-system ascent and eruption of the volatile-rich basaltic melt well accounts for the time-averaged gas composition measured during 2002-type lateral dyke eruptions (S/Cl molar ratio of 5±1, 35% bulk Cl loss). Extensive magma fragmentation during the most energetic fountaining phases enhances Cl release (55%) and produces a lower S/Cl ratio of 3.7, as actually measured. Comparatively slower magma rise in the central conduits of Etna favours both sulphide saturation of the melt and greater chlorine release (55%), resulting in a distinct S/Cl evolution path and final ratio in eruptive gas. In both eruption types, any previous bubble–melt separation at depth leads to increased S/Cl and S/F ratios in emitted gas. High S/Cl ratios measured during some discrete eruptive events can thus be explained by transitions from closed (deep) to open (shallow) system degassing, with differential gas transfer extending down to ∼2 km depth below the vents. This depth coincides with the base of the volcanic pile where structural discontinuities and the high magma vesicularity (60%) may favour separate gas flow. Finally, the excess S–Cl–F gas discharge through Etna summit craters during non-eruptive periods requires a mixed supply from shallow magma degassing in the volcanic conduits and deeper-derived SO2-rich bubbles from the sub-volcano plumbing system. Our modelling provides a useful reference framework for interpreting the monitored variations of S, Cl and F in Mount Etna gas emissions as a function of volcanic activity. More broadly, the observations made for S, Cl and F degassing on Etna may apply to other basaltic volcanoes with water-rich magmas, such as in arcs.
    Beschreibung: Published
    Beschreibung: 772-786
    Beschreibung: reserved
    Schlagwort(e): Mt Etna ; volatiles ; magma degassing ; eruptive mechanisms ; modelling ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 663124 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 59
    Publikationsdatum: 2017-04-04
    Beschreibung: Knowledge of the physical, chemical and thermodynamic properties of silicate melts and glasses is required to understand magma formation and evolution at all scales of observation. As is illustrated by the papers published in this special issue of Chemical Geology, there is a complex interplay between microscopic and macroscopic features. Whereas determining the microscopic structure of glasses and melts is useful to understand how macroscopic properties vary with pressure, temperature and composition, studies of macroscopic properties in turn put strong constraints on which microscopic aspects are actually relevant to a given problem. In this issue this approach is successfully applied to a variety of topics which range from melt rheology to volatile solubility or from spectroscopic investigations of silicate speciation to computer simulation studies of melt/glass structure. These papers were originally presented and discussed in April 2005 at the Vienna meeting of the European Union of Geosciences. They represent an up-to-date overview of current research in the field, ranging from classical approaches to new science and technology solutions which will help expand our research possibilities. We thank the Chemical Geology staff and all contributors and colleagues who made this volume possible.
    Beschreibung: Published
    Beschreibung: 1
    Beschreibung: open
    Schlagwort(e): NONE ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 45270 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 60
    Publikationsdatum: 2017-04-04
    Beschreibung: It has recently been demonstrated that methane emission from lithosphere degassing is an important component of the natural greenhouse-gas atmospheric budget. Globally, the geological sources are mainly due to seepage from hydrocarbon-prone sedimentary basins, and subordinately from geothermal/volcanic fluxes. This work provides a first estimate of methane emission from the geothermal/volcanic component at European level. In Europe, 28 countries have geothermal systems and at least 10 countries host surface geothermal manifestations (hot springs, mofettes, gas vents). Even if direct methane flux measurements are available only for a few small areas in Italy, a fair number of data on CO2, CH4 and steam composition and flux from geothermal manifestations are today available for 6 countries (Czech Republic, Germany, Greece, Iceland, Italy, Spain). Following the emission factor and area-based approach, the available data have been analyzed and have led to an early and conservative estimate of methane emission into the atmosphere around 10,000 ton/yr (4000–16,000 ton/yr), basically from an area smaller than 4000 km2, with a speculative upper limit in the order of 105 ton/yr. Only 4–18% of the conservative estimate (about 720 ton/yr) is due to 12 European volcanoes, where methane concentration in volcanic gases is generally in the order of a few tens of ppmv. Volcanoes are thus not a significant methane source. While the largest emission is due to geothermal areas, which may be situated next to volcanoes or independent. Here inorganic synthesis, thermometamorphism and thermal breakdown of organic matter are substantial. Methane flux can reach hundreds of ton/yr from small individual vents. Geothermal methane is mainly released in three countries located in the main high heat flow regions: Italy, Greece, and Iceland. Turkey is likely a fourth important contributor but the absolute lack of data prevents any emission estimate. Therefore, the actual European geothermal–volcanic methane emission could be easily projected to the 105 ton/yr levels, reaching the magnitude of some other natural sources such as forest fires or wild animals.
    Beschreibung: Published
    Beschreibung: 76-86
    Beschreibung: 4.5. Degassamento naturale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Methane ; volcanoes ; Geothermal vents ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 61
    Publikationsdatum: 2017-04-04
    Beschreibung: Recent studies suggested that Alban Hills (Rome) is a quiescent and not an extinct volcano, as it produced Holocene eruptions and several lahars until Roman times by water overflow fromthe Albano crater lake. Alban Hills are presently characterized by high PCO2 in groundwaters and by several cold gas emissions usually in sites where excavations removed the superficial impervious cover. Gas consists mostly of CO2 with minor H2S and the diffuse CO2 soil flux is locally very high. Accidental gas blowouts, occurred during shallow well drillings (tens to hundreds m depth) in zones with no surface gas manifestations, indicate the presence of gas pressurized aquifers confined underneath impermeable layers, within both the volcanic rock pile and the underlying Pleistocene loose sediments. Degassing mostly occurs in correspondence of bordering faults of buried horsts cut in the Mesozoic carbonate basement, hosting the main aquifer. Carbon isotopic composition (δ13CCO2) suggests that CO2 is at least partly originated by thermal decarbonation of these limestones. 3He/4He isotopic ratio of the gas (up to 1.9 Ra) is the same or even slightly higher than that of olivine and clinopyroxene fluid inclusions of the Alban Hills volcanic products, indicating a possible magmatic source for the gas. Low R/Ra values, compared to MORB and island arc magmas, are characteristic of the potassic Roman Comagmatic Province and reflect a deep involvement of crustal material in the magma genesis. The lack of high temperature fumaroles can be explained by an efficient meteoric cold water penetration and circulation in the volcano permeable terrains.
    Beschreibung: Published
    Beschreibung: 5-16
    Beschreibung: 4.5. Degassamento naturale
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Alban Hills ; magma degassing ; CO2 fluxes ; gas blowouts ; C and He isotopes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 62
    Publikationsdatum: 2019-10-18
    Beschreibung: We studied the surface deformations affecting the southeastern sector of the Po Plain sedimentary basin, in particular the area of Bologna. To this aim an advanced DInSAR technique, referred to as DInSAR–SBAS (Small BAseline Subset), has been applied. This technique allows monitoring the temporal evolution of a deformation phenomenon, via the generation of mean deformation velocity maps and displacement time series from a data set of acquired SAR images. In particular, we have processed a set of SAR data acquired by the European Remote Sensing Satellite (ERS) sensors and compared the achieved results with optical levelling measurements, assumed as reference. The surface displacements detected by DInSAR SBAS from 1992 to 2000 are between 10 mm/year in the historical part of Bologna town, and up to 59 mm/year in the NE industrial and agricultural areas. Former measurements from optical levelling referred to 1897 show 2–3 mm/year vertical movements. This trend of displacement increased in the second half of the 20th century and the subsidence rate reached 60 mm/year. We compared the more recent levelling campaigns (in 1992 and late 1999) and DInSAR results from 1992 to 1999. The standard deviation of the difference between levelling data, projected onto the satellite Line Of Sight, and DInSAR results is 2 mm/year. This highlights a good agreement between the measurements provided by two different techniques. The explanation of soil movements based on interferometric results, ground data and geological observations, allowed confirming the anthropogenic cause (surface effect due to the overexploitation of the aquifers) and highlights a natural, tectonic, subsidence.
    Beschreibung: Published
    Beschreibung: 304-316
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: JCR Journal
    Beschreibung: partially_open
    Schlagwort(e): InSAR ; surface deformation ; SAR interferometry ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 63
    Publikationsdatum: 2017-04-04
    Beschreibung: A Conjugated Toop-Samis-Flood-Grjotheim (CTSFG) model is developed by combining the framework of the Toop-Samis polymeric approach with the Flood-Grjotheim theoretical treatment of silicate melts and slags. Electrically equivalent ion fractions are computed over the appropriate matrixes (anionic and cationic) in a Temkin notation for fused salts, and are used to weigh the contribution of the various disproportionation reactions of type: M2/pO(melt)+ 1/2S(gas)+M2/pS(melt)+1/2O2(gas) M2/po(melt)+1/2S2(gas)+3/2O2(gas)-M2/pSO4(melt)v being the charge of the generic Mp-1 cation. The extension of the anionic matrix is calculated in the framework of a previously developed polymeric model (Ottonello et al., 2001), based on a parameterization of Lux-Flood acid-base properties of melt components. Model activities follow the Raoultian behavior implicit in the Temkin notation, without the needs of introducing adjustable parameters. The CTSFG model is based on a large amount of data available in literature and exhibits a satisfactory heuristic capability, with virtually no compositional limits, as long as the structural role given to each oxide holds. The model may be employed to compute gas-melt equilibria involving sulfur and allows computing sulfide and sulfate contents of silicate melts whenever the fugacity of a gaseous sulfur species and oxygen are known. Alternatively, the model calculates the oxidation state of the system (i.e., oxygen fugacity), whenever an analytical determination of either sulfide/sulfate or ferrous/ferric ratios in the melt is provided. Calculated sulfide and sulfate capacities allow the estimates of sulfur abundance in various melts of geological interest, both under anhydrous and hydrous conditions or, alternatively, of fS2, given fO2 and the bulk sulfur content. In this case, fSO2 and fH2S may be eventually computed along the water-sulfur-melt boundary provided fH2O is known.
    Beschreibung: Published
    Beschreibung: 801-823
    Beschreibung: partially_open
    Schlagwort(e): sulfur ; silicate melts ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 568 bytes
    Format: 1278538 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 64
    Publikationsdatum: 2017-04-04
    Beschreibung: Despite its impact in understanding oceanic crust formation and eruptive styles of related volcanism, magma dynamics at midocean ridges are poorly known. Here, we propose a new method to assess ascent rates of mid-ocean ridge basalt (MORB) magmas,as well as their pre- and sin-eruptive dynamics. It is based on the idea that a rising magma can reach a variable degree of both CO2 supersaturation in melt and kinetic fractionation among noble gases in vesicles in relation to its ascent rate through the crust. To quantify the relationship, we have used a model of multicomponent bubble growth in MORB melts, developed by extending the single-component model of Proussevitch and Sahagian [A.A. Proussevitch, D.L. Sahagian, Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling, J. Geophys. Res. 103 (1998), 18223–18251.] to CO2–He–Ar gas mixtures. After proper parameterization, we have applied it to published suites of data having the required features (glasses from Pito Seamount and mid-Atlantic ridges). Our results highlight that the investigated MORB magmas display very different ranges of ascent rates: slow rises of popping rock forming-magmas that cross the crust (0.01–0.5 m/s), slightly faster rates of energetic effusions (0.1–1 m/s), up to rates of 1–10 m/s which fall on the edge between lava effusion and Hawaiian activity. Inside a single plumbing system, very dissimilar magma dynamics highlight the large differences in compressive stress of the oceanic crust on a small scale. Constraints on how the systems of ridges work, as well as the characteristics of the magmatic source, can also be obtained. Our model shows how measurements of both the dissolved gas concentration in melt and the volatile composition of vesicles in the same sample are crucial in recognizing the kinetic effects and definitively assessing magma dynamics. An effort should be made to correctly set the studied samples in the sequence of volcanic submarine deposits where they are collected. Enhanced knowledge of a number of physical properties of gas-bearing MOR magmas is also required, mainly noble gas diffusivities, to describe multicomponent bubble growth at a higher confidence level.
    Beschreibung: Published
    Beschreibung: 138-158
    Beschreibung: partially_open
    Schlagwort(e): Bubble growth ; MORB ; Noble gas ; Kinetic fractionation ; Modeling ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 539 bytes
    Format: 695380 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 65
    Publikationsdatum: 2017-04-04
    Beschreibung: Thermal springs with a maximum measured temperature of 89°C discharge hot water and gas from a depth of 11 m, 400 m offshore of Punta Pantoque, located in the northern part of Bahìa de Banderas, near Puerto Vallarta, Mexico. The composition of all water samples collected from the sea bottom is close to that of sea water. Nevertheless, it was possible to estimate the thermal endmember composition by extrapolating the sulfate concentration to zero. This endmember is similar in chemical composition both to waters of the Rio Purificacion and La Tuna thermal springs, located to the South along the Pacific coast of the Jalisco Block, and to pore waters from the deep-sea drilling cores from some accretionary complexes. Gas composition as well as isotopic composition of He and carbon from CO2, CH4 and C2H6 suggests an essentially thermo-biogenic origin for the gas and the presence of a high proportion of radiogenic, crustal helium. Isotopic composition of He in the Punta de Mita gas (0.4 Ra) is the lowest ever measured in Mexican hydrothermal gases. These findings do not support the idea that there exists a direct connection between the Punta de Mita springs and the last volcanic events which occurred in this area at V3 Ma. Rather, this hydrothermal activity is related to deep active faulting and the existence of a deep regional aquifer or local aquifers of connate waters underlying the granites of the Jalisco Block.
    Beschreibung: Published
    Beschreibung: 329-338
    Beschreibung: partially_open
    Schlagwort(e): submarine springs ; hydrothermal systems ; geothermometry ; He-isotopes ; formation waters ; Jalisco Block ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 539 bytes
    Format: 269561 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 66
    facet.materialart.
    Unbekannt
    Elsevier
    In:  Taran Y. A., Inguaggiato S., Marin M., and Yurova L. M. (2002) Geochemistry of fluids from submarine hot springs at Punta de Mita, Nayarit, Mexico. J. Volcanol. Geoth. Res. 115, 329-338.
    Publikationsdatum: 2017-04-04
    Beschreibung: We thank R.M. Prol-Ledesma for her comment on the paper by Taran et al. (2002a) and the new data presented on the water composition of the Punta de Mita (PM) submarine springs. Prol-Ledesma (2003) comments refer to a supposedly wrong citation, superficial description of the geological background, incorrect method of water sampling, wrong approach for the estimation of the end-member composition, irrelevant discussion on the origin of fluids and, lastly, the using of someone else’s ideas and conclusions. In addition, she claims that our data on the fluid chemistry of the springs are not the first (original)ones. The Comment is supported by numerous references to publications by Prol-Ledesma et al. The text below follows the rubrics in the Comment.
    Beschreibung: Published
    Beschreibung: 319-322
    Beschreibung: partially_open
    Schlagwort(e): submarine springs ; hydrothermal systems ; geothermometry ; He-isotopes ; formation waters ; Jalisco Block ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 539 bytes
    Format: 164856 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 67
    Publikationsdatum: 2020-01-08
    Beschreibung: For an improvement in the quality of conduit flow and dome-related explosive eruption models, knowledge of the preeruption or precollapse density of the rocks involved is necessary. As close investigation is impossible during eruption, the best substitute comes from quantitative investigation of the eruption deposits. The porosity of volcanic rocks is of primary importance for the eruptive behaviour and, accordingly, a key-parameter for realistic models of dome stability and conduit flow. Fortunately, this physical property may be accurately determined via density measurements. We developed a robust, battery-powered device for rapid and reliable density measurements of dry rock samples in the field. The density of the samples (sealed in plastic bags at 250 mbar) is determined using the Archimedean principle. We have tested the device on the deposits of the 1990–1995 eruption of Unzen volcano, Japan. Short setup and operation times allow up to 60 measurements per day under fieldwork conditions. The rapid accumulation of correspondingly large data sets has allowed us to acquire the first statistically significant data set of clast density distribution in block-and-ash flow deposits. More than 1100 samples with a total weight of 2.2 tons were measured. The data set demonstrates that the deposits of the last eruptive episode at Unzen display a bimodal density distribution, with peaks at 2.0F0.1 and 2.3F0.1 g/cm3, corresponding to open porosity values of 20 and 8 vol.%, respectively. We use this data set to link the results of laboratory-based fragmentation experiments to field studies at recently active lava domes.
    Beschreibung: Published
    Beschreibung: 65-75
    Beschreibung: partially_open
    Schlagwort(e): field-based density measurements ; dome ; Unzen volcano ; explosive eruption ; block-and-ash flow ; fragmentation behaviour ; volcanology ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 710471 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 68
    Publikationsdatum: 2020-12-03
    Beschreibung: A study of the He isotopic ratios of fluid inclusions in olivine and pyroxene from the Roman Comagmatic Province (RCP),Italy, is presented together with 87Sr/86Sr isotope compositions of the whole rock or pyroxene phenocrysts. A clear covariation in He and Sr isotopes is apparent, with a strong northward increase in radiogenic He and Sr being evident. He and Sr isotopes ratios range from 3He/4He = 5.2 Ra and 87Sr/86Sr = 0.7056 in south Campania, to 3He/4He = 0.44 Ra and 87Sr/86Sr = 0.715905 in the northernmost Latium. Helium isotope ratios are significantly lower than MORB values and are among the lowest yet measured in subduction zone volcanism. The 3He/4He of olivine and pyroxene phenocryst-hosted volatiles appear to be little influenced by posteruptive processes and magma–crust interaction. The 3He/4He–87Sr/86Sr covariation is consistent with binary mixing between an asthenospheric mantle similar to HIMU ocean island basalts, and an enriched (radiogenic) mantle end member generated from subduction of the Ionian/Adriatic plate. The contribution of radiogenic He from metasomatic fluids and postmetasomatism radiogenic ingrowth in the wedge is strongly dependent on the initial He concentration of the mantle. Only when asthenosphere He concentrations are substantially lower than the MORB source mantle, and metasomatism occurred at the beginning of the subduction (f30 Ma), can ingrowth in the mantle wedge account for the 3He/4He of the most radiogenic basalts.
    Beschreibung: - European Social Fund - Scottish Universities - Carnegie Trust for the Universities of Scotland.
    Beschreibung: Published
    Beschreibung: 295–308
    Beschreibung: partially_open
    Schlagwort(e): Roman Comagmatic Province ; fluid inclusions ; helium ; strontium ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 516427 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 69
    Publikationsdatum: 2020-10-29
    Beschreibung: We have performed a parametric study on the dynamics of trachytic (alkaline) versus rhyolitic (calc-alkaline) eruptions by employing a steady, isothermal, multiphase non-equilibrium model of conduit flow and fragmentation. The employed compositions correspond to a typical rhyolite and to trachytic liquids from Phlegrean Fields eruptions, for which detailed viscosity measurements have been performed. The investigated conditions include conduit diameters in the range 30–90 m and total water contents from 2 to 6 wt%, corresponding to mass flow rates in the range 106–108 kg/s. The numerical results show that rhyolites fragment deep in the conduit and at a gas volume fraction ranging from 0.64 to 0.76, while for trachytes fragmentation is found to occur at much shallower levels and higher vesicularities (0.81–0.85). An unexpected result is that low-viscosity trachytes can be associated with lower mass flow rates with respect to more viscous rhyolites. This is due to the non-linear combined effects of viscosity and water solubility affecting the whole eruption dynamics. The lower viscosity of trachytes, together with higher water solubility, results in delayed fragmentation, or in a longer bubbly flow region within the conduit where viscous forces are dominant. Therefore, the total dissipation due to viscous forces can be higher for the less viscous trachytic magma, depending on the specific conditions and trachytic composition employed. The fragmentation conditions determined through the simulations agree with measured vesicularities in natural pumice clasts of both magma compositions. In fact, vesicularities average 0.80 in pumice from alkaline eruptions at Phlegrean Fields, while they tend to be lower in most calc-alkaline pumices. The results of numerical simulations suggest that higher vesicularities in alkaline products are related to delayed fragmentation of magmas with this composition. Despite large differences in the distribution of flow variables which occur in the deep conduit region and at fragmentation, the flow dynamics of rhyolites and trachytes in the upper conduit and at the vent can be very similar, at equal conduit size and total water content. This is consistent with similar phenomenologies of eruptions associated with the two magma types.
    Beschreibung: Published
    Beschreibung: 93-108
    Beschreibung: partially_open
    Schlagwort(e): trachytic magma ; conduit flow ; eruption dynamics and numerical simulations ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 520 bytes
    Format: 455753 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 70
    Publikationsdatum: 2021-06-25
    Beschreibung: We report in this paper a systematic investigation of the chemical and isotopic composition of groundwaters flowing in the volcanic aquifer of Mt. Vesuvius during its current phase of dormancy, including the first data on dissolved helium isotope composition and tritium content. The relevant results on dissolved He and C presented in this paper reveal that an extensive interaction between rising magmatic volatiles and groundwaters currently takes place at Vesuvius. Vesuvius groundwaters are dilute (mean TDS 2800 mg/L) hypothermal fluids (mean T 17.7°C) with a prevalent alkaline-bicarbonate composition. Calcium-bicarbonate groundwaters normally occur on the surrounding Campanian Plain, likely recharged from the Apennines. D and 18O data evidence an essentially meteoric origin of Vesuvius groundwaters, the contribution from either Tyrrhenian seawater or 18O-enriched thermal water appearing to be small or negligible. However, the dissolution of CO2-rich gases at depth promotes acid alteration and isochemical leaching of the permeable volcanic rocks, which explains the generally low pH and high total carbon content of waters. Attainment of chemical equilibrium between the rock and the weathering solutions is prevented by commonly low temperature (10 to 28°C) and acid-reducing conditions. The chemical and isotope (C and He) composition of dissolved gases highlights the magmatic origin of the gas phase feeding the aquifer. We show that although the pristine magmatic composition may vary upon gas ascent because of either dilution by a soil-atmospheric component or fractionation processes during interaction with the aquifer, both 13C/12C and 3He/4He measurements indicate the contribution of a magmatic component with a 13C 0‰ and R/Ra of 2.7, which is consistent with data from Vesuvius fumaroles and phenocryst melt inclusions in olivine phenocrysts. A main control of tectonics on gas ascent is revealed by data presented in this paper. For example, two areas of high CO2 release and enhanced rock leaching are recognized on the western (Torre del Greco) and southwestern (Torre Annunziata–Pompeii) flanks of Vesuvius, where important NE-SW and NW-SE tectonic structures are recognized. In contrast, waters flowing through the northern sector of the volcano are generally colder, less saline, and CO2 depleted, despite in some cases containing significant concentrations of magmaderived helium. The remarkable differences among the various sectors of the volcano are reconciled in a geochemical interpretative model, which is consistent with recent structural and geophysical evidences on the structure of Somma-Vesuvius volcanic complex.
    Beschreibung: -European Union, -Ministero dell’Universita’ e della Ricerca Scientifica e Tecnologica; -CNR–Gruppo Nazionale per la Vulcanologia.
    Beschreibung: Published
    Beschreibung: 963–981
    Beschreibung: partially_open
    Schlagwort(e): isotopes ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 1032453 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 71
    Publikationsdatum: 2017-04-04
    Beschreibung: The chemical and isotopic composition of fumarolic gases emitted from Nisyros Volcano, Greece,and of a single gas sample from Vesuvio, Italy, was investigated in order to determine the origin of methane (CH4) within two subduction-related magmatic-hydrothermal environments. Apparent temperatures derived from carbon isotope partitioning between CH4 and CO2 of around 340°C for Nisyros and 470°C for Vesuvio correlate well with aquifer temperatures as measured directly and/or inferred from compositional data using the H2O-H2-CO2-CO-CH4 geothermometer. Thermodynamic modeling reveals chemical equilibrium between CH4, CO2 and H2O implying that carbon isotope partitioning between CO2 and CH4 in both systems is controlled by aquifer temperature. N2/3He and CH4/3He ratios of Nisyros fumarolic gases are unusually low for subduction zone gases and correspond to those of midoceanic ridge environments. Accordingly, CH4 may have been primarily generated through the reduction of CO2 by H2 in the absence of any organic matter following a Fischer-Tropsch-type reaction. However, primary occurrence of minor amounts of thermogenic CH4 and subsequent re-equilibration with co-existing CO2 cannot be ruled out entirely. CO2/3He ratios and 13CCO2 values imply that the evolved CO2 either derives from a metasomatized mantle or is a mixture between two components, one outgassing from an unaltered mantle and the other released by thermal breakdown of marine carbonates. The latter may contain traces of organic matter possibly decomposing to CH4 during thermometamorphism.
    Beschreibung: European community
    Beschreibung: Published
    Beschreibung: 2321–2334
    Beschreibung: partially_open
    Schlagwort(e): fumarolic gases ; hydrothermal systems ; chemical and isotopic equilibrium ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 829360 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 72
    Publikationsdatum: 2017-04-04
    Beschreibung: In order to improve the microscopic understanding of the water-magma interaction process during explosive volcanism,volcanic glasses representative of deposits with sedimentological characteristics suggesting different water/melt ratios were studied by a combination of the nuclear magnetic resonance (NMR) and TIMS methods. The glasses were separated from pumices of two surge layers and one fallout bed of the Cretaio Tephra (Ischia Island,Italy), which is the product of an explosive eruption that occurred at Ischia in the second century BC. The 29Si CP^MAS NMR experiments indicate the occurrence of 1H^29Si dipolar couplings in glasses from the phreatomagmatic activity, suggesting the presence of hydrogen atoms in proximity of silicon atoms. This feature is not detected in the glass from the deposit of the magmatic explosion. 1H MAS NMR spectra reveal different peaks attributed to different hydrous species characterized by different motional properties. These include ‘rigid’ H2O groups isolated in the glass structure, more mobile water species and possibly structural hydroxyl groups. 1H MAS NMR spectra recorded after deuteration experiments of the glass at a temperature up to 300‡C revealed that the exchange reactions of the D2O vapor with hydrogen were limited to the most mobile water species,possibly on vesicle surfaces or in channels. The hydrogen concentration linearly correlates with the 87Sr/86Sr isotope ratio in glasses,suggesting isotopic tracer exchanges between the Sr dissolved in the water vapor and the Sr in the silicon-oxygen network during hydration. It is proposed that the uprising melt interacted with a hydrothermal system of seawater-derived fluids,characterized by relatively high Sr isotopic composition.
    Beschreibung: Published
    Beschreibung: 311-320
    Beschreibung: partially_open
    Schlagwort(e): Ischia ; Cretaio Tephra ; Water-melt interaction ; Nuclear magnetic resonance ; Sr isotopes ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 487 bytes
    Format: 352732 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 73
    Publikationsdatum: 2017-04-04
    Beschreibung: On July 18, 2001, two main eruptive vents opened on the southern flank of Mount Etna volcano (Italy) at ~2100 m and ~2550 m a.s.l., respectively. The former vent fed mild strombolian activity and lava flows, while the latter represented the main explosive vent, producing strong phreato-magmatic explosions. Explosions at this latter vent, however, shifted to a strombolian style in the following days, before switching back to phreato-magmatic activity towards the end of the eruption, which ended on August 9, 2001. On August 3, a small seismoacoustic array was deployed close to the eruptive vents. The array was composed of three stations, which recorded seismic and infrasonic waves coming from both of the eruptive vents. A further seismoacoustic station, equipped with a thermal-infrared sensor, was also installed several kilometers north of the first array. Seismic signals relating to the strombolian activity at the 2100-m vent were characterized by a strong decompression at the source. Analysis of the time delays between seismic, infrasonic and infrared event onsets also revealed that ejection velocities during explosions from both vents were subsonic. Time delays between the onset of explosive events apparent in the infrared and infrasound data indicated that the explosion source at the 2550-m vent was located 220–250 m below the crater rim. In comparison, the depth of the seismic source was estimated to be between 230 and 335 m below the rim. This converts to 120–150 and 130–235 m below the preexisting ground surface. In addition, time delays between seismic and infrasonic signals recorded for the lower (2100 m) vent also revealed a seismic source that was no more than a few tens of meters deeper than the fragmentation surface.
    Beschreibung: Published
    Beschreibung: 219-230
    Beschreibung: partially_open
    Schlagwort(e): Mt. Etna ; explosive eruptions ; arrays ; seismic ; infrasonic and thermal data ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 520 bytes
    Format: 590708 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 74
    Publikationsdatum: 2017-04-04
    Beschreibung: We present here new measurements of sulfur dioxide and hydrogen sulfide emissions from Vulcano, Etna, and Stromboli (Italy), made by direct sampling at vents and by filter pack and ultraviolet spectroscopy in downwind plumes. Measurements at the F0 and FA fumaroles on Vulcano yielded SO2/H2S molar ratios of 0.38 and 1.4, respectively, from which we estimate an H2S flux of 6 to 9 for the summit crater. For Mt. Etna and Stromboli, we found SO2/H2S molar ratios of 20 and 15, respectively, which combined with SO2 flux measurements, suggest H2S emission rates of 50 to 113 and 4 to 8, respectively. We observe that source and plume SO2/H2S ratios at Vulcano are similar, suggesting that hydrogen sulfide is essentially inert on timescales of seconds to minutes. This finding has important implications for estimates of volcanic total sulfur budget at volcanoes since most existing measurements do not account for H2S emission.
    Beschreibung: Published
    Beschreibung: 1861–1871
    Beschreibung: partially_open
    Schlagwort(e): H2S atmospheric budget ; volcanic degassing ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 539 bytes
    Format: 665710 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 75
    Publikationsdatum: 2017-04-04
    Beschreibung: Hydrothermal systems and related vents can exhibit dramatic changes in their physico-chemical conditions over time as a response to varying activity in the feeding magmatic systems. Massive steam condensation and gas scrubbing processes of thermal fluids during their ascent and cooling cause further compositional changes that mask information regarding the conditions evolving at depth in the hydrothermal system. Here we propose a new stability diagram based on the CO2-CH4-CO-H2 concentrations in vapor, which aims at calculating the temperatures and pressures in hydrothermal reservoirs. To filter gas scrubbing effects, we have also developed a model for selective dissolution of CO2-H2S-N2-CH4-He-Ne mixtures in fresh and/or air-saturated seawater. This methodology has been applied to the recent (November 2002) crisis that affected the geothermal field off the island of Panarea (Italy), where the fluid composition and fluxes have been monitored for the past two decades. The chemical and isotopic compositions of the gases suggest that the volatile elements originate from an active magma, which feeds a boiling saline solution having temperatures of up to 350 C and containing 12 mol CO2 in vapor. The thermal fluids undergo cooling and re-equilibration processes on account of gas-water-rock interactions during their ascent along fracture networks. Furthermore, steam condensation and removal of acidic species, partial dissolution in cold air-saturated seawater and stripping of atmospheric components, affect the composition of the geothermal gases at shallow levels. The observed geochemical variations are consistent with a new input of magmatic fluids that perturbed the geothermal system and caused the unrest event. The present-state evolution shows that this dramatic input of fluids is probably over, and that the system is now tending towards steady-state conditions on a time scale of months.
    Beschreibung: Published
    Beschreibung: 3045-3059
    Beschreibung: partially_open
    Schlagwort(e): Submarine degassing ; geothermal system ; gas-water interaction ; gas geothermometry ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 539 bytes
    Format: 627284 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 76
    Publikationsdatum: 2017-04-04
    Beschreibung: The northwestern flank of the Colli Albani, a Quaternary volcanic complex near Rome, is characterised by high CO2 values and Rn activities in the groundwater and by the presence of zones with strong emission of gas from the soil. The most significant of these zones is Cava dei Selci where many houses are located very near to the gas emission site. The emitted gas consists mainly of CO2 (up to 98 vol) with an appreciable content of H2S (0.8). The He and C isotopic composition indicates, as for all fluids associated with the Quaternary Roman and Tuscany volcanic provinces, the presence of an upper mantle component contaminated by crustal fluids associated with subducted sediments and carbonates. An advective CO2 flux of 37 tons/day has been estimated from the gas bubbles rising to the surface in a small drainage ditch and through a stagnant water pool, present in the rainy season in a topographically low central part of the area. A CO2 soil flux survey with an accumulation chamber, carried out in February-March 2000 over a 12 000 m2 surface with 242 measurement points, gave a total (mostly conductive) flux of 61 tons/day. CO2 soil flux values vary by four orders of magnitude over a 160-m distance and by one order of magnitude over several metres. A fixed network of 114 points over 6350 m2 has been installed in order to investigate temporal flux variations. Six surveys carried out from May 2000 to June 2001 have shown large variations of the total CO2 soil flux (8/25 tons/day). The strong emission of CO2 and H2S, which are gases denser than air, produces dangerous accumulations in low areas which have caused a series of lethal accidents to animals and one to a man. The gas hazard near the houses has been assessed by continuously monitoring the CO2 and H2S concentration in the air at 75 cm from the ground by means of two automatic stations. Certain environmental parameters (wind direction and speed; atm P, T, humidity and rainfall) were also continuously recorded. At both stations, H2S and CO2 exceeded by several times the recommended concentration thresholds. The highest CO2 and H2S values were recorded always with wind speeds less than 1.5 m/s, mostly in the night hours. Our results indicate that there is a severe gas hazard for people living near the gas emission site of Cava dei Selci, and appropriate precautionary and prevention measures have been recommended both to residents and local authorities.
    Beschreibung: - GNV funded research project Gas Hazard of Colli Albani
    Beschreibung: Published
    Beschreibung: 81^94
    Beschreibung: partially_open
    Schlagwort(e): Colli Albani ; CO2 flux ; H2S ; gas hazard ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 539 bytes
    Format: 660932 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 77
    Publikationsdatum: 2017-04-04
    Beschreibung: A systematic survey of soil CO2 concentrations was carried out on the flanks of Somma^Vesuvius volcano in order to constrain possible pathways responsible of carbon dioxide diffuse degassing taking place during the present state of quiescence. Measurements were performed at 1162 sites in late winter^spring 2000,highlighting that soil CO2 concentrations range from 50 to 10500 ppmV. A statistical analysis was developed in order to define the threshold value of anomaly and separate the biogenic CO2 component,produced by soil respiration,from the inorganic component of deep provenance. A computer routine was also elaborated to interpret the grid of CO2 anomalous concentration values and define the actual location,orientation and length of degassing structures. The results obtained by this procedure reveal a main control of the regional stress field on the patterns of gas migration. The identified degassing lineaments are typically oriented along the Apenninic (NW^SE) and anti-Apenninic (NE^SW)trends,which are known to govern the past geological and structural evolution of the Campanian Plain and present seismicity and deformation pattern of Mount Vesuvius. A main degassing area was recognized on the eastern and southern flanks of the volcano,which likely relates to the geometry of the underlying carbonate basement,reaching its top (500 m depth) in this sector of the volcano.
    Beschreibung: Published
    Beschreibung: 55-79
    Beschreibung: partially_open
    Schlagwort(e): Somma-Vesuvius ; CO2 degassing ; Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 908960 bytes
    Format: 532 bytes
    Format: application/pdf
    Format: text/html
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 78
    Publikationsdatum: 2017-04-04
    Beschreibung: We have undertaken detailed observations of the formation of the `Laghetto´ cinder cone, a new cone that formed during a 2-week period of intense activity in Piano del Lago, on the upper slopes of Mount Etna in summer 2001. We describe the events leading to the formation of a small graben, the formation of pit craters on the base of the graben, the onset of phreatomagmatic activity, a transition to intense Strombolian activity, and a return to phreatomagmatic activity as the eruption came to an end. We discuss the reasons for these transitions, and describe the morphological development of the cone during these events. Arcuate cracks on the southern part of the cone were related to withdrawal of magma at the end of the eruption. Other slope instabilities that developed during the eruption include the formation of small radial grain flows on the outer flanks of the cone and the collapse into the crater of part of the crater rim. Some of the failure planes we observed were first identified using a FLIR TM 695 thermal infrared camera. This is the first time that infrared thermography has been used to detect instability of volcanic structures. Results obtained during this test case demonstrate that thermal cameras are a very useful tool for studies of volcanic instability.
    Beschreibung: Published
    Beschreibung: 225-239
    Beschreibung: partially_open
    Schlagwort(e): Etna volcano ; cinder cone ; volcano instability ; thermal images ; phreatomagmatic activity ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 520 bytes
    Format: 871290 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 79
    Publikationsdatum: 2017-04-04
    Beschreibung: Since the early 1970s enhanced eruptive activity of Mount Etna has been accompanied by selective geochemical changes in erupted lavas, among which a gradual increase of alkalis whose origin is still debated. Here we provide further insight into the origin of this recent evolution, based on a detailed study of the chemistry and dissolved volatile content of melt inclusions trapped in olivine crystals of unusual plagioclase-poor primitive basalt that was extruded during a highly explosive flank eruption in July–August 2001. Two types of lava were erupted simultaneously along a N–S fracture system. Trachybasalts from the upper vents (2950–2700 m) were simply drained out by fracturing of the central volcanic conduit. They are identical to summit crater lavas and contain Mg-poor olivines (Fo70–72) with evolved and volatile-poor melt inclusions that represent late-stage crystallisation during shallow open conduit degassing. In contrast, plagioclase-poor basalt (80% of total) extruded through the lower vents (2550–2100 m) derived from lateral dyke intrusion of a more primitive and volatile-rich magma across the sedimentary basement. This primitive melt is best preserved in rare Fo82.4–80.5 skeletal olivines present in lapilli deposits from the most powerful activities at the 2550 m vent. Its high dissolved contents of H2 O (3.4 wt.%), CO2 (0.11 to 0.41 wt.%), S (0.32 wt.%), Cl (0.16 wt.%) and F (0.094 wt.%) point to its closed system ascent from ∼400 to 250 MPa (∼12 to 6.5 km depth b.s.l.). However, the predominance of euhedral olivine phenocrysts with common reverse zoning (cores Fo76–78 and rims Fo78–80) and decrepited inclusions shows that most of the erupted basalt derived from a slightly more evolved, crystallizing body of the same magma that was invaded by the uprising primitive melt prior to erupting. The few preserved inclusions in these olivines indicate pre-eruptive storage of that magma body at about 5 km depth b.s.l., in coherence with seismic data. We propose that the 2001 flank eruption resulted from gradual overpressuring of Etna's shallow plumbing system due to the influx of volatile-rich primitive basalt that may have begun several months in advance. We find that this basalt is much richer in alkalis (2.0 wt.% K2 O) and has higher S/Cl (2.0) but lower Cl/K and Cl/F ratios than all pre-1970s Etnean lavas (1.4 wt.% K2 O, S/Cl=1.5), as further exemplified by melt inclusions in entrained olivine xenocrysts. Combining these new observations with previously published data, we argue that the 2001 basalt represents a new alkali-rich basic end-member feeding Mt. Etna, only few amount of which had previously been extruded during a 1974 peripheral eruption and, more recently, during brief paroxysmal summit events. Over the last three decades this new magma has progressively mixed with and replaced the former K-poorer trachybasalts filling the plumbing system, leading to extrusion of gradually more primitive and alkali-richer lavas. Its geochemical singularities cannot result from shallow crustal contaminations. Instead, they suggest the involvement of an alkali-richer but Cl-poorer arc-type component during recent magma genesis beneath Etna.
    Beschreibung: Published
    Beschreibung: 1-17
    Beschreibung: partially_open
    Schlagwort(e): Mt. Etna ; volatiles ; degassing ; eruptive mechanism ; magma geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 520 bytes
    Format: 1082506 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 80
    Publikationsdatum: 2017-04-04
    Beschreibung: Chlorine- and sulphur-bearing compounds in fumarole discharges of the La Fossa crater at Vulcano Island (Italy) can be modelled by a mixing process between magmatic gases and vapour from a boiling hydrothermal system. This allows estimating the compounds in both endmembers. Magma degassing cannot explain the time variation of sulphur and HCl concentrations in the deep endmember, which are more probably linked to reactions of solid phases at depth, before mixing with the hydrothermal vapours. Based on the P^T conditions and speciation of the boiling hydrothermal system below La Fossa, the HCl and Stot contents in the hydrothermal vapours were used to compute the redox conditions and pH of the aqueous solution. The results suggest that the haematite magnetite buffer controls the hydrothermal fO2 values, while the pH has increased since the end of the 1970s. The main processes affecting pH values may be linked to Na^Ca exchanges between evolved seawater, feeding the boiling hydrothermal system, and local rocks. While Na is removed from water, calcium enters the solution, undergoes hydrolysis and produces HCl,lowering the pH of the water. The increasing water^rock ratio within the hydrothermal system lowers the Ca availability, so the aqueous solution becomes less acidic. Seawater flowing towards the boiling hydrothermal brine dissolves a large quantity of pyrite along its path. In the boiling hydrothermal system, dissolved sulphur precipitates as pyrite and anhydrite, and becomes partitioned in vapour phase as H2S and SO2. These results are in agreement with the paragenesis of hydrothermal alteration minerals recovered in drilled wells at Vulcano and are also in agreement with the isotopic composition of sulphur emitted by the crater fumaroles.
    Beschreibung: Published
    Beschreibung: 137-150
    Beschreibung: partially_open
    Schlagwort(e): chlorine ; sulphur ; hydrothermal system ; genetic processes ; Vulcano Island ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 539 bytes
    Format: 498111 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 81
    Publikationsdatum: 2017-04-04
    Beschreibung: This work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande-Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP^CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41‡ and N64‡, and decoupled from the volcanic structures.
    Beschreibung: Published
    Beschreibung: 1^18
    Beschreibung: partially_open
    Schlagwort(e): Stromboli ; hydrothermal system ; self-potential ; soil gas ; carbon dioxide ; Aeolian islands ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 539 bytes
    Format: 1106054 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 82
    Publikationsdatum: 2017-04-04
    Beschreibung: One of the seven potentially active andesite stratovolcanoes in southern Peru, Misti (5822 m), located 17 km northeast and 3.5 km above Arequipa, represents a major threat to the population (f900,000 inhabitants). Our recent geophysical and geochemical research comprises an extensive self-potential (SP) data set, an audioâ magnetotelluric (AMT) profile across the volcano and CO2 concentrations in the soil along a radial profile. The SP survey is the first of its kind in providing a complete mapping of a large andesitic stratovolcano 20 km in diameter. The SP mapping enables us to analyze the SP signature associated with a subduction-related active volcano. The general SP pattern of Misti is similar to that of most volcanoes with a hydrogeologic zone in the lower flanks and a hydrothermal zone in the upper central area. A quasi-systematic relationship exists between SP and elevation. Zones with constant SP/altitude gradients (Ce) are observed in both hydrogeologic (negative Ce) and hydrothermal (positive Ce) zones. Transition zones between the different Ce zones, which form a concentric pattern around the summit, have been interpreted in terms of lateral heterogeneities in the lithology. The highest amplitudes of SP anomalies seem to coincide with highly resistive zones. The hydrothermal system 6 km in diameter, which extends over an area much larger than the summit caldera, may be constrained by an older, concealed collapse caldera. A sealed zone has apparently developed through alteration in the hydrothermal system, blocking the migration of CO2 upward. Significant CO2 emanations are thus observed on the lower flanks but are absent above the hydrothermal zone.
    Beschreibung: - Institut de Recherche pour le Developpement (IRD) - Instituto Geofısico del Peru´ (IGP)
    Beschreibung: Published
    Beschreibung: 343-360
    Beschreibung: partially_open
    Schlagwort(e): Misti volcano ; self-potential ; audioâ magnetotelluric ; electrical resistivity ; structural discontinuity ; hydrothermal system ; Peru ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 539 bytes
    Format: 1573969 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 83
    Publikationsdatum: 2017-04-04
    Beschreibung: Here, a new technique for the determination of dissolved He isotope ratios in ground-waters is presented. This method is based on the extraction and subsequent equilibrium of dissolved gases in an added ‘‘host’’ gas phase. Ultra pure N2 is placed in glass flasks (250 cc), containing water samples, that were hermetically sealed after their collection. After shaking in an ultrasonic bath for 10 min, an aliquot of the separated gas phase was removed from the flask for MS analysis. 3He/4He ratios are measured by using a modified double collector mass spectrometer (VG 5400-TFT). Helium and Ne concentrations are calculated by comparing the partial pressures of masses 4 and 20 of the samples with those of the air-standard measured by a quadrupole mass spectrometer (QMS;VG Quartz). Using He and Ne equilibrium partitioning coefficients, it is possible to calculate the amount of gas originally dissolved in the water. The technique was tested on both air-saturated waters (ASW) and thermal waters from Stromboli (Aeolian Islands, South Italy), the results of which confirmed good reproducibility (ffi5%) and accuracy (ffi3%) of the data. The method was then applied to three thermal water samples collected from the same volcanic area and the results compared with those of a fumarolic and a soil gas. The isotope ratios for dissolved He gave values of 4.06–4.23 Ra, which are significantly higher than those previously reported in the literature (3.0, 3.5 and 2.9 Ra) and that measured at the fumarole (3.09 Ra), suggesting a newer and higher isotopic signature for the volcanic system. The proposed method appears to be a useful tool in the determination of 3He/4He ratios in ground-water systems, especially when free gases are not available or are dangerous to collect.
    Beschreibung: Published
    Beschreibung: 665–673
    Beschreibung: partially_open
    Schlagwort(e): dissolved helium isotopes ; gas water interaction ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 539 bytes
    Format: 439948 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 84
    Publikationsdatum: 2017-04-04
    Beschreibung: Geochemical research was carried out on cold and hot springs at Popocatepetl (Popo) volcano (Mexico) in 1999 to identify a possible relationship with magmatic activity. The chemical and isotopic composition of the fluids is compatible with strong gas–water interaction between deep and shallow fluids. In fact, the isotopic composition of He and dissolved carbon species is consistent with a magmatic origin. The presence of a geothermal system having a temperature of 80–1008 C was estimated on the basis of liquid geothermometers. A large amount of dissolved CO2 in the springs was also detected and associated with high CO2 degassing.
    Beschreibung: Published
    Beschreibung: 91– 108
    Beschreibung: partially_open
    Schlagwort(e): Popocatepetl volcano ; helium isotope composition ; carbon isotope composition ; dissolved gases ; gas–water interaction ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 539 bytes
    Format: 899823 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 85
    Publikationsdatum: 2017-04-04
    Beschreibung: We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result,the H2O and CO2 content and the dD, d18O, and d13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits. The d13CCO2 of the magmatic gases varies around -3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (-1 to -35‰ vs. standard mean ocean water [SMOW]), as well as the above d13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect. The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the dD and d13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and -2 to -6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (dDH2O 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks, reaching oxygen isotope equilibrium at high temperatures. Interaction processes between magmatic gases and the evolving seawater also seem to occur, causing the dissolution of isotopically fractionated aqueous CO2 and providing the source for hydrothermal carbon. These results have important implications concerning fluid circulation beneath Vulcano and address the more convenient routine of geochemical surveillance.
    Beschreibung: Published
    Beschreibung: 759–772
    Beschreibung: partially_open
    Schlagwort(e): isotope geochemistry ; volcanic gases ; mixing modeling ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 539 bytes
    Format: 593620 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 86
    Publikationsdatum: 2022-05-24
    Beschreibung: Many studies have assessed the strong influence of volcanic activity on the surrounding environment. This is particularly true for strong gas emitters such as Mt. Etna and Stromboli volcanoes. Among volcanic gases, fluorine compounds are potentially very harmful. Fluorine cycling through rainwater in the above volcanic areas was studied analysing more than 400 monthly bulk samples. Data indicate that only approximately 1% of fluorine emission through the plume is deposited on the two volcanic areas by meteoric precipitations. Although measured bulk rainwater fluorine fluxes are comparable to and sometimes higher than in heavily polluted areas, their influence on the surrounding vegetation is limited. Only annual crops, in fact, show some damage that could be an effect of fluorine deposition, indicating that long-living endemic plant species or varieties have developed some kind of resistance.
    Beschreibung: Published
    Beschreibung: 175–185
    Beschreibung: partially_open
    Schlagwort(e): Fluorine ; Rainwater chemistry ; Volcanic activity ; Mt. Etna ; Stromboli Island ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 539 bytes
    Format: 1320202 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...