ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine
  • 1995-1999  (770)
  • 1980-1984  (24)
  • 1
    Publication Date: 2011-08-24
    Description: Although there is general agreement that a high degree of variability exists between subjects in their autonomic nervous system responses to motion sickness stimulation, very little evidence exists that examines the reproducibility of autonomic responses within subjects during motion sickness stimulation. Our objectives were to examine the reliability of autonomic responses and symptom levels across five testing occasions using the (1) final minute of testing, (2) change in autonomic response and the change in symptom level, and (3) strength of the relationship between the change in symptom level and the change in autonomic responses across the entire motion sickness test. The results indicate that, based on the final minute of testing, the autonomic responses of heart rate, blood volume pulse, and respiration rate are moderately stable across multiple tests. Changes in heart rate, blood volume pulse, respiration rate, and symptoms throughout the test duration are less stable across the tests. Finally, autonomic responses and symptom levels are significantly related across the entire motion sickness test.
    Keywords: Aerospace Medicine
    Type: Journal of vestibular research : equilibrium & orientation (ISSN 0957-4271); Volume 5; 1; 25-33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Hind limb elevation of the growing rat provides a good model for the skeletal changes that occur during space flight. In this model the bones of the forelimbs (normally loaded) are used as an internal control for the changes that occur in the unloaded bones of the hind limbs. Previous studies have shown that skeletal unloading of the hind limbs results in a transient reduction of bone formation in the tibia and femur, with no change in the humerus. This fall in bone formation is accompanied by a fall in serum osteocalcin (bone Gla protein, BGP) and bone BGP messenger RNA (mRNA) levels, but a rise in bone insulin-like growth factor-I (IGF-I) protein and mRNA levels and resistance to the skeletal growth-promoting actions of IGF-I. To determine whether skeletal unloading also induced resistance to GH, we evaluated the response of the femur and humerus of sham and hypophysectomized rats, control and hind limb elevated, to GH (two doses), measuring mRNA levels of IGF-I, BGP, rat bone alkaline phosphatase (RAP), and alpha 1(1)-procollagen (coll). Hypophysectomy (HPX) decreased the mRNA levels of IGF-I, BGP, and coll in the femur, but was either less effective or had the opposite effect in the humerus. GH at the higher dose (500 micrograms/day) restored these mRNA levels to or above the sham control values in the femur, but generally had little or no effect on the humerus. RAP mRNA levels were increased by HPX, especially in the femur. The lower dose of GH (50 micrograms/day) inhibited this rise in RAP, whereas the higher dose raised the mRNA levels and resulted in the appearance of additional transcripts not seen in controls. As for the other mRNAs, RAP mRNA in the humerus was less affected by HPX or GH than that in the femur. Hind limb elevation led to an increase in IGF-I, coll, and RAP mRNAs and a reduction in BGP mRNA in the femur and either had no effect or potentiated the response of these mRNAs to GH. We conclude that GH stimulates a number of markers of bone formation by raising their mRNA levels, and that skeletal unloading does not block this response, but the response varies substantially from bone to bone.
    Keywords: Aerospace Medicine
    Type: Endocrinology (ISSN 0013-7227); Volume 136; 5; 2099-109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Eye movements have attracted an unusually large number of researchers from many disparate fields, especially over the past 35 years. The lure of this system stemmed from its apparent simplicity of description, measurement, and analysis, as well as the promise of providing a "window in the mind." Investigators in areas ranging from biological control systems and neurological diagnosis to applications in advertising and flight simulation expected eye movements to provide clear indicators of what the sensory-motor system was accomplishing and what the brain found to be of interest. The parallels between compensatory eye movements and perception of spatial orientation have been a subject for active study in visual-vestibular interaction, where substantial knowledge has accumulated through experiments largely guided by the challenge of proving or disproving model predictions. Even though oculomotor control has arguably benefited more from systems theory than any other branch of motor control, many of the original goals remain largely unfulfilled. This paper considers some of the promising potential benefits of eye movement research and compares accomplishments with anticipated results. Four topics are considered in greater detail: (i) the definition of oculomotor system input and output, (ii) optimization of the eye movement system, (iii) the relationship between compensatory eye movements and spatial orientation through the "internal model," and (iv) the significance of eye movements as measured in (outer) space.
    Keywords: Aerospace Medicine
    Type: Annals of biomedical engineering (ISSN 0090-6964); Volume 23; 4; 456-66
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Intramuscular pressures, electromyography (EMG) and torque generation during isometric, concentric and eccentric maximal isokinetic muscle activity were recorded in 10 healthy volunteers. Pressure and EMG activity were continuously and simultaneously measured side by side in the tibialis anterior and soleus muscles. Ankle joint torque and position were monitored continuously by an isokinetic dynamometer during plantar flexion and dorsiflexion of the foot. The increased force generation during eccentric muscular activity, compared with other muscular activity, was not accompanied by higher intramuscular pressure. Thus, this study demonstrated that eccentric muscular activity generated higher torque values for each increment of intramuscular pressure. Intramuscular pressures during antagonistic co-activation were significantly higher in the tibilis anterior muscle (42-46% of maximal agonistic activity) compared with the soleus muscle (12-29% of maximal agonistic activity) and was largely due to active recruitment of muscle fibers. In summary, eccentric muscular activity creates higher torque values with no additional increase of the intramuscular pressure compared with concentric and isometric muscular activity.
    Keywords: Aerospace Medicine
    Type: Scandinavian journal of medicine & science in sports (ISSN 0905-7188); Volume 5; 5; 291-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: The effects of atrial natriuretic peptide (ANP), vasopressin (AVP) and angiotensin (ANG) on blood and intraocular pressures of pentobarbital anesthetized rats were evaluated following intravenous, intracerebroventricular or anterior chamber routes of administration. Central injections did not affect intraocular pressure. Equipressor intravenous infusions of ANG raised, whereas AVP decreased, intraocular pressure. Direct infusions of a balanced salt solution (0.175 microliter/min) raised intraocular pressure between 30 and 60 min. Adding ANG or ANP slightly reduced this solvent effect but AVP was markedly inhibitory. An AVP-V1 receptor antagonist reversed the blunting of the solvent-induced rise by the peptide, indicating receptor specificity. Acetazolamide pretreatment lowered intraocular pressure, but the solvent-induced rise in intraocular pressure and inhibition by AVP still occurred without altering the temporal pattern. Thus, these effects appear unrelated to aqueous humor synthesis rate. The data support the possibility of intraocular pressure regulation by peptides acting from the blood and aqueous humor.
    Keywords: Aerospace Medicine
    Type: Neuropeptides (ISSN 0143-4179); Volume 29; 4; 193-203
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: It is a common practice to estimate the number of particle-track traversals per cell or cell nucleus as the product of the ion's linear energy transfer (LET) and cell area. This practice ignores the effects of track width due to the lateral extension of delta rays. We make estimates of the number of particle-track traversals per cell, which includes the effects of delta rays using radial cutoffs in the ionization density about an ion's track of 1 mGy and 1 cGy. Calculations for laboratory and space radiation exposures are discussed, and show that the LET approximation provides a large underestimate of the actual number of particle-track traversals per cell from high-charge and energy (HZE) ions. In light of the current interest in the mechanisms of radiation action, including signal transduction and cytoplasmic damage, these results should be of interest for radiobiology studies with HZE ions.
    Keywords: Aerospace Medicine
    Type: Radiation research (ISSN 0033-7587); Volume 150; 1; 115-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Quantitative evaluation of gamma-aminobutyric acid immunoreactivity (GABA-IR) in the hindlimb representation of the rat somatosensory cortex after 14 days of exposure to hypergravity (hyper-G) was conducted by using computer-assisted image processing. The area of GABA-IR axosomatic terminals apposed to pyramidal cells of cortical layer V was reduced in rats exposed to hyper-G compared with control rats, which were exposed either to rotation alone or to vivarium conditions. Based on previous immunocytochemical and behavioral studies, we suggest that this reduction is due to changes in sensory feedback information from muscle receptors. Consequently, priorities for muscle recruitment are altered at the cortical level, and a new pattern of muscle activity is thus generated. It is proposed that the reduction observed in GABA-IR of the terminal area around pyramidal neurons is the immunocytochemical expression of changes in the activity of GABAergic cells that participate in reprogramming motor outputs to achieve effective movement control in response to alterations in the afferent information.
    Keywords: Aerospace Medicine
    Type: Journal of neuroscience research (ISSN 0360-4012); Volume 53; 2; 135-42
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: We have examined the role of plasma Na+-K+ pump inhibitor (SPI) in the hypertension of streptozotocin induced insulin dependent diabetes (IDDM) in reduced renal mass rats. The increase in blood pressure (BP) was associated with an increase in extracellular fluid volume (ECFV), and SPI and a decrease in myocardial Na+,K+ATPase (NKA) activity, suggesting that increased SPI, which inhibits cardiovascular muscle (CVM) cell NKA activity, may be involved in the mechanism of IDDM-hypertension. In a second study, using prolonged suspension resulted in a decrease in cardiac NKA activity, suggesting that cardiovascular deconditioning following space flight might in part result from insufficient SPI.
    Keywords: Aerospace Medicine
    Type: Clinical and experimental hypertension (New York, N.Y. : 1993) (ISSN 1064-1963); Volume 20; 5-6; 509-21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: OBJECTIVES: The risk of a urinary calculus during an extended duration mission into the reduced gravity environment of space is significant. For medical operations to develop a comprehensive strategy for the spaceflight stone risk, both preventive countermeasures and contingency management (CM) plans must be included. METHODS: A feasibility study was conducted to demonstrate the potential CM technique of endoscopic ureteral stenting with ultrasound guidance for the possible in-flight urinary calculus contingency. The procedure employed the International Space Station/Human Research Facility ultrasound unit for guide wire and stent localization, a flexible cystoscope for visual guidance, and banded, biocompatible soft ureteral stents to successfully stent porcine ureters bilaterally in zero gravity (0g). RESULTS: The study demonstrated that downlinked endoscopic surgical and ultrasound images obtained in 0g are comparable in quality to 1g images, and therefore are useful for diagnostic clinical utility via telemedicine transmission. CONCLUSIONS: In order to be successful, surgical procedures in 0g require excellent positional stability of the operating surgeon, assistant, and patient, relative to one another. The technological development of medical procedures for long-duration spaceflight contingencies may lead to improved terrestrial patient care methodology and subsequently reduced morbidity.
    Keywords: Aerospace Medicine
    Type: Urology (ISSN 0090-4295); Volume 53; 5; 892-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: BACKGROUND: Net whole-body transcapillary fluid transport (TFT) between the circulation and the interstitial (extravascular) space may be calculated as: IV - deltaPV - UV - IL, where IV=infused or ingested volume (when applicable), deltaPV = change in plasma volume, UV=urine volume, and IL=insensible loss. RESULTS: Infusion of 30 mL/kg isotonic saline over 25 minutes increased supine TFT from a basal capillary reabsorption of -106+/-24 mL/h (mean+/-SE) to a net filtration of 1,229+/-124 mL/h. One hour after infusion, reabsorption of -236+/-102 mL/h was seen, and control reabsorption levels returned by 3 hours. Four hours of 30 mm Hg lower body negative pressure (LBNP) elicited no net TFT, probably because of upper body reabsorptive compensation for lower body capillary filtration. When ingestion of 1 L of isotonic saline accompanied LBNP, filtration of 145+/-10 mL/h occurred. Reabsorption of extravascular fluid into the circulation always followed LBNP. CONCLUSION: Application of this technique could aid understanding of physiologic conditions, experimental interventions, disease states, and therapies that cause or are influenced by fluid shifts between intravascular and interstitial compartments.
    Keywords: Aerospace Medicine
    Type: The Journal of trauma (ISSN 0022-5282); Volume 45; 6; 1062-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Doklady Akademii nauk / [Rossiiskaia akademii nauk] (ISSN 0869-5652); Volume 363; 1; 126-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: In studies to determine the neurochemical mechanisms underlying adaptation to altered gravity we have investigated changes in neuropeptide levels in brainstem, cerebellum, hypothalamus, striatum, hippocampus, and cerebral cortex by radioimmunoassay. Fourteen days of hypergravity (hyperG) exposure resulted in significant increases in thyrotropin-releasing hormone (TRH) content of brainstem and cerebellum, but no changes in levels of other neuropeptides (beta-endorphin, cholecystokinin, met-enkephalin, somatostatin, and substance P) examined in these areas were found, nor were TRH levels significantly changed in any other brain regions investigated. The increase in TRH in brainstem and cerebellum was not seen in animals exposed only to the rotational component of centrifugation, suggesting that this increase was elicited by the alteration in the gravitational environment. The only other neuropeptide affected by chronic hyperG exposure was met-enkephalin, which was significantly decreased in the cerebral cortex. However, this alteration in met-enkephalin was found in both hyperG and rotation control animals and thus may be due to the rotational rather than the hyperG component of centrifugation. Thus it does not appear as if there is a generalized neuropeptide response to chronic hyperG following 2 weeks of exposure. Rather, there is an increase only of TRH and that occurs only in areas of the brain known to be heavily involved with vestibular inputs and motor control (both voluntary and autonomic). These results suggest that TRH may play a role in adaptation to altered gravity as it does in adaptation to altered vestibular input following labyrinthectomy, and in cerebellar and vestibular control of locomotion, as seen in studies of ataxia.
    Keywords: Aerospace Medicine
    Type: Biological signals and receptors (ISSN 1422-4933); Volume 7; 6; 337-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: To determine whether the rat hindlimb elevation model can be used to study the effects of spaceflight and loss of gravitational loading on bone in the adult animal, and to examine the effects of age on bone responsiveness to mechanical loading, we studied 6-mo-old rats subjected to hindlimb elevation for up to 5 wk. Loss of weight bearing in the adult induced a mild hypercalcemia, diminished serum 1,25-dihydroxyvitamin D, decreased vertebral bone mass, and blunted the otherwise normal increase in femoral mass associated with bone maturation. Unloading decreased osteoblast numbers and reduced periosteal and cancellous bone formation but had no effect on bone resorption. Mineralizing surface, mineral apposition rate, and bone formation rate decreased during unloading. Our results demonstrate the utility of the adult rat hindlimb elevation model as a means of simulating the loss of gravitational loading on the skeleton, and they show that the effects of nonweight bearing are prolonged and have a greater relative effect on bone formation in the adult than in the young growing animal.
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 276; 1 Pt 1; E62-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: Autonomic manifestations of vestibular dysfunction and motion sickness are well established in the clinical literature. Recent studies of 'vestibular autonomic regulation' have focused predominantly on autonomic responses to stimulation of the vestibular sense organs in the inner ear. These studies have shown that autonomic responses to vestibular stimulation are regionally selective and have defined a 'vestibulosympathetic reflex' in animal experiments. Outside the realm of experimental preparations, however, the importance of vestibular inputs in autonomic regulation is unclear because controls for secondary factors, such as affective/emotional responses and cardiovascular responses elicited by muscle contraction and regional blood pooling, have been inadequate. Anatomic and physiologic evidence of an extensive convergence of vestibular and autonomic information in the brainstem suggests though that there may be an integrated representation of gravitoinertial acceleration from vestibular, somatic, and visceral receptors for somatic and visceral motor control. In the case of vestibular dysfunction or motion sickness, the unpleasant visceral manifestations (e.g. epigastric discomfort, nausea or vomiting) may contribute to conditioned situational avoidance and the development of agoraphobia.
    Keywords: Aerospace Medicine
    Type: Current opinion in neurology (ISSN 1350-7540); Volume 12; 1; 29-33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Hospital topics (ISSN 0018-5868); Volume 75; 3; 23-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: Changes in leukocyte subpopulations and function after spaceflight have been observed but the mechanisms underlying these changes are not well defined. This study investigated the effects of short-term spaceflight (8-15 days) on circulating leukocyte subsets, stress hormones, immunoglobulin levels, and neutrophil function. At landing, a 1.5-fold increase in neutrophils was observed compared with preflight values; lymphocytes were slightly decreased, whereas the results were variable for monocytes. No significant changes were observed in plasma levels of immunoglobulins, cortisol, or adrenocorticotropic hormone. In contrast, urinary epinephrine, norepinephrine, and cortisol were significantly elevated at landing. Band neutrophils were observed in 9 of 16 astronauts. Neutrophil chemotactic assays showed a 10-fold decrease in the optimal dose response after landing. Neutrophil adhesion to endothelial cells was increased both before and after spaceflight. At landing, the expression of MAC-1 was significantly decreased while L-selectin was significantly increased. These functional alterations may be of clinical significance on long-duration space missions.
    Keywords: Aerospace Medicine
    Type: Journal of leukocyte biology (ISSN 0741-5400); Volume 65; 2; 179-86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: BACKGROUND: Increased spinal height due to the lack of of axial compression on spinal structures in microgravity may stretch the spinal cord, cauda equina, nerve roots, and paraspinal tissues. HYPOTHESIS: Exposure to simulated microgravity causes dysfunction of nerve roots so that the synaptic portion of the Achilles tendon reflex is delayed. METHODS: Six healthy male subjects were randomly divided into two groups with three in each group. The subjects in the first group underwent horizontal bed rest (HBR) for three days. After a two week interval they underwent bed rest in a position of head-down tilt with balanced traction (HDT). So that each subject could serve as his own control, the second group was treated identically but in opposite order. Bilateral F waves and H-reflexes were measured daily (18:30-20:30) on all subjects placed in a prone position. RESULTS: By means of ANOVA, differences between HDT and HBR were observed only in M-latency and F-ratio, not in F-latency, central latency, and H-latency. Differences during the course of the bed rest were observed in M-latency and H-latency only. Tibial H latency was significantly lengthened in HDT group on day 2 and 3, although no significant difference between HDT and HBR was observed. CONCLUSION: The monosynaptic reflex assessed by H-reflex was delayed during 6 degree HDT with traction. The exact mechanism of this delay and whether the change was due to lengthening of the lower part of the vertebrae remain to be clarified.
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 70; 3 Pt 1; 220-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: We used aerosol boluses to study convective gas mixing in the lung of four healthy subjects on the ground (1 G) and during short periods of microgravity (microG) and hypergravity ( approximately 1. 6 G). Boluses of 0.5-, 1-, and 2-micron-diameter particles were inhaled at different points in an inspiration from residual volume to 1 liter above functional residual capacity. The volume of air inhaled after the bolus [the penetration volume (Vp)] ranged from 150 to 1,500 ml. Aerosol concentration and flow rate were continuously measured at the mouth. The dispersion, deposition, and position of the bolus in the expired gas were calculated from these data. For each particle size, both bolus dispersion and deposition increased with Vp and were gravity dependent, with the largest dispersion and deposition occurring for the largest G level. Whereas intrinsic particle motions (diffusion, sedimentation, inertia) did not influence dispersion at shallow depths, we found that sedimentation significantly affected dispersion in the distal part of the lung (Vp 〉500 ml). For 0.5-micron-diameter particles for which sedimentation velocity is low, the differences between dispersion in microG and 1 G likely reflect the differences in gravitational convective inhomogeneity of ventilation between microG and 1 G.
    Keywords: Aerospace Medicine
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); Volume 86; 4; 1402-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 70; 2; 153-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.
    Keywords: Aerospace Medicine
    Type: Neuroimmunomodulation (ISSN 1021-7401); Volume 6; 3; 160-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.
    Keywords: Aerospace Medicine
    Type: European radiology (ISSN 0938-7994); Volume 5; 2; 129-39
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: Loss of bone during extended space flight has long been a concern that could limit the ability of humans to explore the universe. Surprisingly, the available data do not support the concept that weightlessness leads inexorably to a depleted skeleton unable to withstand the stress of a return to a 1-g environment. Nevertheless, some bone loss does occur, especially in those bones most stressed by gravity prior to flight, which provides confirmation of the proposal formulated over a century ago by Julius Wolff that mechanical stress determines the form and function of bone. Although the phenomenon of bone loss with skeletal unloading, whether by space flight or immobilization or just taking a load off your feet (literally) is well established, the mechanisms by which bone senses load and adjusts to it are not so clear. What actually is the stimulus, and what are the sensors? What are the target cells? How do the sensors communicate the message into the cells, and by what pathways do the cells respond? What is the role of endocrine, factors vs. paracrine or autocrine factors in mediating or modulating the response? None of these questions has been answered with certainty, but, as will become apparent in this review, we have some clues directing us to the answers. Although the focus of this review concerns space flight, it seems highly likely that the mechanisms mediating the transmission of mechanical load to changes in bone formation and resorption apply equally well to all forms of disuse osteoporosis and are likely to be the same mechanisms affected by other etiologies of osteoporosis.
    Keywords: Aerospace Medicine
    Type: The Endocrinologist (ISSN 1051-2144); Volume 7; 1; 10-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The authors review studies conducted to define nutritional requirements for astronauts during space flight and to assess nutrition before, during, and after space flight. Topics include space food systems, research and limitations on spacecraft, physiological adaptation to weightlessness, energy requirements, dietary intake during space flight, bone demineralization, gastrointestinal function, blood volume, and nutrition requirements for space flight. Benefits of space-related nutrition research are highlighted.
    Keywords: Aerospace Medicine
    Type: Nutrition today (ISSN 0029-666X); Volume 32; 1; 6-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The author examines the merits and problems associated with full-time rotation and intermittent G stimulation as weightlessness countermeasures during prolonged space flight.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); Volume 4; 2; P21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: The purpose of this study was to determine whether applying foot pressure to unrestrained subjects during space flight could enhance the neuromuscular activation associated with rapid arm movements. Four men performed unilateral arm raises while wearing--or not wearing--specially designed boots during a 81- or 115-day space flight. Arm acceleration and surface EMG were obtained from selected lower limb and trunk muscles. Pearson r coefficients were used to evaluate similarity in phasic patterns between the two in-flight conditions. In-flight data also were magnitude normalized to the mean voltage value of the muscle activation waveforms obtained during the no-foot-pressure condition to facilitate comparison of activation amplitude between the two in-flight conditions. Foot pressure enhanced neuromuscular activation and somewhat modified the phasic features of the neuromuscular activation during the arm raises.
    Keywords: Aerospace Medicine
    Type: Acta astronautica (ISSN 0094-5765); Volume 42; 1-8; 231-46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-24
    Description: Historically the major impediment to radiation cataract follow-up has been the necessarily subjective nature of assessing the degree of lens transparency. This has spurred the development of instruments which produce video images amenable to digital analysis. One such system, the Zeiss Scheimpflug slit lamp measuring system (SLC), was incorporated into our ongoing studies of radiation cataractogenesis. It was found that the Zeiss SLC measuring system has high resolution and permits the acquisition of reproducible images of the anterior segment of the eye. Our results, based on about 650 images of lenses followed over a period of 91 weeks of radiation cataract development, showed that the changes in the light scatter of the lens correlated well with conventional assessment of radiation cataracts with the added advantages of objectivity, permanent and transportable records and linearity as cataracts become more severe. This continuous data acquisition, commencing with cataract onset, can proceed through more advanced stages. The SLC exhibits much greater sensitivity reflected in a continuously progressive severity thereby avoiding the artifactual plateaus in staging which occur using conventional scoring methods.
    Keywords: Aerospace Medicine
    Type: Ophthalmic research (ISSN 0030-3747); Volume 27 Suppl 1; 110-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-24
    Description: We measured the linear vestibulo-ocular reflex (LVOR) and vergence, using binocular search coils, in 3 humans. The subjects were accelerated sinusoidally at 0.5 Hz and 0.2 g peak acceleration, in complete darkness, while performing three different tasks: i) mental arithmetic; ii) tracking a remembered target at either 0.34 m or 0.14 m distance; and iii) maintaining vergence at either of these distances by means of audio biofeedback based on vergence. Subjects could control vergence using the audio feedback; there was greater convergence with the near audio target. However, there was no significant difference in vergence between the near and far remembered target conditions. With audio feedback, the amplitude of smooth tracking was not consistently different for the near and the far conditions. However, the amplitude of tracking (saccades and smooth component) in the remembered target conditions was greater for near than for far targets. These results suggest that linear VOR amplitude is not determined by vergence alone.
    Keywords: Aerospace Medicine
    Type: Acta oto-laryngologica. Supplementum (ISSN 0365-5237); Volume 520 Pt 1; 72-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-24
    Description: This study reports on the short-term in vivo precision and absolute measurements of three combinations of whole-body scan modes and analysis software using a Hologic QDR 2000 dual-energy X-ray densitometer. A group of 21 normal, healthy volunteers (11 male and 10 female) were scanned six times, receiving one pencil-beam and one array whole-body scan on three occasions approximately 1 week apart. The following combinations of scan modes and analysis software were used: pencil-beam scans analyzed with Hologic's standard whole-body software (PB scans); the same pencil-beam analyzed with Hologic's newer "enhanced" software (EPB scans); and array scans analyzed with the enhanced software (EA scans). Precision values (% coefficient of variation, %CV) were calculated for whole-body and regional bone mineral content (BMC), bone mineral density (BMD), fat mass, lean mass, %fat and total mass. In general, there was no significant difference among the three scan types with respect to short-term precision of BMD and only slight differences in the precision of BMC. Precision of BMC and BMD for all three scan types was excellent: 〈 1% CV for whole-body values, with most regional values in the 1%-2% range. Pencil-beam scans demonstrated significantly better soft tissue precision than did array scans. Precision errors for whole-body lean mass were: 0.9% (PB), 1.1% (EPB) and 1.9% (EA). Precision errors for whole-body fat mass were: 1.7% (PB), 2.4% (EPB) and 5.6% (EA). EPB precision errors were slightly higher than PB precision errors for lean, fat and %fat measurements of all regions except the head, although these differences were significant only for the fat and % fat of the arms and legs. In addition EPB precision values exhibited greater individual variability than PB precision values. Finally, absolute values of bone and soft tissue were compared among the three combinations of scan and analysis modes. BMC, BMD, fat mass, %fat and lean mass were significantly different between PB scans and either of the EPB or EA scans. Differences were as large as 20%-25% for certain regional fat and BMD measurements. Additional work may be needed to examine the relative accuracy of the scan mode/software combinations and to identify reasons for the differences in soft tissue precision with the array whole-body scan mode.
    Keywords: Aerospace Medicine
    Type: Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA (ISSN 0937-941X); Volume 5; 6; 440-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-24
    Description: A mathematical model has been developed to help explain human multi-sensory interactions. The most important constituent of the model is the hypothesis that the nervous system incorporates knowledge of sensory dynamics into an "internal model" of these dynamics. This internal model allows the nervous system to integrate the sensory information from many different sensors into a coherent estimate of self-motion. The essence of the model is unchanged from a previously published model of monkey eye movement responses; only a few variables have been adjusted to yield the prediction of human responses. During eccentric rotation, the model predicts that the axis of eye rotation shifts slightly toward alignment with gravito-inertial force. The model also predicts that the time course of the perception of tilt following the acceleration phase of eccentric rotation is much slower than that during deceleration. During off vertical axis rotation (OVAR) the model predicts a small horizontal bias along with small horizontal, vertical, and torsional oscillations. Following OVAR stimulation, when stopped right- or left-side down, a small vertical component is predicted that decays with the horizontal post-rotatory response. All of the predictions are consistent with measurements of human responses.
    Keywords: Aerospace Medicine
    Type: Acta oto-laryngologica. Supplementum (ISSN 0365-5237); Volume 520 Pt 2; 354-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-24
    Description: We have examined the feasibility of using massively-parallel and vector-processing supercomputers to solve large-scale optimization problems for human movement. Specifically, we compared the computational expense of determining the optimal controls for the single support phase of gait using a conventional serial machine (SGI Iris 4D25), a MIMD parallel machine (Intel iPSC/860), and a parallel-vector-processing machine (Cray Y-MP 8/864). With the human body modeled as a 14 degree-of-freedom linkage actuated by 46 musculotendinous units, computation of the optimal controls for gait could take up to 3 months of CPU time on the Iris. Both the Cray and the Intel are able to reduce this time to practical levels. The optimal solution for gait can be found with about 77 hours of CPU on the Cray and with about 88 hours of CPU on the Intel. Although the overall speeds of the Cray and the Intel were found to be similar, the unique capabilities of each machine are better suited to different portions of the computational algorithm used. The Intel was best suited to computing the derivatives of the performance criterion and the constraints whereas the Cray was best suited to parameter optimization of the controls. These results suggest that the ideal computer architecture for solving very large-scale optimal control problems is a hybrid system in which a vector-processing machine is integrated into the communication network of a MIMD parallel machine.
    Keywords: Aerospace Medicine
    Type: Journal of biomechanical engineering (ISSN 0148-0731); Volume 117; 1; 155-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-24
    Description: Prolonged head-down bed rest (HDBR) provides a model for examining responses to chronic weightlessness in humans. Eight healthy volunteers underwent HDBR for 2 wk. Antecubital venous blood was sampled for plasma levels of catechols [norepinephrine (NE), epinephrine, dopamine, dihydroxyphenylalanine, dihydroxyphenylglycol, and dihydroxyphenylacetic acid] after supine rest on a control (C) day and after 4 h and 7 and 14 days of HDBR. Urine was collected after 2 h of supine rest during day C, 2 h before HDBR, and during the intervals 1-4, 4-24, 144-168 (day 7), and 312-336 h (day 14) of HDBR. All subjects had decreased plasma and blood volumes (mean 16%), atriopeptin levels (31%), and peripheral venous pressure (26%) after HDBR. NE excretion on day 14 of HDBR was decreased by 35% from that on day C, without further trends as HDBR continued, whereas plasma levels were only variably and nonsignificantly decreased. Excretion rates of dihydroxyphenylglycol and dihydroxyphenylalanine decreased slightly during HDBR; excretion rates of epinephrine, dopamine, and dihydroxyphenylacetic acid and plasma levels of catechols were unchanged. The results suggest that HDBR produces sustained inhibition of sympathoneural release, turnover, and synthesis of NE without affecting adrenomedullary secretion or renal dopamine production. Concurrent hypovolemia probably interferes with detection of sympathoinhibition by plasma levels of NE and other catechols in this setting. Sympathoinhibition, despite decreased blood volume, may help to explain orthostatic intolerance in astronauts returning from spaceflights.
    Keywords: Aerospace Medicine
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); Volume 78; 3; 1023-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-24
    Description: The purpose was to determine whether extracellular volume or osmolality was the major contributing factor for reduction of thirst in air and head-out water immersion in hypohydrated subjects. Eight males (19-25 yr) were subjected to thermoneutral immersion and thermoneutral air under two hydration conditions without further drinking: euhydration in water (Eu-H2O) and euhydration in air, and hypohydration in water (Hypo-H2O) and hypohydration in air (3.7% wt loss after exercise in heat). The increased thirst sensation with Hypo-H2O decreased (P 〈 0.05) within 10 min of immersion and continued thereafter. Mean plasma osmolality (288 +/- 1 mosmol/kgH2O) and sodium (140 +/- 1 meq/l) remained elevated, and plasma volume increased by 4.2 +/- 1.0% (P 〈 0.05) throughout Hypo-H2O. A sustained increase (P 〈 0.05) in stroke volume accompanied the prompt and sustained decrease in plasma renin activity and sustained increase (P 〈 0.05) in plasma atrial natriuretic peptide during Eu-H2O and Hypo-H2O. Plasma vasopressin decreased from 5.3 +/- 0.7 to 2.9 +/- 0.5 pg/ml (P 〈 0.05) during Hypo-H2O but was unchanged in Eu-H2O. These findings suggest a sustained stimulation of the atrial baroreceptors and reduction of a dipsogenic stimulus without major alterations of extracellular osmolality in Hypo-H2O. Thus it appears that vascular volume-induced stimuli of cardiopulmonary baroreceptors play a more important role than extracellular osmolality in reducing thirst sensations during immersion in hypohydrated subjects.
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 268; 3 Pt 2; R583-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-24
    Description: Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p 〈 0.002) of GH on periosteal bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.
    Keywords: Aerospace Medicine
    Type: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (ISSN 0884-0431); Volume 10; 8; 1168-76
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-24
    Description: We tested the hypothesis that one bout of maximal exercise performed 24 h before reambulation from 16 days of 6 degrees head-down tilt (HDT) could increase integrated baroreflex sensitivity. Isolated carotid-cardiac and integrated baroreflex function was assessed in seven subjects before and after two periods of HDT separated by 11 mo. On the last day of one HDT period, subjects performed a single bout of maximal cycle ergometry (exercise). Subjects did not exercise after the other HDT period (control). Carotid-cardiac baroreflex sensitivity was evaluated using a neck collar device. Integrated baroreflex function was assessed by recording heart rate (HR) and blood pressure (MAP) during a 15-s Valsalva maneuver (VM) at a controlled expiratory pressure of 30 mmHg. The ratio of change in HR to change in MAP (delta HR/ delta MAP) during phases II and IV of the VM was used as an index of cardiac baroreflex sensitivity. Baroreflex-mediated vasoconstriction was assessed by measuring the late phase II rise in MAP. Following HDT, carotid-cardiac baroreflex sensitivity was reduced (2.8 to 2.0 ms/mmHg; P = 0.05) as was delta HR/ delta MAP during phase II (-1.5 to -0.8 beats/mmHg; P = 0.002). After exercise, isolated carotid baroreflex activity and phase II delta HR/ delta MAP returned to pre-HDT levels but remained attenuated in the control condition. Phase IV delta HR/ delta MAP was not altered by HDT or exercise. The late phase II increase of MAP was 71% greater after exercise compared with control (7 vs. 2 mmHg; P = 0.041).(ABSTRACT TRUNCATED AT 250 WORDS).
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 269; 3 Pt 2; R614-20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: Orthostatic hypotension is characterized by low upright blood pressure levels and symptoms of cerebral hypoperfusion. Whereas orthostatic hypotension is heterogeneous, correct pathophysiologic diagnosis is important because of therapeutic and prognostic considerations. Although therapy is not usually curative, it can be extraordinarily beneficial if it is individually tailored. Management of the Shy-Drager syndrome (multiple-system atrophy) remains a formidable challenge.
    Keywords: Aerospace Medicine
    Type: Current opinion in nephrology and hypertension (ISSN 1062-4821); Volume 4; 5; 452-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: Proximal metaphyses of tibial bones from the Sprague-Dowly rats exposed in US dedicated space life sciences laboratory SLS-2 for 13-14 days and sacrificed on day 13 in microgravity and within 5 hours and 14 days following recovery were the subject of histological, histochemical, and histomorphometric analyses. After the 13-day flight of SLS-2 the rats showed initial signs of osteopenia in the spongy tissue of tibial bones, secondary spongiosis affected first. Resorption of the secondary spongiosis was consequent to enhanced resorption and inhibition of osteogenesis. In rats sacrificed within 5 hours of recovery manifestations of tibial osteopenia were more evident than in rats sacrificed during the flight. Spaceflight-induced changes in tibial spongiosis were reverse by character the amount of spongy bone was fully compensated and following 14 days of readaptation to the terrestrial gravity.
    Keywords: Aerospace Medicine
    Type: Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine (ISSN 0233-528X); Volume 30; 1; 21-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: Serum-deprived mouse osteoblastic cells (MC3T3-E1a) were centrifuged under a regime designed to simulate a space shuttle launch (maximum of 3g). Messenger RNA levels for eight genes involved in bone growth and maintenance were determined using RT-PCR. Following 30 min of centrifugation, mRNA level for early response gene c-fos was significantly increased 89% (P 〈 0.05). The c-fos induction was transient and returned to control levels after 3 h. The mRNA level for the mineralization marker gene osteocalcin was significantly decreased to 44% of control level (P 〈 0.005) 3 h after centrifugation. No changes in mRNA levels were detected for c-myc, TGFbeta1, TGFbeta2, cyclophilin A, or actin. No basal mRNA level for TGFbeta3 was detected. In addition, no change in the steady-state synthesis of prostaglandin E2 was detected, possibly due to lack of lipid substrates in serum-deprived cells, suggesting that the increase in c-fos mRNA in response to gravitational loading is a result of mechanical stimulation. These results indicate that a small magnitude mechanical loading, such as that experienced during a shuttle launch, can alter mRNA levels in quiescent osteoblastic cells.
    Keywords: Aerospace Medicine
    Type: Experimental cell research (ISSN 0014-4827); Volume 228; 1; 168-71
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-24
    Description: Mechanotransduction plays a crucial role in the physiology of many tissues including bone. Mechanical loading can inhibit bone resorption and increase bone formation in vivo. In bone, the process of mechanotransduction can be divided into four distinct steps: (1) mechanocoupling, (2) biochemical coupling, (3) transmission of signal, and (4) effector cell response. In mechanocoupling, mechanical loads in vivo cause deformations in bone that stretch bone cells within and lining the bone matrix and create fluid movement within the canaliculae of bone. Dynamic loading, which is associated with extracellular fluid flow and the creation of streaming potentials within bone, is most effective for stimulating new bone formation in vivo. Bone cells in vitro are stimulated to produce second messengers when exposed to fluid flow or mechanical stretch. In biochemical coupling, the possible mechanisms for the coupling of cell-level mechanical signals into intracellular biochemical signals include force transduction through the integrin-cytoskeleton-nuclear matrix structure, stretch-activated cation channels within the cell membrane, G protein-dependent pathways, and linkage between the cytoskeleton and the phospholipase C or phospholipase A pathways. The tight interaction of each of these pathways would suggest that the entire cell is a mechanosensor and there are many different pathways available for the transduction of a mechanical signal. In the transmission of signal, osteoblasts, osteocytes, and bone lining cells may act as sensors of mechanical signals and may communicate the signal through cell processes connected by gap junctions. These cells also produce paracrine factors that may signal osteoprogenitors to differentiate into osteoblasts and attach to the bone surface. Insulin-like growth factors and prostaglandins are possible candidates for intermediaries in signal transduction. In the effector cell response, the effects of mechanical loading are dependent upon the magnitude, duration, and rate of the applied load. Longer duration, lower amplitude loading has the same effect on bone formation as loads with short duration and high amplitude. Loading must be cyclic to stimulate new bone formation. Aging greatly reduces the osteogenic effects of mechanical loading in vivo. Also, some hormones may interact with local mechanical signals to change the sensitivity of the sensor or effector cells to mechanical load.
    Keywords: Aerospace Medicine
    Type: Calcified tissue international (ISSN 0171-967X); Volume 57; 5; 344-58
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-24
    Description: The Division of Emergency Medicine at the University of Florida coordinates a unique program with the NASA John F. Kennedy Space Center (KSC) to provide emergency medical support (EMS) for the United States Space Transportation System. This report outlines the organization of the KSC EMS system, training received by physicians providing medical support, logistic and operational aspects of the mission, and experiences of team members. The participation of emergency physicians in support of manned space flight represents another way that emergency physicians provide leadership in prehospital care and disaster management.
    Keywords: Aerospace Medicine
    Type: The Journal of emergency medicine (ISSN 0736-4679); Volume 13; 4; 553-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-24
    Description: The effect of in vivo and in vitro irradiation on subsequent satellite cell growth, in vitro, was investigated to ascertain the ability of a 25 Gy dose to inhibit satellite cell proliferation. Satellite cells were isolated from the left (irradiated) and right (non-irradiated) Pectoralis thoracicus of two-week-old tom turkeys 16 h (n=3) and seven weeks (n=2) after the left Pectoralis thoracicus had been irradiated (25 Gy). Satellite cells isolated from the irradiated and non-irradiated muscles exhibited similar (P〉0.10) in vitro proliferation indicating that a population of satellite cells survived an in vivo dose of 25 Gy. In additional experiments, satellite cell cultures derived from tom turkey Pectoralis thoracicus were irradiated (25 Gy) in vitro. The number of satellite cells did not (P〉0.05) increase in irradiated cultures for 134 h following irradiation, while satellite cells in non-irradiated cultures proliferated (P〈0.05) over this time. At later time periods, satellite cell number increased (P〈0.05) in irradiated cultures indicating that a population of satellite cells survived irradiation. The results of these in vitro experiments suggest that a 25 Gy dose of irradiation does not abolish satellite cell divisions in the turkey Pectoralis thoracicus.
    Keywords: Aerospace Medicine
    Type: Cell and tissue research (ISSN 0302-766X); Volume 283; 2; 203-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-24
    Description: BACKGROUND: Performing a surgical procedure in weightlessness has been shown not to be any more difficult than in a 1g environment if the requirements for the restraint of the patient, operator, and surgical hardware are observed. The feasibility of performing a laparoscopic surgical procedure in weightlessness, however, has been questionable. Concerns have included the impaired visualization from the lack of gravitational retraction of the bowel and from floating debris such as blood. METHODS: In this project, laparoscopic surgery was performed on a porcine animal model in the weightlessness of parabolic flight. RESULTS: Visualization was unaffected due to the tethering of the bowel by the elastic mesentery and the strong tendency for debris and blood to adhere to the abdominal wall due to surface tension forces. CONCLUSIONS: There are advantages to performing a laparoscopic instead of an open surgical procedure in a weightless environment. These will become important as the laparoscopic support hardware is miniaturized from its present form, as laparoscopic technology becomes more advanced, and as more surgically capable crew medical officers are present in future long-duration space-exploration missions.
    Keywords: Aerospace Medicine
    Type: Surgical endoscopy (ISSN 0930-2794); Volume 10; 2; 111-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-24
    Description: The transduction mechanism (or mechanisms) responsible for converting a mechanical load into a skeletal muscle growth response are unclear. In this study we have used a mechanically active tissue culture model of differentiated human skeletal muscle cells to investigate the relationship between mechanical load, sarcolemma wounding, fibroblast growth factor release, and skeletal muscle cell growth. Using the Flexcell Strain Unit we demonstrate that as mechanical load increases, so too does the amount of sarcolemma wounding. A similar relationship was also observed between the level of mechanical load inflicted on the cells and the amount of bFGF (FGF2) released into the surrounding medium. In addition, we demonstrate that the muscle cell growth response induced by chronic mechanical loading in culture can be inhibited by the presence of an antibody capable of neutralizing the biological activity of FGF. This study provides direct evidence that mechanically induced, sarcolemma wound-mediated FGF release is an important autocrine mechanism for transducing the stimulus of mechanical load into a skeletal muscle growth response.
    Keywords: Aerospace Medicine
    Type: The FASEB journal : official publication of the Federation of American Societies for Experimental Biology (ISSN 0892-6638); Volume 10; 4; 502-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-24
    Description: The six domains that must be addressed in managing fatigue in operational settings are identified, and examples of how the aviation industry is dealing with the problems in each domain are given. Challenges facing healthcare providers in managing fatigue are also discussed.
    Keywords: Aerospace Medicine
    Type: Behavioral medicine (Washington, D.C.) (ISSN 0896-4289); Volume 21; 4; 166-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-24
    Description: The purpose was to investigate the mechanism for the excessive exercise hyperthermia following deconditioning (reduction of physical fitness). Rectal (Tre) and mean skin (Tsk) temperatures and thermoregulatory responses were measured in six men [mean (SD) age, 32 (6) years; mass, 78.26 (5.80) kg; surface area, 1.95 (0.11) m2; maximum oxygen uptake (VO2max), 48 (6) ml.min-1.kg-1; whilst supine in air at dry bulb temperature 23.2 (0.6) degree C, relative humidity 31.1 (11.1)% and air speed 5.6 (0.1) m.min-1] during 70 min of leg cycle exercise [51 (4)% VO2max] in ambulatory control (AC), or following 6 h of chair rest (CR), 6 degree head-down bed rest (BR), and 20 degree (WI20) and 80 degree (WI80) foot-down water immersion [water temperature, 35.0 (0.1) degree C]. Compared with the AC exercise delta Tre [mean (SD) 0.77 (0.13) degree C (*P 〈 0.05), after WI80 0.96 (0.13) degree C*, and after WI20 1.03 (0.09) degree C*. All Tsk responded similarly to exercise: they decreased (NS) by 0.5-0.7 degree C in minutes 4-8 and equilibrated at +0.1 to +0.5 degree C at 60-70. Skin heat conductance was not different among the five conditions (range = 147-159 kJ.m-2.h-1.degree C-1). Results from an intercorrelation matrix suggested that total body sweat rate was more closely related to Tre at 70 min (Tre70) than limb sweat rate or blood flow. Only 36% of the variability in Tre70 could be accounted for by total sweating, and less than 10% from total body dehydration. It would appear that multiple factors are involved which may include change in sensitivity of thermo- and osmoreceptors.
    Keywords: Aerospace Medicine
    Type: European journal of applied physiology and occupational physiology (ISSN 0301-5548); Volume 72; 4; 303-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-24
    Description: The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P 〈 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P 〈 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 270; 1 Pt 1; E51-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-24
    Description: Bed rest, both with and without head-down tilt, has been extensively used as an earth-bound analog to study physiologic effects mimicking those occurring in weightlessness during spaceflight. We have been able to show in six subjects that 4 weeks of head-down tilt bed rest induces a significant decrease in interleukin-2 secretion by PHA-stimulated T lymphocytes. Another study, lasting 113 days, with two subjects showed a decreased interleukin-2 receptor expression in PHA-stimulated peripheral blood mononuclear cells but a decreased interleukin-2 production in one subject only. Under the same conditions, interleukin-1 production was largely increased in both subjects. Several other immune parameters were also analyzed. Increased interleukin-1 production could contribute to bone mineral loss encountered during bed rest and decreased interleukin-2 secretion could play a role in the appearance of infectious diseases often observed during bed red.
    Keywords: Aerospace Medicine
    Type: Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research (ISSN 1079-9907); Volume 16; 2; 151-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-24
    Description: Since the first report in unicells, studies across diverse species have demonstrated that light is a powerful synchronizer which resets, in an intensity-dependent manner, endogenous circadian pacemakers. Although it is recognized that bright light (approximately 7,000 to 13,000 lux) is an effective circadian synchronizer in humans, it is widely believed that the human circadian pacemaker is insensitive to ordinary indoor illumination (approximately 50-300 lux). It has been proposed that the relationship between the resetting effect of light and its intensity follows a compressive nonlinear function, such that exposure to lower illuminances still exerts a robust effect. We therefore undertook a series of experiments which support this hypothesis and report here that light of even relatively low intensity (approximately 180 lux) significantly phase-shifts the human circadian pacemaker. Our results clearly demonstrate that humans are much more sensitive to light than initially suspected and support the conclusion that they are not qualitatively different from other mammals in their mechanism of circadian entrainment.
    Keywords: Aerospace Medicine
    Type: Nature (ISSN 0028-0836); Volume 379; 6565; 540-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-24
    Description: BACKGROUND: One of the principal explanations for respiratory sinus arrhythmia is that it reflects arterial baroreflex buffering of respiration-induced arterial pressure fluctuations. If this explanation is correct, then elimination of RR interval fluctuations should increase respiratory arterial pressure fluctuations. METHODS AND RESULTS: We measured RR interval and arterial pressure fluctuations during normal sinus rhythm and fixed-rate atrial pacing at 17.2+/-1.8 (SEM) beats per minute greater than the sinus rate in 16 healthy men and 4 healthy women, 20 to 34 years of age. Measurements were made during controlled-frequency breathing (15 breaths per minute or 0.25 Hz) with subjects in the supine and 40 degree head-up tilt positions. We characterized RR interval and arterial pressure variabilities in low-frequency (0.05 to 0.15 Hz) and respiratory-frequency (0.20 to 0.30 Hz) ranges with fast Fourier transform power spectra and used cross-spectral analysis to determine the phase relation between the two signals. As expected, cardiac pacing eliminated beat-to-beat RR interval variability. Against expectations, however, cardiac pacing in the supine position significantly reduced arterial pressure oscillations in the respiratory frequency (systolic, 6.8+/-1.8 to 2.9 +/-0.6 mm Hg2/Hz, P=.017). In contrast, cardiac pacing in the 40 degree tilt position increased arterial pressure variability (systolic, 8.0+/-1.8 to 10.8 +/-2.6, P=.027). Cross-spectral analysis showed that 40 degree tilt shifted the phase relation between systolic pressure and RR interval at the respiratory frequency from positive to negative (9 +/-7 degrees versus -17+/-11 degrees, P=.04); that is, in the supine position, RR interval changes appeared to lead arterial pressure changes, and in the upright position, RR interval changes appeared to follow arterial pressure changes. CONCLUSIONS: These results demonstrate that respiratory sinus arrhythmia can actually contribute to respiratory arterial pressure fluctuations. Therefore, respiratory sinus arrhythmia does not represent simple baroreflex buffering of arterial pressure.
    Keywords: Aerospace Medicine
    Type: Circulation (ISSN 0009-7322); Volume 93; 8; 1527-32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-08-24
    Description: Little is known about how or where the visual system parses the visual scene into objects or surfaces. However, it is generally assumed that the segmentation and grouping of pieces of the image into discrete entities is due to 'later' processing stages, after the 'early' processing of the visual image by local mechanisms selective for attributes such as colour, orientation, depth, and motion. Speed perception is also thought to be mediated by early mechanisms tuned for speed. Here we show that manipulating the way in which an image is parsed changes the way in which local speed information is processed. Manipulations that cause multiple stimuli to appear as parts of a single patch degrade speed discrimination, whereas manipulations that perceptually divide a single large stimulus into parts improve discrimination. These results indicate that processes as early as speed perception may be constrained by the parsing of the visual image into discrete entities.
    Keywords: Aerospace Medicine
    Type: Nature (ISSN 0028-0836); Volume 381; 6578; 161-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-24
    Description: A Research Roundtable, organized by the American College of Sports Medicine with sponsorship from the National Aeronautics and Space Administration, met in November 1995 to define research strategies for effective exercise countermeasures to weightlessness. Exercise was considered both independently of, and in conjunction with, other therapeutic modalities (e.g., pharmacological nutritional, hormonal, and growth-related factors) that could prevent or minimize the structural and functional deficits involving skeletal muscle and bone in response to chronic exposure to weightlessness, as well as return to Earth baseline function if a degree of loss is inevitable. Musculoskeletal deficits and countermeasures are described with respect to: 1) muscle and connective tissue atrophy and localized bone loss, 2) reductions in motor performance, 3) potential proneness to injury of hard and soft tissues, and 4) probable interaction between muscle atrophy and cardiovascular alterations that contribute to the postural hypotension observed immediately upon return from space flight. In spite of a variety of countermeasure protocols utilized previously involving largely endurance types of exercise, there is presently no activity-specific countermeasure(s) that adequately prevent or reduce musculoskeletal deficiencies. It seems apparent that countermeasure exercises that have a greater resistance element, as compared to endurance activities, may prove beneficial to the musculoskeletal system. Many questions remain for scientific investigation to identify efficacious countermeasure protocols, which will be imperative with the emerging era of long-term space flight.
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 28; 10; 1247-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 28; 10 Suppl; S56; discussion S56-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-24
    Description: Plasma volume is reduced by 10-20% within 24-48 h of exposure to simulated or actual microgravity. The clinical importance of microgravity induced hypovolemia is manifested by its relationship with orthostatic intolerance and reduced maximal oxygen uptake (VO2max) after return to one gravity (1G). Since there is no evidence to suggest that plasma volume reduction during microgravity is associated with thirst or renal dysfunctions, a diuresis induced by an immediate blood volume shift to the central circulation appears responsible for microgravity-induced hypovolemia. Since most astronauts choose to restrict their fluid intake before a space mission, absence of increased urine output during actual space flight may be explained by low central venous pressure (CVP) which accompanies dehydration. Compelling evidence suggests that prolonged reduction in CVP during exposure to microgravity reflects a "resetting" to a lower operating point, which acts to limit plasma volume expansion during attempts to increase fluid intake. In ground based and space flight experiments, successful restoration and maintenance of plasma volume prior to returning to an upright posture may depend upon development of treatments that can return CVP to its baseline IG operating point. Fluid-loading and lower body negative pressure (LBNP) have not proved completely effective in restoring plasma volume, suggesting that they may not provide the stimulus to elevate the CVP operating point. On the other hand, exercise, which can chronically increase CVP, has been effective in expanding plasma volume when combined with adequate dietary intake of fluid and electrolytes. The success of designing experiments to understand the physiological mechanisms of and development of effective counter measures for the control of plasma volume in microgravity and during return to IG will depend upon testing that can be conducted under standardized controlled baseline conditions during both ground-based and space flight investigations.
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 28; 10 Suppl; S45-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-08-24
    Description: Two prominent theories to explain the physiological effects of microgravity relate to the cascade of changes associated with the cephalic shifts of fluids and the absence of tissue deformation forces. One-g experiments for humans used bed rest and the head-down tilt (HDT) method, while animal experiments have been conducted using the tail-suspended, head-down, and hindlimbs non-weightbearing model. Because of the success of the HDT approach with rats to simulate the gravitational effects on the musculoskeletal system exhibited by humans, the same model has been used to study the effects of gravity on the cardiopulmonary systems of humans and other vertebrates. Results to date indicate the model is effective in producing comparable changes associated with blood volume, erythropoiesis, cardiac mass, baroreceptor responsiveness, carbohydrate metabolism, post-flight VO2max, and post-flight cardiac output during exercise. Inherent with these results is the potential of the model to be useful in investigating responsible mechanisms. The suspension model has promise in understanding the capillary blood PO2 changes in space as well as the arterial PO2 changes in subjects participating in a HDT experiment. However, whether the model can provide insights on the up-or-down regulation of adrenoreceptors remains to be determined, and many investigators believe the HDT approach should not be followed to study gravitational influences on pulmonary function in either humans or animals. It was concluded that the tail-suspended animal model had sufficient merit to study in-flight and post-flight human physiological responses and mechanisms.
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 28; 10 Suppl; S94-100
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-08-24
    Description: We measured human ocular torsion (OT) monocularly (using video) and binocularly (using search coils) while sinusoidally accelerating (0.7 g) five human subjects along an earth-horizontal axis at five frequencies (0.35, 0.4, 0.5, 0.75, and 1.0 Hz). The compensatory nature of OT was investigated by changing the relative orientation of the dynamic (linear acceleration) and static (gravitational) cues. Four subject orientations were investigated: (1) Y-upright-acceleration along the interaural (y) axis while upright; (2) Y-supine-acceleration along the y-axis while supine; (3) Z-RED-acceleration along the dorsoventral (z) axis with right ear down; (4) Z-supine-acceleration along the z-axis while supine. Linear acceleration in the Y-upright, Y-supine and Z-RED orientations elicited conjugate OT. The smaller response in the Z-supine orientation appeared disconjugate. The amplitude of the response decreased and the phase lag increased with increasing frequency for each orientation. This frequency dependence does not match the frequency response of the regular or irregular afferent otolith neurons; therefore the response dynamics cannot be explained by simple peripheral mechanisms. The Y-upright responses were larger than the Y-supine responses (P 〈 0.05). This difference indicates that OT must be more complicated than a simple low-pass filtered response to interaural shear force, since the dynamic shear force along the interaural axis was identical in these two orientations. The Y-supine responses were, in turn, larger than the Z-RED responses (P 〈 0.01). Interestingly, the vector sum of the Y-supine responses plus Z-RED responses was not significantly different (P = 0.99) from the Y-upright responses. This suggests that, in this frequency range, the conjugate OT response during Y-upright stimulation might be composed of two components: (1) a response to shear force along the y-axis (as in Y-supine stimulation), and (2) a response to roll tilt of gravitoinertial force (as in Z-RED stimulation).
    Keywords: Aerospace Medicine
    Type: Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale (ISSN 0014-4819); Volume 110; 2; 315-21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-08-24
    Description: Microgravity provides unique, though experimentally challenging, opportunities to study motor control. A traditional research focus has been the effects of linear acceleration on vestibular responses to angular acceleration. Evidence is accumulating that the high-frequency vestibulo-ocular reflex (VOR) is not affected by transitions from a 1 g linear force field to microgravity (〈1 g); however, it appears that the three-dimensional organization of the VOR is dependent on gravitoinertial force levels. Some of the observed effects of microgravity on head and arm movement control appear to depend on the previously undetected inputs of cervical and brachial proprioception, which change almost immediately in response to alterations in background force levels. Recent studies of post-flight disturbances of posture and locomotion are revealing sensorimotor mechanisms that adjust over periods ranging from hours to weeks.
    Keywords: Aerospace Medicine
    Type: Current opinion in neurobiology (ISSN 0959-4388); Volume 6; 6; 744-50
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-08-24
    Description: BACKGROUND: Spinal lengthening and back pain are commonly experienced by astronauts exposed to microgravity. METHODS: To develop a ground-based simulation for spinal adaptation to microgravity, we investigated height increase, neuromuscular function and back pain in 6 subjects all of whom underwent two forms of bed rest for 3 d. One form consisted of 6 degrees of head-down tilt (HDT) with balanced traction, while the other was horizontal bed rest (HBR). Subjects had a 2-week recovery period in between the studies. RESULTS: Total body and spinal length increased significantly more and the subjects had significantly more back pain during HDT with balanced traction compared to HBR. The distance between the lower endplate of L4 and upper endplate of S1, as measured by ultrasonography, increased significantly in both treatments to the same degree. Intramuscular pressures in the erector spinae muscles and ankle torque measurements during plantarflexion and dorsiflexion did not change significantly during either treatment. CONCLUSION: Compared to HBR, HDT with balanced traction may be a better method to simulate changes of total body and spinal lengths, as well as back pain seen in microgravity.
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 68; 1; 24-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2011-08-24
    Description: It is well known that skeletal muscle intrinsic maximal shortening velocity is inversely related to species body mass. However, there is uncertainty regarding the relationship between the contractile properties of muscle fibers obtained from commonly studied laboratory animals and those obtained from humans. In this study we determined the contractile properties of single chemically skinned fibers prepared from rat, rhesus monkey, and human soleus and gastrocnemius muscle samples under identical experimental conditions. All fibers used for analysis expressed type I myosin heavy chain as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allometric coefficients for type I fibers from each muscle indicated that there was little change in peak tension (force/fiber cross-sectional area) across species. In contrast, both soleus and gastrocnemius type I fiber maximal unloaded shortening velocity (Vo), the y-intercept of the force-velocity relationship (Vmax), peak power per unit fiber length, and peak power normalized for fiber length and cross-sectional area were all inversely related to species body mass. The present allometric coefficients for soleus fiber Vo (-0.18) and Vmax (-0.11) are in good agreement with published values for soleus fibers obtained from common laboratory and domesticated mammals. Taken together, these observations suggest that the Vo of slow fibers from quadrupeds and humans scale similarly and can be described by the same quantitative relationships. These findings have implications in the design and interpretation of experiments, especially those that use small laboratory mammals as a model of human muscle function.
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 272; 1 Pt 2; R34-42
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-08-24
    Description: Measurement of bone turnover in conditions such as osteoporosis has been limited by the need for invasive iliac bone biopsy to reliably determine parameters of bone metabolism. Recent advances in the area of serum and urinary markers of bone metabolism have raised the possibility for noninvasive measurements; however, little nonhuman primate data exist for these parameters. The purpose of this experiment was to define the normal range and variability of several of the newer noninvasive bone markers which are currently under investigation in humans. The primary intent was to determine age and gender variability, as well as provide some normative data for future experiments in nonhuman primates. Twenty-four rhesus macaques were divided into equal groups of male and female according to the following age groupings: 3 years, 5-10 years, 15-20 years, and 〉 25 years. Urine was collected three times daily for a four-day period and measured for several markers of bone turnoverm including pyridinoline (PYD), deoxypyrodinoline (DPD), hydroxyproline, and creatinine. Bone mineral density measurements of the lumbar spine were performed at the beginning and end of the study period. Serum was also obtained at the time of bone densitometry for measurement of osteocalcin levels by radioimmunoassay. There were no significant differences in bone mineral density, urine PYD, or urine DPD based on gender. Bone density was lowest in the youngest animals, peaked in the 15-20-year group, but again decreased in the oldest animals. The osteocalcin, PYD, and DPD levels followed an inversely related pattern to bone density. The most important result was the relative age insensitivity of the ratio of PYD:DPD in monkeys up to age 20 years. Since bone density changes take months or years to become measurable and iliac biopsies are invasive, the PYD/DPD marker ratio may have important implications for rapid noninvasive measurement of the effects of potential treatments for osteoporosis in the non-human primate model.
    Keywords: Aerospace Medicine
    Type: Journal of medical primatology (ISSN 0047-2565); Volume 25; 5; 333-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2011-08-24
    Description: A high-resolution magnetic resonance imaging (MRI) protocol, together with specialized image processing techniques, was applied to the quantitative measurement of age-related changes in calcaneal trabecular structure. The reproducibility of the technique was assessed and the annual rates of change for several trabecular structure parameters were measured. The MR-derived trabecular parameters were compared with calcaneal bone mineral density (BMD), measured by dual X-ray absorptiometry (DXA) in the same subjects. Sagittal MR images were acquired at 1.5 T in 23 healthy women (mean age: 49.3 +/- 16.6 [SD]), using a three-dimensional gradient echo sequence. Image analysis procedures included internal gray-scale calibration, bone and marrow segmentation, and run-length methods. Three trabecular structure parameters, apparent bone volume (ABV/TV), intercept thickness (I.Th), and intercept separation (I.Sp) were calculated from the MR images. The short- and long-term precision errors (mean %CV) of these measured parameters were in the ranges 1-2% and 3-6%, respectively. Linear regression of the trabecular structure parameters vs. age showed significant correlation: ABV/TV (r2 = 33.7%, P 〈 0.0037), I.Th (r2 = 26.6%, P 〈 0.0118), I.Sp (r2 = 28.9%, P 〈 0.0081). These trends with age were also expressed as annual rates of change: ABV/TV (-0.52%/year), I.Th (-0.33%/year), and I.Sp (0.59%/year). Linear regression analysis also showed significant correlation between the MR-derived trabecular structure parameters and calcaneal BMD values. Although a larger group of subjects is needed to better define the age-related changes in trabecular structure parameters and their relation to BMD, these preliminary results demonstrate that high-resolution MRI may potentially be useful for the quantitative assessment of trabecular structure.
    Keywords: Aerospace Medicine
    Type: Calcified tissue international (ISSN 0171-967X); Volume 60; 2; 139-47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-08-24
    Description: The study tested the influence of prostaglandin E2 (PGE2) on the skeletal response to increased in vivo mechanical loading through a four-point bending device. One hundred and twenty Sprague-Dawley female rats (6 months old, 354 +/- 34 g) were divided into 12 groups to accommodate all possible combinations of doses of loads (25, 30, or 35 N) and PGE2 (0, 0.1, 0.3, or 1 mg/kg). Rats received subcutaneous injections of PGE2 daily and in vivo loading of the right tibia every Monday, Wednesday, and Friday for four weeks. Histomorphometric analysis of the periosteal and endocortical surfaces following in vivo dual fluorochrome labeling was performed on both the loaded region of the right tibial diaphysis and a similar region of the left tibial diaphysis. Without PGE2, the threshold for loading to stimulate bone formation was 30 N (peak strain 1360 mu epsilon) at the periosteal surface and 25 N (peak strain 580 mu epsilon) at the endocortical surface. Without loading, the minimum dose of PGE2 to stimulate bone formation at all surfaces was 1 mg/kg/day. When 1 mg/kg/day PGE2 was combined with the minimum effective load, an additive effect of PGE2 and loading on bone formation was observed at the endocortical surface, but a synergistic effect was noted at the periosteal surface. No combined effect of ineffective doses of loading and PGE2 was found. A synergistic effect at peak strains of approximately 1625 mu epsilon on the periosteal surface could suggest either the involvement of locally produced growth factors or autoregulation of endogenous synthesis of PGE2 by exogenously administered PGE2.
    Keywords: Aerospace Medicine
    Type: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (ISSN 0884-0431); Volume 12; 2; 276-82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-08-24
    Description: Reduction of exercise capacity with confinement to bed rest is well recognized. Underlying physiological mechanisms include dramatic reductions in maximal stroke volume, cardiac output, and oxygen uptake. However, bed rest by itself does not appear to contribute to cardiac dysfunction. Increased muscle fatigue is associated with reduced muscle blood flow, red cell volume, capillarization and oxidative enzymes. Loss of muscle mass and bone density may be reflected by reduced muscle strength and higher risk for injury to bones and joints. The resultant deconditioning caused by bed rest can be independent of the primary disease and physically debilitating in patients who attempt to reambulate to normal active living and working. A challenge to clinicians and health care specialists has been the identification of appropriate and effective methods to restore physical capacity of patients during or after restricted physical activity associated with prolonged bed rest. The examination of physiological responses to bed rest deconditioning and exercise training in healthy subjects has provided significant information to develop effective rehabilitation treatments. The successful application of acute exercise to enhance orthostatic stability, daily endurance exercise to maintain aerobic capacity, or specific resistance exercises to maintain musculoskeletal integrity rather than the use of surgical, pharmacological, and other medical treatments for clinical conditions has been enhanced by investigation and understanding of underlying mechanisms that distinguish physical deconditioning from the disease. This symposium presents an overview of cardiovascular and musculoskeletal deconditioning associated with reduced physical work capacity following prolonged bed rest and exercise training regimens that have proven successful in ameliorating or reversing these adverse effects.
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 29; 2; 187-90
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-08-24
    Description: The development of diagnostic protocols that identify specific risk factors for calcium oxalate nephrolithiasis has led to the formulation of directed medical regimens that are aimed at correcting the underlying metabolic disturbances. Initiation of these treatment programs has reduced markedly the rate of stone formation in the majority of patients who form stones. This article discusses the rationale that underlies the choice of medical therapy for the various pathophysiologic causes of calcium oxalate nephrolithiasis and the appropriate use of available medications.
    Keywords: Aerospace Medicine
    Type: The Urologic clinics of North America (ISSN 0094-0143); Volume 24; 1; 117-33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-08-24
    Description: Rats exposed to simulated conditions of microgravity exhibit reductions in aerobic exercise capacity that may be due to an impaired ability of the sympathetic nervous system (SNS) to mediate an increase in cardiac output and to redistribute blood flow. The purpose of this study was to quantify the sympathetic response to exercise in rats after exposure to 14 days of simulated microgravity or control conditions. To achieve this aim, rats were exposed to 14 days of head-down suspension (HDS) or cage control (CC) conditions. On day 14, norepinephrine (NE) synthesis was blocked with alpha-methyl-p-tyrosine, and the rate of NE depletion after synthesis blockade was used to estimate SNS activity in the left ventricle, spleen, and soleus muscle during treadmill exercise at 75% of maximal oxygen uptake. When compared with CC rats, the sympathetic response to exercise in HDS rats was characterized by a lower rate of NE depletion in the left ventricle (-82%) and spleen (-42%). The rate of NE depletion in the soleus muscle was 47% higher. These differences could contribute to the decrement in aerobic capacity of HDS rats by impairing their ability to augment cardiac output and to redirect blood flow to actively contracting skeletal muscle during exercise.
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 272; 2 Pt 2; R570-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2011-08-24
    Description: Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P 〈 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P 〈 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P 〉 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.
    Keywords: Aerospace Medicine
    Type: European journal of applied physiology and occupational physiology (ISSN 0301-5548); Volume 78; 2; 136-40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-08-24
    Description: We evaluated the combined effects on reaching movements of the transient, movement-dependent Coriolis forces and the static centrifugal forces generated in a rotating environment. Specifically, we assessed the effects of comparable Coriolis force perturbations in different static force backgrounds. Two groups of subjects made reaching movements toward a just-extinguished visual target before rotation began, during 10 rpm counterclockwise rotation, and after rotation ceased. One group was seated on the axis of rotation, the other 2.23 m away. The resultant of gravity and centrifugal force on the hand was 1.0 g for the on-center group during 10 rpm rotation, and 1.031 g for the off-center group because of the 0.25 g centrifugal force present. For both groups, rightward Coriolis forces, approximately 0.2 g peak, were generated during voluntary arm movements. The endpoints and paths of the initial per-rotation movements were deviated rightward for both groups by comparable amounts. Within 10 subsequent reaches, the on-center group regained baseline accuracy and straight-line paths; however, even after 40 movements the off-center group had not resumed baseline endpoint accuracy. Mirror-image aftereffects occurred when rotation stopped. These findings demonstrate that manual control is disrupted by transient Coriolis force perturbations and that adaptation can occur even in the absence of visual feedback. An increase, even a small one, in background force level above normal gravity does not affect the size of the reaching errors induced by Coriolis forces nor does it affect the rate of reacquiring straight reaching paths; however, it does hinder restoration of reaching accuracy.
    Keywords: Aerospace Medicine
    Type: Journal of neurophysiology (ISSN 0022-3077); Volume 80; 2; 546-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Texas medicine (ISSN 0040-4470); Volume 94; 2; 41-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-08-24
    Description: We performed bolus inhalations of 1-micrometer particles in four subjects on the ground (1 G) and during parabolic flights both in microgravity (microG) and in approximately 1.6 G. Boluses of approximately 70 ml were inhaled at different points in an inspiration from residual volume to 1 liter above functional residual capacity. The volume of air inhaled after the bolus [the penetration volume (Vp)] ranged from 200 to 1,500 ml. Aerosol concentration and flow rate were continuously measured at the mouth. The deposition, dispersion, and position of the bolus in the expired gas were calculated from these data. For Vp 〉/=400 ml, both deposition and dispersion increased with Vp and were strongly gravity dependent, with the greatest deposition and dispersion occurring for the largest G level. At Vp = 800 ml, deposition and dispersion increased from 33.9% and 319 ml in microG to 56.9% and 573 ml at approximately 1.6 G, respectively (P 〈 0.05). At each G level, the bolus was expired at a smaller volume than Vp, and this volume became smaller with increasing Vp. Although dispersion was lower in microG than in 1 G and approximately 1.6 G, it still increased steadily with increasing Vp, showing that nongravitational ventilatory inhomogeneity is partly responsible for dispersion in the human lung.
    Keywords: Aerospace Medicine
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); Volume 85; 4; 1252-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2011-08-24
    Description: This article summarizes a variety of newly published findings obtained by the Neuroscience Laboratory, Johnson Space Center, and attempts to place this work within a historical framework of previous results on posture, locomotion, motion sickness, and perceptual responses that have been observed in conjunction with space flight. In this context, we have taken the view that correct transduction and integration of signals from all sensory systems is essential to maintaining stable vision, postural and locomotor control, and eye-hand coordination as components of spatial orientation. The plasticity of the human central nervous system allows individuals to adapt to altered stimulus conditions encountered in a microgravity environment. However, until some level of adaptation is achieved, astronauts and cosmonauts often experience space motion sickness, disturbances in motion control and eye-hand coordination, unstable vision, and illusory motion of the self, the visual scene, or both. Many of the same types of disturbances encountered in space flight reappear immediately after crew members return to earth. The magnitude of these neurosensory, sensory-motor and perceptual disturbances, and the time needed to recover from them, tend to vary as a function of mission duration and the space travelers prior experience with the stimulus rearrangement of space flight. To adequately chart the development of neurosensory changes associated with space flight, we recommend development of enhanced eye movement systems and body position measurement. We also advocate the use of a human small radius centrifuge as both a research tool and as a means of providing on-orbit countermeasures that will lessen the impact of living for long periods of time with out exposure to altering gravito-inertial forces. Copyright 1998 Elsevier Science B.V.
    Keywords: Aerospace Medicine
    Type: Brain research. Brain research reviews (ISSN 0165-0173); Volume 28; 1-2; 102-17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 69; 6 Suppl; A1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-08-24
    Description: Loss of bone during extended space flight has long been a concern that could limit the ability of humans to explore the universe. Surprisingly the available data do not support the concept that weightlessness leads inexorably to a depleted skeleton unable to withstand the stress of a return to a 1g environment. Nevertheless, some bone loss does occur especially in those bones most stressed by gravity prior to flight, providing confirmation of the proposal formulated over a century ago by Julius Wolff that mechanical stress determines the form and function of bone. Although the phenomenon of bone loss with skeletal unloading, whether by space flight or immobilization or just taking a load off your feet (literally) is well established, the mechanisms by which bone senses load and adjusts to it are not so clear. What actually is the stimulus and what are the sensors? What are the target cells? How do the sensors communicate the message into the cells, and by what pathways do the cells respond? What is the role of endocrine factors versus paracrine or autocrine factors in mediating or modulating the response? None of these questions has been answered with certainty, but as will become apparent in this review, we have some clues directing us to the answers. Although the focus of this review concerns space flight, it seems highly likely that the mechanisms mediating the transmission of mechanical load to changes in bone formation and resorption apply equally well to all forms of disuse osteoporosis, and are likely to be the same mechanisms affected by other etiologies of osteoporosis.
    Keywords: Aerospace Medicine
    Type: Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology (ISSN 1089-988X); Volume 10; 2; 119-35
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2011-08-24
    Description: We present calculations of linear energy transfer (LET) spectra in low earth orbit from galactic cosmic rays and trapped protons using the HZETRN/BRYNTRN computer code. The emphasis of our calculations is on the analysis of the effects of secondary nuclei produced through target fragmentation in the spacecraft shield or detectors. Recent improvements in the HZETRN/BRYNTRN radiation transport computer code are described. Calculations show that at large values of LET (〉 100 keV/micrometer) the LET spectra seen in free space and low earth orbit (LEO) are dominated by target fragments and not the primary nuclei. Although the evaluation of microdosimetric spectra is not considered here, calculations of LET spectra support that the large lineal energy (y) events are dominated by the target fragments. Finally, we discuss the situation for interplanetary exposures to galactic cosmic rays and show that current radiation transport codes predict that in the region of high LET values the LET spectra at significant shield depths (〉 10 g/cm2 of Al) is greatly modified by target fragments. These results suggest that studies of track structure and biological response of space radiation should place emphasis on short tracks of medium charge fragments produced in the human body by high energy protons and neutrons.
    Keywords: Aerospace Medicine
    Type: Radiation measurements (ISSN 1350-4487); Volume 26; 6; 923-34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-08-24
    Description: In this study, we describe changes in the nature of Crew Resource Management (CRM) training in commercial aviation, including its shift from cockpit to crew resource management. Validation of the impact of CRM is discussed. Limitations of CRM, including lack of cross-cultural generality are considered. An overarching framework that stresses error management to increase acceptance of CRM concepts is presented. The error management approach defines behavioral strategies taught in CRM as error countermeasures that are employed to avoid error, to trap errors committed, and to mitigate the consequences of error.
    Keywords: Aerospace Medicine
    Type: The International journal of aviation psychology (ISSN 1050-8414); Volume 9; 1; 19-32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Acta astronautica (ISSN 0094-5765); Volume 35; 4-5; 247-372
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-08-24
    Description: The high inclination orbit for the International Space Station poses a risk to astronauts on EVA during occasional periods of enhanced high energy particle flux from the sun known as Solar Particle Events. We are currently unable to predict these events within the few-hour lead time required for evasive action. Compounding the threat is the fact that station construction occurs during increasing solar activity and through the peak of the solar cycle. In this paper we present an overview of the risk, the current methods to provide forecasts of SPEs, and potential risk mitigation options.
    Keywords: Aerospace Medicine
    Type: Acta astronautica (ISSN 0094-5765); Volume 42; 1-8; 107-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Neurolab is a NASA Spacelab mission with multinational cooperative participation that is dedicated to research on the nervous system. The nervous systems of all animal species have evolved in a one-g environment and are functionally influenced by the presence of gravity. The absence of gravity presents a unique opportunity to gain new insights into basic neurologic functions as well as an enhanced understanding of physiological and behavioral responses mediated by the nervous system. The primary goal of Neurolab is to expand our understanding of how the nervous system develops, functions in, and adapts to microgravity space flight. Twenty-six peer reviewed investigations using human and nonhuman test subjects were assigned to one of eight science discipline teams. Individual and integrated experiments within these teams have been designed to collect a wide range of physiological and behavior data in flight as well as pre- and postflight. Information from these investigations will be applicable to enhancing the well being and performance of future long duration space travelers, will contribute to our understanding of normal and pathological functioning of the nervous system, and may be applied by the medical community to enhance the health of humans on Earth.
    Keywords: Aerospace Medicine
    Type: Acta astronautica (ISSN 0094-5765); Volume 42; 1-8; 69-87
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2011-08-24
    Description: Gravity-responsive eye torsion was studied simultaneously in both eyes during parabolic flight to determine the effects of weightlessness. Observed effects were that torsional position of eyes in the 1G states between parabolas was offset from the baseline positions obtained prior to the onset of parabolas, responses to hyper- and hypogravity were seen in most subjects, and responses were consistent within subjects but varied between subjects.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); Volume 5; 1; P109-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-08-24
    Description: Since the beginning of human spaceflight, the value of understanding mechanisms of physiological adaptation to microgravity became apparent to life scientists who were interested in maintining crew health and developing countermeasures agains adverse effects of the mission. However, several characteristics associated the the logistics of spaceflight presented significant limitations to the scientific study of human adaptation to microgravity. Because space missions are so infrequent and involve minimal numbers of crewmembers, meaninful statistical analysis of data are limited. Reproducibility of results from spaceflight experiments is difficult to assess since there are few repeated space missions involving the same crewmembers. Since the emphasis of space missions is placed on operations, experiments are compromised without adequate control over various factors (e.g., time, diet, physical activities, etc.) that can impact measured responses. With the mimimal opportunity to collect spaceflight data, there is a high risk of experiments that simultaneously interfere with other experiments by the increasing demand on the crewmembers to participate in mumerous experiments proposed by multiple investigators. The technology and ability to measure physiological functions necessary to test specific hypotheses can be severely limited by physical space and power constraints of the space enviroment. Finally, technical and logistical aspects of space missions such as launch delays, extended missions, and inflight operational emergencies can significantly compromise the timing and control of experiments. These limitations have stimulated scientists to develop ground-based analogs of microgravity in an effort to investigate the effects of spaceflight on physiological function in a controlled experimental setting. The purpose of this paper is to provide a selected comparison of data collected from ground-based experiments with those obtained from spaceflight in an effort to assess the adequacy of ground analogs of actual flight for the study of human physiological adaptation to microgravity. Specifically, results from ground and spaceflight will be used to provide insight into mechanisms underlying adaptations of blood pressure regulation and reduced orthostatic performance to the microgravity environment.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); Volume 5; 1; P85-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2011-08-24
    Description: We used weak electric fields to monitor macrophage spreading in microgravity. Using this technique, we demonstrated that bone marrow-derived macrophages responded to microgravity within 8 s. We also showed that microgravity differentially altered two processes associated with bone marrow-derived macrophage development. Spaceflight enhanced cellular proliferation and inhibited differentiation. These data indicate that the space/microgravity environment significantly affects macrophages.
    Keywords: Aerospace Medicine
    Type: Experimental cell research (ISSN 0014-4827); Volume 216; 1; 160-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-08-24
    Description: Intramuscular fluid pressure (IMP) can easily be measured in man and animals. It follows the law of Laplace which means that it is determined by the tension of the muscle fibers, the recording depth and by fiber geometry (fiber curvature or pennation angle). Thick, bulging muscles create high IMPs (up to 1000 mmHg) and force transmission to tendons becomes inefficient. High resting or postexercise IMPs are indicative of a compartment syndrome due to muscle swelling within a low-compliance osseofascial boundary. IMP increases linearly with force (torque) independent of the mode or speed of contraction (isometric, eccentric, concentric). IMP is also a much better predictor of muscle force than the EMG signal. During prolonged low-force isometric contractions, cyclic variations in IMP are seen. Since IMP influences muscle blood flow through the muscle pump, autoregulating vascular elements, and compression of the intramuscular vasculature, alterations in IMP have important implications for muscle function.
    Keywords: Aerospace Medicine
    Type: Advances in experimental medicine and biology (ISSN 0065-2598); Volume 384; 339-50
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-08-24
    Description: Astronauts often experience back pain during spaceflight. Retrospectively, Wing et al. (14) found that during spaceflight, 14 of 19 Shuttle crewmembers experienced back pain, which they described as dull (62%), localized to the lower back (50%), and with an intensity of 2 on a 5-point scale. Further, the spine lengthens 4-7 cm in microgravity. Our objective was to compare back pain and spinal lengthening (body height increase) during simulated microgravity (6 degrees head-down tilt, HDT) with the same parameters during actual microgravity. Eight male subjects completed a modified McGill pain questionnaire with intensity graded from zero (no pain) to five (intense and incapacitating pain) each day at 7:00 pm during 2 d pre-HDT control, 16 d HDT, and 1 d post-HDT recovery periods. Also, the subjects' heights were measured each day while supine (control and recovery) and during HDT. Back pain increased from zero (pre-tilt control period) to 2.3 +/- 0.4 at days 1 to 3 of HDT, and was categorized as dull and/or burning pain in subjects' lower backs. Only 2 subjects reported any pain after day 9 of HDT and during recovery. Heights increased 2.1 +/- 0.5 cm by day 3 of HDT and remained at that level until the end of the HDT period. Although spinal lengthening in space is greater than that during HDT, the HDT model approximates the level, type, distribution, and time course of back pain associated with actual microgravity. In the HDT model, pain subsides in intensity when spinal lengthening stops.(ABSTRACT TRUNCATED AT 250 WORDS).
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 66; 3; 256-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-08-24
    Description: To determine whether estimates of volumetric bone density from projectional scans of the lumbar spine have weaker associations with height and weight and stronger associations with prevalent vertebral fractures than standard projectional bone mineral density (BMD) and bone mineral content (BMC), we obtained posteroanterior (PA) dual X-ray absorptiometry (DXA), lateral supine DXA (Hologic QDR 2000), and quantitative computed tomography (QCT, GE 9800 scanner) in 260 postmenopausal women enrolled in two trials of treatment for osteoporosis. In 223 women, all vertebral levels, i.e., L2-L4 in the DXA scan and L1-L3 in the QCT scan, could be evaluated. Fifty-five women were diagnosed as having at least one mild fracture (age 67.9 +/- 6.5 years) and 168 women did not have any fractures (age 62.3 +/- 6.9 years). We derived three estimates of "volumetric bone density" from PA DXA (BMAD, BMAD*, and BMD*) and three from paired PA and lateral DXA (WA BMD, WA BMDHol, and eVBMD). While PA BMC and PA BMD were significantly correlated with height (r = 0.49 and r = 0.28) or weight (r = 0.38 and r = 0.37), QCT and the volumetric bone density estimates from paired PA and lateral scans were not (r = -0.083 to r = 0.050). BMAD, BMAD*, and BMD* correlated with weight but not height. The associations with vertebral fracture were stronger for QCT (odds ratio [QR] = 3.17; 95% confidence interval [CI] = 1.90-5.27), eVBMD (OR = 2.87; CI 1.80-4.57), WA BMDHol (OR = 2.86; CI 1.80-4.55) and WA-BMD (OR = 2.77; CI 1.75-4.39) than for BMAD*/BMD* (OR = 2.03; CI 1.32-3.12), BMAD (OR = 1.68; CI 1.14-2.48), lateral BMD (OR = 1.88; CI 1.28-2.77), standard PA BMD (OR = 1.47; CI 1.02-2.13) or PA BMC (OR = 1.22; CI 0.86-1.74). The areas under the receiver operating characteristic (ROC) curves for QCT and all estimates of volumetric BMD were significantly higher compared with standard PA BMD and PA BMC. We conclude that, like QCT, estimates of volumetric bone density from paired PA and lateral scans are unaffected by height and weight and are more strongly associated with vertebral fracture than standard PA BMD or BMC, or estimates of volumetric density that are solely based on PA DXA scans.
    Keywords: Aerospace Medicine
    Type: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (ISSN 0884-0431); Volume 10; 7; 1101-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-08-24
    Description: Ionizing radiation poses a significant risk to humans living and working in space. The major sources of radiation are solar disturbances and galactic cosmic rays. The components of this radiation are energetic charged particles, protons, as well as fully ionized nuclei of all elements. The biological effects of these particles cannot be extrapolated in a straightforward manner from available data on x-rays and gamma-rays. A radiation protection program that meets the needs of spacefaring nations must have a solid scientific basis, capable not only of predicting biological effects, but also of making reliable estimates of the uncertainty in these predictions. A strategy leading to such predictions is proposed, and scientific requirements arising from this strategy are discussed.
    Keywords: Aerospace Medicine
    Type: Radiation and environmental biophysics (ISSN 0301-634X); Volume 34; 3; 133-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-08-24
    Description: BACKGROUND AND PURPOSE: Presyncope, characterized by symptoms and signs indicative of imminent syncope, can be aborted in many situations before loss of consciousness occurs. The plasticity of cerebral autoregulation in healthy humans and its behavior during this syncopal prodrome are unclear, although systemic hemodynamic instability has been suggested as a key factor in the precipitation of syncope. Using lower body negative pressure (LBNP) to simulate central hypovolemia, we previously observed falling mean flow velocities (MFVs) with maintained mean arterial blood pressure (MABP). These findings, and recent reports suggesting increased vascular tone within the cerebral vasculature at presyncope, cannot be explained by the classic static cerebral autoregulation curve; neither can they be totally explained by a recent suggestion of a rightward shift in this curve. METHODS: Four male and five female healthy volunteers were exposed to presyncopal LBNP to evaluate their cerebrovascular and cardiovascular responses by use of continuous acquisition of MFV from the right middle cerebral artery with transcranial Doppler sonography, MABP (Finapres), and heart rate (ECG). RESULTS: At presyncope, MFV dropped on average by 27.3 +/- 14% of its baseline value (P 〈 .05), while MABP remained at 2.0 +/- 27% above its baseline level. Estimated cerebrovascular resistance increased during LBNP. The percentage change from baseline to presyncope in MFV and MABP revealed consistent decreases in MFV before MABP. CONCLUSIONS: Increased estimated cerebrovascular resistance, falling MFV, and constant MABP are evidence of an increase in cerebral vascular tone with falling flow, suggesting a downward shift in the cerebral autoregulation curve. Cerebral vessels may have a differential sensitivity to sympathetic drive or more than one type of sympathetic innervation. Future work to induce dynamic changes in MABP during LBNP may help in assessing the plasticity of the cerebral autoregulation mechanism.
    Keywords: Aerospace Medicine
    Type: Stroke; a journal of cerebral circulation (ISSN 0039-2499); Volume 26; 10; 1794-800
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-08-24
    Description: Growth, functional adaptation, and torsional strength were examined in the femora of 39-day-old male Sprague-Dawley rats subjected to hindlimb suspension for 0, 1, 2, 3, or 4 weeks and were compared with measurements for age-matched control animals. Our goal was to understand the effect of reduced loading on the normal age-related changes in femoral properties during growth. The control animals exhibited growth-related increases in all geometric and torsional properties of the femur. The mean body mass and femoral length of the hindlimb-suspended rats were similar to those of the controls throughout the experiment. Over 4 weeks, the femoral cross-sectional and torsional measurements from the hindlimb-suspended rats demonstrated increases in comparison with the basal values (+33% cross-sectional area, +64% polar moment of inertia, +67% ultimate torque, and +181% torsional rigidity), but the age-matched controls showed significantly greater growth-related increases (+71% cross-sectional area, +136% polar moment of inertia, +127% ultimate torque, and +367% torsional rigidity). The differences in femoral structural strength between the hindlimb-suspended animals and the age-matched controls were attributable to differences in altered cross-sectional geometry.
    Keywords: Aerospace Medicine
    Type: Journal of orthopaedic research : official publication of the Orthopaedic Research Society (ISSN 0736-0266); Volume 13; 5; 700-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-08-24
    Description: STUDY DESIGN. Muscle use evoked by exercise was determined by quantifying shifts in signal relaxation times of T2-weighted magnetic resonance images. Images were collected at rest and after exercise at each of two intensities (moderate and intense) for each of four head movements: 1) extension, 2) flexion, 3) rotation, and 4) lateral flexion. OBJECTIVE. This study examined the intensity and pattern of neck muscle use evoked by various movements of the head. The results will help elucidate the pathophysiology, and thus methods for treating disorders of the cervical musculoskeletal system. SUMMARY OF BACKGROUND DATA. Exercise-induced contrast shifts in T2 has been shown to indicate muscle use during the activity. The noninvasive nature of magnetic resonance imaging appears to make it an ideal approach for studying the function of the complex neuromuscular system of the neck. METHODS. The extent of T2 increase was examined to gauge how intensely nine different neck muscles or muscle pairs were used in seven subjects. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation was assessed to infer the pattern of use among and within individual neck muscles or muscle pairs. RESULTS. Signal relaxation increased with exercise intensity for each head movement. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation also increased with exercise load. Neck muscles or muscle pairs extensively used to perform each head movement were: extension--semispinalis capitis and cervicis and splenius capitis; flexion--sternocleidomastoid and longus capitis and colli; rotation--splenius capitis, levator scapulae, scalenus, semispinalis capitis ipsilateral to the rotation, and sternocleidomastoid contralateral; and lateral flexion--sternocleidomastoid CONCLUSION. The results of this study, in part, agree with the purported functions of neck muscles derived from anatomic location. This also was true for the few selected muscles that have been examined in human electromyographic studies. Neck muscle function and morphology can be studied at a detailed level using exercise-induced shifts in magnetic resonance images.
    Keywords: Aerospace Medicine
    Type: Spine (ISSN 0362-2436); Volume 20; 23; 2505-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-08-24
    Description: Ten subjects served as their own controls in two conditions of continuous, centrifugally produced hypergravity (+2 Gz) and a 1-G control condition. Before and after exposure, open-loop measures were obtained of (1) motor control, (2) visual localization, and (3) hand-eye coordination. During exposure in the visual feedback/hypergravity condition, subjects received terminal visual error-corrective feedback from their target pointing, and in the no-visual feedback/hypergravity condition they pointed open loop. As expected, the motor control measures for both experimental conditions revealed very short lived underreaching (the muscle-loading effect) at the outset of hypergravity and an equally transient negative aftereffect on returning to 1 G. The substantial (approximately 17 degrees) initial elevator illusion experienced in both hypergravity conditions declined over the course of the exposure period, whether or not visual feedback was provided. This effect was tentatively attributed to habituation of the otoliths. Visual feedback produced a smaller additional decrement and a postexposure negative after-effect, possible evidence for visual recalibration. Surprisingly, the target-pointing error made during hypergravity in the no-visual-feedback condition was substantially less than that predicted by subjects' elevator illusion. This finding calls into question the neural outflow model as a complete explanation of this illusion.
    Keywords: Aerospace Medicine
    Type: Perception & psychophysics (ISSN 0031-5117); Volume 58; 1; 22-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-08-24
    Description: Seven healthy men performed maximal exercise 24 h before the end of 16 days exposure to 6 degrees head-down tilt (HDT) to test the hypothesis that such an exercise technique could restore plasma volume (PV) at the end of a simulated space mission. Exercise consisted of supine cycling with graded work rates increasing by 16 W/min to volitional fatigue and required an average of 16 min. The experimental protocol was a standard cross-over design in which the order of treatment (exercise or control) was counterbalanced across all seven subjects. PV, fluid intake (ad libitum), urine output, renal function, and hormones associated with fluid homeostasis were measured before HDT, 24 h before the end of HDT just prior to exercise, and at the end of HDT 24 h after exercise. HDT reduced PV by 16% in both control and exercise conditions. Maximal exercise completely restored plasma volume within 24 h to 3.9 +/- 3.2% of pre-HDT levels despite continued HDT. Compared with control, exercise induced a 660-ml larger positive fluid balance because of greater fluid intake and reduced urine volume during the 24 h after exercise. These results suggest that one bout of maximal leg exercise before return from 16 days of spaceflight may be completely effective in stimulating thirst and restoring plasma volume to preflight levels.
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 270; 1 Pt 2; R3-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-08-24
    Description: PURPOSE: To determine weight (water) loss levels for onset of muscular strength and endurance changes during deconditioning. METHODS: Seven men (27-40 yr) performed maximal shoulder-, knee-, and ankle-joint isometric (0 degree.s(-1) load) and isokinetic (60 degrees, 120 degrees, 180 degrees.s(-1) velocity) exercise tests during ambulatory control (AC), after 6 h of 6 degrees head-down tilt (HDT; dry-bulb temp. = 23.2 +/- SD 0.6 degrees C, relative humidity = 31.1+/- 11.1%) and after 6 h of 80 degrees foot-down head-out water immersion (WI; water temp. = 35.0 +/- SD 0.1 degree C) treatments. RESULTS: Weight (water) loss after HDT (1.10 +/- SE 0.14 kg, 1.4 +/- 0.2% body wt) and WI (1.54+/- 0.19 kg, 2.0 +/- 0.2% body wt) were not different, but urinary excretion with WI (1,354 +/- 142 ml.6 h(-1)) was 28% greater (p 〈 0.05) than that of 975 +/- 139 ml.6 h(-1) with HDT. Muscular endurance (total work; maximal flexion-extension of the non-dominant knee at 180 degrees.s(-1) for 30 s) was not different between AC and the WI or HDT treatments. Shoulder-, knee-, and ankle-joint strength was unchanged except for three knee-joint peak torques: AC torque (120 degrees.s(-1), 285 +/- 20 Nm) decreased to 268 +/- 21 Nm (delta = -6%, p 〈 0.05) with WI; and AC torques (180 degrees.s(-1), 260 +/- 19 Nm) decreased to 236 +/- 15 Nm (delta = -9%, p 〈 0.01) with HDT, and to 235 +/- 19 Nm (delta = -10%, p 〈 0.01) with WI. CONCLUSION: Thus, the total body hypohydration threshold level for shoulder- and ankle-joint strength and endurance decrements is more than 2% body weight (water) loss, while significant reduction in knee-joint muscular strength-endurance occurred only at moderate (120 degrees.s(-1) and lighter (180 degrees.s(-1)) loads with body weight loss of 1.4-2.0% following WI or HDT, respectively. These weight (water) losses and knee-joint strength decrements are somewhat less than the mean weight loss of 2.6% and knee-joint strength decrements of 6-20% of American astronauts after Skylab flights to 84 d.
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 67; 1; 46-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-08-24
    Description: Radiation risks to astronauts depend on the microscopic fluctuations of energy absorption events in specific tissues. These fluctuations depend not only on the space environment but also on the modifications of that environment by the shielding provided by structures surrounding the astronauts and the attenuation characteristics of the astronaut's body. The effects of attenuation within the shield and body depends on the tissue biological response to these microscopic fluctuations. In the absence of an accepted method for estimating astronaut risk, we examined the attenuation characteristics using conventional linear energy transfer (LET)-dependent quality factors (as one means of representing relative biological effectiveness, RBE) and a track-structure repair model to fit cell transformation (and inactivation) data in the C3H10 T1/2 mouse cell system obtained for various ion beams. Although the usual aluminum spacecraft shield is effective in reducing dose equivalent with increasing shield thickness, cell transformation rates are increased for thin aluminum shields. Clearly, the exact nature of the biological response to LET and track width is critical to evaluation of biological protection factors provided by a shield design. A significant fraction of biological injury results from the LET region above 100 keV/mu m. Uncertainty in nuclear cross-sections results in a factor of 2-3 in the transmitted LET spectrum beyond depths of 15 g/cm2, but even greater uncertainty is due to the combined effects of uncertainty in biological response and nuclear parameters. Clearly, these uncertainties must be reduced before the shield design can be finalised.
    Keywords: Aerospace Medicine
    Type: Radiation and environmental biophysics (ISSN 0301-634X); Volume 34; 4; 217-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-08-24
    Description: BACKGROUND: Maintaining intermediary metabolism is necessary for the health and well-being of astronauts on long-duration spaceflights. While peak oxygen uptake (VO2) is consistently decreased during prolonged bed rest, submaximal VO2 is either unchanged or decreased. METHODS: Submaximal exercise metabolism (61 +/- 3% peak VO2) was measured during ambulation (AMB day-2) and on bed rest days 4, 11, and 25 in 19 healthy men (32-42 yr) allocated into no exercise (NOE, N = 5) control, and isotonic exercise (ITE, N = 7) and isokinetic exercise (IKE, N = 7) training groups. Exercise training was conducted supine for two 30-min periods per day for 6 d per week: ITE training was intermittent at 60-90% peak VO2; IKE training was 10 sets of 5 repetitions of peak knee flexion-extension force at a velocity of 100 degrees s-1. Cardiac output was measured with the indirect Fick CO2 method, and plasma volume with Evans blue dye dilution. RESULTS: Supine submaximal exercise VO2 decreased significantly (*p 〈 0.05) by 10.3%* with ITE and by 7.3%* with IKE; similar to the submaximal cardiac output decrease of 14.5%* (ITE) and 20.3%* (IKE), but different from change in peak VO2 (+1.4% with ITE and -10.2%* with IKE) and decrease in plasma volume of -3.7% (ITE) and -18.0%* (IKE). Reduction of submaximal VO2 during bed rest correlated 0.79 (p 〈 0.01) with submaximal Qc, but was not related to change in peak VO2 or plasma volume. CONCLUSION: Reduction in submaximal oxygen uptake during prolonged bed rest is related to decrease in exercise but not resting cardiac output; perturbations in active skeletal muscle metabolism may be involved.
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 67; 4; 314-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Journal of clinical anesthesia (ISSN 0952-8180); Volume 8; 3 Suppl; 29S-37S
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-08-24
    Description: The present study was aimed at evaluating quantitatively gamma-aminobutyric acid (GABA) immunoreactivity in the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension. A reduction in the number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-containing terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system of hindlimb-suspended animals, it is suggested that the unloading due to hindlimb suspension alters afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the reduction in immunoreactivity of local circuit GABAergic neurons and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.
    Keywords: Aerospace Medicine
    Type: Journal of neuroscience research (ISSN 0360-4012); Volume 44; 6; 532-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Annals of the New York Academy of Sciences (ISSN 0077-8923); Volume 781; 666-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-08-24
    Description: OBJECTIVE: To test whether unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury. DESIGN: Before-after trial. SETTING: General community. PATIENTS OR OTHER PARTICIPANTS: Two women and 5 men (73 +/- 3kg [mean +/- SE]) who were active college students but were not trained in lower body resistance exercise volunteered. INTERVENTION: Five weeks of unilateral lower limb suspension (ULLS), which has been shown to decrease strength and size of the unloaded, left, but not load-bearing, right quadriceps femoris muscle group (QF) by 20% and 14%, respectively; performance of 10 sets of ten eccentric actions with each QF immediately after the ULLS strength tests with a load equivalent to 65% of the post-ULLS eccentric 1-repetition maximum. MAIN OUTCOME MEASURE(S): Concentric and eccentric 1-repetition maximum for the left, unloaded and the right, load-bearing QF measured immediately after ULLS and 1,4,7,9, and 11 days later; cross-sectional area and spin-spin relaxation time (T2) of each QF as determined by magnetic resonance imaging and measured the last day of ULLS and 3 days later. RESULTS: The mean load used for eccentric exercise was 23 +/- 2 and 30 +/- 3kg for the left, unloaded and right, load-bearing QF, respectively. The concentric and eccentric 1-repetition maximum for the unloaded and already weakened left QF was further decreased by 18% (p = .000) and 27% (p = .000), respectively, 1 day after eccentric exercise. Strength did not return to post-ULLS levels until 7 days of recovery. The right, load-bearing QF showed a 4% decrease (p = .002) in the eccentric 1-repetition maximum 1 day after eccentric exercise. The left, unloaded QF showed an increase in T2 (p = .002) in 18% of its cross-sectional area 3 days after the eccentric exercise, thus indicating muscle injury. The right, load-bearing QF showed no elevation in T2 (p = .280). CONCLUSION: Unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury, even at relatively light loads.
    Keywords: Aerospace Medicine
    Type: Archives of physical medicine and rehabilitation (ISSN 0003-9993); Volume 77; 8; 773-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-08-24
    Description: There is considerable interest in determining whether hypergravity can be used as a countermeasure for microgravity-induced bone loss. This study was conducted on 20 immature male rats in order to investigate possible elastic adaptations of cortical bone in rapidly growing rats exposed to chronic hypergravity. Ten rats were continuously centrifuged for 14 days at twice gravitational acceleration (2G) on a 12.75 foot radius centrifuge and 10 rats concurrently acted as stationary controls. The effect of hypergravity on the elastic characteristics of cortical bone was quantified via ultrasonic wave propagation. Propagation velocities of longitudinal and shear waves were measured through cubic cortical specimens from the posterior femoral diaphyses. Density was measured with an Archimedes' technique. The orthotropic elastic properties were calculated and used to compare the difference between groups. Results showed an average increase in both the Young's moduli (Eii, + 2.2%) and shear moduli (Gij, + 4.3%) with a statistically significant increase only in G12 (+15.7%, P = 0.046). The ratio of transverse to axial strain (Poisson's ratio, nuij) demonstrated statistically significant changes in nu12, nu21, nu13, and nu31 (P 〈 0.05). These findings suggest that although slight elastic changes were incurred via a hypergravity environment, the treatment level or duration in this study do not dramatically perturb the normal elastic behavior of cortical bone and that dramatic biomechanical differences noted in previous studies were due more to structural changes than material elasticity changes. Hypergravity applied post facto to a microgravity environment would offer further illucidation of this method as treatment for a degenerative spaceflight experience.
    Keywords: Aerospace Medicine
    Type: Calcified tissue international (ISSN 0171-967X); Volume 59; 3; 214-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-08-24
    Description: Dynamics of the left heart ventricular muscle contractility and compliance was studied in 4 monkeys in the head down position (antiorthostatic hypokinesia) with the body angle 10 during 2 weeks. Functional tests on a tilt table and under two conditions of centrifuge rotation were performed prior to and after the antiorthostatic hypokinesia. No changes in the left heart ventricular muscle contractility was found. However, the sensitivity level of the baroreflex control decreased. Compliance of the left heart myocardial fibre increased in the first hours and days of the antiorthostatic hypokinesia.
    Keywords: Aerospace Medicine
    Type: Fiziologicheskii zhurnal imeni I.M. Sechenova / Rossiiskaia akademiia nauk (ISSN 1027-3646); Volume 82; 10-11; 34-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-08-24
    Description: We examined the lower limb joint kinematics observed during pre- and postflight treadmill walking performed by seven subjects from three Space Shuttle flights flown between March 1992 and February 1994. Basic temporal characteristics of the gait patterns, such as stride time and duty cycle, showed no significant changes after flight. Evaluation of phaseplane variability across the gait cycle suggests that postflight treadmill walking is more variable than preflight, but the response throughout the course of a cycle is joint dependent and, furthermore, the changes are subject dependent. However, analysis of the phaseplane variability at the specific locomotor events of heel strike and toe off indicated statistically significant postflight increases in knee variability at the moment of heel strike and significantly higher postflight hip joint variability at the moment of toe off. Nevertheless, the observation of component-specific variability was not sufficient to cause a change in the overall lower limb joint system stability, since there was no significant change in an index used to evaluate this at both toe off and heel strike. The implications of the observed lower limb kinematics for head and gaze control during locomotion are discussed in light of a hypothesized change in the energy attenuation capacity of the musculoskeletal system in adapting to weightlessness.
    Keywords: Aerospace Medicine
    Type: Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale (ISSN 0014-4819); Volume 112; 2; 325-34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-08-24
    Description: The correlation is low between the occurrence of gas bubbles in the pulmonary artery, called venous gas emboli (VGE), and subsequent decompression illness (DCI). The correlation improves when a "grade" of VGE is considered; a zero to four categorical classification based on the intensity and duration of the VGE signal from a Doppler bubble detector. Additional insight about DCI might come from an analysis of the time course of the occurrence of VGE. Using the NASA Hypobaric Decompression Sickness Databank, we compared the time course of the VGE outcome between 322 subjects who exercised and 133 Doppler technicians who did not exercise to evaluate the role of physical activity on the VGE outcome and incidence of DCI. We also compared 61 subjects with VGE and DCI with 110 subjects with VGE but without DCI to identify unique characteristics about the time course of the VGE outcome to try to discriminate between DCI and no-DCI cases. The VGE outcome as a function of time showed a characteristic short lag, rapid response, and gradual recovery phase that was related to physical activity at altitude and the presence or absence of DCI. The average time for DCI symptoms in a limb occurred just before the time of the highest fraction of VGE in the pulmonary artery. It is likely, but not certain, that an individual will report a DCI symptom if VGE are detected early in the altitude exposure, the intensity or grade of VGE rapidly increases from a limb region, and the intensity or grade of VGE remains high.
    Keywords: Aerospace Medicine
    Type: Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc (ISSN 1066-2936); Volume 23; 3; 141-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-08-24
    Description: The Space Shuttle program has produced a database of information on the cardiovascular responses to spaceflight, based on in-flight as well as pre- and post-flight assessments undertaken as part of the assessment of the health, safety, and efficiency of Shuttle crews. The methods used in routine cardiovascular assessments of Space Shuttle astronauts are reviewed, and the major findings of these investigations are presented.
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 28; 10 Suppl; S18-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 28; 10 Suppl; S90-2; discussion S92-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...