ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-07-01
    Print ISSN: 0340-1200
    Electronic ISSN: 1432-0770
    Topics: Biology , Computer Science , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Adaptation to weightlessness includes the substitution of other sensory signals for the no longer appropriate graviceptor information concerning static spatial orientation. Visual-vestibular interaction producing roll circularvection was studied in weightlessness to assess the influence of otolith cues on spatial orientation. Preliminary results from four subjects tested on Spacelab-1 indicate that visual orientation effects were stronger in weightlessness than pre-flight. The rod and frame test of visual field dependence showed a weak post-flight increase in visual influence. Localized tactile cues applied to the feet in space reduced subjective vection strength.
    Keywords: Life Sciences (General)
    Type: Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale (ISSN 0014-4819); Volume 64; 2; 299-307
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: We measured the linear vestibulo-ocular reflex (LVOR) and vergence, using binocular search coils, in 3 humans. The subjects were accelerated sinusoidally at 0.5 Hz and 0.2 g peak acceleration, in complete darkness, while performing three different tasks: i) mental arithmetic; ii) tracking a remembered target at either 0.34 m or 0.14 m distance; and iii) maintaining vergence at either of these distances by means of audio biofeedback based on vergence. Subjects could control vergence using the audio feedback; there was greater convergence with the near audio target. However, there was no significant difference in vergence between the near and far remembered target conditions. With audio feedback, the amplitude of smooth tracking was not consistently different for the near and the far conditions. However, the amplitude of tracking (saccades and smooth component) in the remembered target conditions was greater for near than for far targets. These results suggest that linear VOR amplitude is not determined by vergence alone.
    Keywords: Aerospace Medicine
    Type: Acta oto-laryngologica. Supplementum (ISSN 0365-5237); Volume 520 Pt 1; 72-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-10-30
    Keywords: AEROSPACE MEDICINE
    Type: INSI02 Vestibular Experiments on Spacelab-1; 26 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: A "sensory conflict" model of spatial orientation was developed. This mathematical model was based on concepts derived from observer theory, optimal observer theory, and the mathematical properties of coordinate rotations. The primary hypothesis is that the central nervous system of the squirrel monkey incorporates information about body dynamics and sensory dynamics to develop an internal model. The output of this central model (expected sensory afference) is compared to the actual sensory afference, with the difference defined as "sensory conflict." The sensory conflict information is, in turn, used to drive central estimates of angular velocity ("velocity storage"), gravity ("gravity storage"), and linear acceleration ("acceleration storage") toward more accurate values. The model successfully predicts "velocity storage" during rotation about an earth-vertical axis. The model also successfully predicts that the time constant of the horizontal vestibulo-ocular reflex is reduced and that the axis of eye rotation shifts toward alignment with gravity following postrotatory tilt. Finally, the model predicts the bias, modulation, and decay components that have been observed during off-vertical axis rotations (OVAR).
    Keywords: Life Sciences (General)
    Type: Journal of vestibular research : equilibrium & orientation (ISSN 0957-4271); Volume 3; 2; 141-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: NASA's Human Research Program (HRP) is working to increase the likelihoods of human health and performance success during long-duration missions, and subsequent crew long-term health. To achieve these goals, there is a need to develop an integrated understanding of how the complex human physiological-socio-technical mission system behaves in spaceflight. This understanding will allow HRP to provide cross-disciplinary spaceflight countermeasures while minimizing resources such as mass, power, and volume. This understanding will also allow development of tools to assess the state of and enhance the resilience of individual crewmembers, teams, and the integrated mission system. We will discuss a set of risk-reduction questions that has been identified to guide the systems approach necessary to meet these needs. In addition, a framework of factors influencing human health and performance in space, called the Contributing Factor Map (CFM), is being applied as the backbone for incorporating information addressing these questions from sources throughout HRP. Using the common language of the CFM, information from sources such as the Human System Risk Board summaries, Integrated Research Plan, and HRP-funded publications has been combined and visualized in ways that allow insight into cross-disciplinary interconnections in a systematic, standardized fashion. We will show examples of these visualizations. We will also discuss applications of the resulting analysis capability that can inform science portfolio decisions, such as areas in which cross-disciplinary solicitations or countermeasure development will potentially be fruitful.
    Keywords: Aerospace Medicine
    Type: JSC-CN-34812 , 2016 Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-34494 , Aerospace Medical Association Conference (AsMA); Apr 24, 2016 - Apr 28, 2016; Atlantic City, NJ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The three pairs of semicircular canals within the labyrinth are not perfectly aligned with the pulling directions of the six extraocular muscles. Therefore, for a given head movement, the vestibulo-ocular reflex (VOR) depends upon central neural mechanisms that couple the canals to the muscles with the appropriate functional gains in order to generate a response that rotates the eye the correct amount and around the correct axis. A consequence of these neural connections is a cross-axis adaptive capability, which can be stimulated experimentally when head rotation is around one axis and visual motion about another. From this visual-vestibular conflict the brain infers that the slow-phase eye movement is rotating around the wrong axis. We explored the capability of human cross-axis adaptation, using a short-term training paradigm, to determine if torsional eye movements could be elicited by yaw (horizontal) head rotation (where torsion is normally inappropriate). We applied yaw sinusoidal head rotation (+/-10 degrees, 0.33 Hz) and measured eye movement responses in the dark, and before and after adaptation. The adaptation paradigm lasted 45-60 min, and consisted of the identical head motion, coupled with a moving visual scene that required one of several types of eye movements: (1) torsion alone (-Roll); (2) horizontal/torsional, head right/CW torsion (Yaw-Roll); (3) horizontal/torsional, head right/CCW torsion (Yaw+Roll); (4) horizontal, vertical, torsional combined (Yaw+Pitch-Roll); and (5) horizontal and vertical together (Yaw+Pitch). The largest and most significant changes in torsional amplitude occurred in the Yaw-Roll and Yaw+Roll conditions. We conclude that short-term, cross-axis adaptation of torsion is possible but constrained by the complexity of the adaptation task: smaller torsional components are produced if more than one cross-coupling component is required. In contrast, vertical cross-axis components can be easily trained to occur with yaw head movements.
    Keywords: Life Sciences (General)
    Type: Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale (ISSN 0014-4819); 148; 2; 158-65
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The gain of the vestibulo-ocular reflex (VOR) normally depends on the distance between the subject and the visual target, but it remains uncertain whether vergence angle can be linked to changes in VOR gain through a process of context-dependent adaptation. In this study, we examined this question with an adaptation paradigm that modified the normal relationship between vergence angle and retinal image motion. Subjects were rotated sinusoidally while they viewed an optokinetic (OKN) stimulus through either diverging or converging prisms. In three subjects the diverging prisms were worn while the OKN stimulus moved out of phase with the head, and the converging prisms were worn when the OKN stimulus moved in-phase with the head. The relationship between the vergence angle and OKN stimulus was reversed in the fourth subject. After 2 h of training, the VOR gain at the two vergence angles changed significantly in all of the subjects, evidenced by the two different VOR gains that could be immediately accessed by switching between the diverged and converged conditions. The results demonstrate that subjects can learn to use vergence angle as the contextual cue that retrieves adaptive changes in the angular VOR.
    Keywords: Behavioral Sciences
    Type: Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale (ISSN 0014-4819); 152; 3; 335-40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: The NASA Twins Study, NASA's first foray into integrated omic studies in humans, illustrates how an integrated omics approach can be brought to bear on the challenges to human health and performance on a Mars mission. The NASA Twins Study involves US Astronaut Scott Kelly and his identical twin brother, Mark Kelly, a retired US Astronaut. No other opportunity to study a twin pair for a prolonged period with one subject in space and one on the ground is available for the foreseeable future. A team of 10 principal investigators are conducting the Twins Study, examining a very broad range of biological functions including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. A novel aspect of the study is the integrated study of molecular, physiological, cognitive, and microbiological properties. Major sample and data collection from both subjects for this study began approximately six months before Scott Kelly's one year mission on the ISS, continue while Scott Kelly is in flight and will conclude approximately six months after his return to Earth. Mark Kelly will remain on Earth during this study, in a lifestyle unconstrained by this study, thereby providing a measure of normal variation in the properties being studied. An overview of initial results and the future plans will be described as well as the technological and ethical issues raised for spaceflight studies involving omics.
    Keywords: Aerospace Medicine
    Type: JSC-CN-33077 , IAA 2015 Humans in Space Symposium; Jun 29, 2015 - Jul 03, 2015; Prague, Czech Republic; Czechoslovakia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...