ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Structure-Activity Relationship
  • American Association for the Advancement of Science (AAAS)  (386)
  • Wiley
Collection
Keywords
Publisher
  • 1
    Publication Date: 2002-02-09
    Description: The protein-protein interaction between leukocyte functional antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) is critical to lymphocyte and immune system function. Here, we report on the transfer of the contiguous, nonlinear epitope of ICAM-1, responsible for its association with LFA-1, to a small-molecule framework. These LFA-1 antagonists bound LFA-1, blocked binding of ICAM-1, and inhibited a mixed lymphocyte reaction (MLR) with potency significantly greater than that of cyclosporine A. Furthermore, in comparison to an antibody to LFA-1, they exhibited significant anti-inflammatory effects in vivo. These results demonstrate the utility of small-molecule mimics of nonlinear protein epitopes and the protein epitopes themselves as leads in the identification of novel pharmaceutical agents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gadek, T R -- Burdick, D J -- McDowell, R S -- Stanley, M S -- Marsters, J C Jr -- Paris, K J -- Oare, D A -- Reynolds, M E -- Ladner, C -- Zioncheck, K A -- Lee, W P -- Gribling, P -- Dennis, M S -- Skelton, N J -- Tumas, D B -- Clark, K R -- Keating, S M -- Beresini, M H -- Tilley, J W -- Presta, L G -- Bodary, S C -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1086-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioorganic Chemistry, Genentech, One DNA Way, South San Francisco, CA 94080, USA. trg@gene.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11834839" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Inflammatory Agents, Non-Steroidal/chemical ; synthesis/chemistry/metabolism/pharmacology ; Cyclosporine/pharmacology ; Dermatitis, Irritant/drug therapy ; Dinitrofluorobenzene ; Drug Design ; Enzyme-Linked Immunosorbent Assay ; Epitopes ; Female ; Humans ; Immunoglobulin Fab Fragments/immunology/pharmacology ; Immunosuppressive Agents/chemical synthesis/chemistry/metabolism/*pharmacology ; Intercellular Adhesion Molecule-1/chemistry/*immunology/*metabolism ; Lymphocyte Culture Test, Mixed ; Lymphocyte Function-Associated Antigen-1/immunology/*metabolism ; Mice ; Mice, Inbred BALB C ; Molecular Mimicry ; Mutagenesis ; Protein Structure, Secondary ; Structure-Activity Relationship ; Thiophenes/*chemical synthesis/chemistry/metabolism/*pharmacology ; beta-Alanine/analogs & derivatives/*chemical ; synthesis/chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-05-21
    Description: Bile acids regulate the transcription of genes that control cholesterol homeostasis through molecular mechanisms that are poorly understood. Physiological concentrations of free and conjugated chenodeoxycholic acid, lithocholic acid, and deoxycholic acid activated the farnesoid X receptor (FXR; NR1H4), an orphan nuclear receptor. As ligands, these bile acids and their conjugates modulated interaction of FXR with a peptide derived from steroid receptor coactivator 1. These results provide evidence for a nuclear bile acid signaling pathway that may regulate cholesterol homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parks, D J -- Blanchard, S G -- Bledsoe, R K -- Chandra, G -- Consler, T G -- Kliewer, S A -- Stimmel, J B -- Willson, T M -- Zavacki, A M -- Moore, D D -- Lehmann, J M -- F32 DK09793/DK/NIDDK NIH HHS/ -- R01 DK53366/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1999 May 21;284(5418):1365-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biochemistry, Glaxo Wellcome Research and Development, Research Triangle Park NC, 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334993" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bile Acids and Salts/chemistry/*metabolism/pharmacology ; Carrier Proteins/metabolism ; Cell Line ; Chenodeoxycholic Acid/*metabolism/pharmacology ; Cholesterol/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Deoxycholic Acid/metabolism/pharmacology ; Histone Acetyltransferases ; Homeostasis ; Humans ; Ligands ; Lithocholic Acid/metabolism/pharmacology ; Mice ; Nuclear Receptor Coactivator 1 ; *Organic Anion Transporters, Sodium-Dependent ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Structure-Activity Relationship ; *Symporters ; Transcription Factors/chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-06-26
    Description: Systematic chemical studies indicate that the capability of Watson-Crick base-pairing is widespread among potentially natural nucleic acid alternatives taken from RNA's close structural neighborhood. A comparison of RNA and such alternatives with regard to chemical properties that are fundamental to the biological function of RNA provides chemical facts that may contain clues to RNA's origin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eschenmoser, A -- New York, N.Y. -- Science. 1999 Jun 25;284(5423):2118-24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology at The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10381870" target="_blank"〉PubMed〈/a〉
    Keywords: *Base Pairing ; DNA/chemistry ; *Evolution, Chemical ; Isomerism ; Models, Molecular ; Nucleic Acid Conformation ; Oligonucleotides/*chemistry ; RNA/*chemistry ; Structure-Activity Relationship ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-09-16
    Description: The inadvertent activation of the Abelson tyrosine kinase (Abl) causes chronic myelogenous leukemia (CML). A small-molecule inhibitor of Abl (STI-571) is effective in the treatment of CML. We report the crystal structure of the catalytic domain of Abl, complexed to a variant of STI-571. Critical to the binding of STI-571 is the adoption by the kinase of an inactive conformation, in which a centrally located "activation loop" is not phosphorylated. The conformation of this loop is distinct from that in active protein kinases, as well as in the inactive form of the closely related Src kinases. These results suggest that compounds that exploit the distinctive inactivation mechanisms of individual protein kinases can achieve both high affinity and high specificity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schindler, T -- Bornmann, W -- Pellicena, P -- Miller, W T -- Clarkson, B -- Kuriyan, J -- GM29362/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 15;289(5486):1938-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratories of Molecular Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10988075" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/chemistry/*pharmacology ; Benzamides ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Enzyme Inhibitors/chemistry/*pharmacology ; Humans ; Imatinib Mesylate ; Mice ; Models, Molecular ; Phosphorylation ; *Piperazines ; Protein Conformation ; Proto-Oncogene Proteins c-abl/*antagonists & inhibitors/chemistry/metabolism ; Pyrimidines/chemistry/*pharmacology ; Recombinant Fusion Proteins ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-09-08
    Description: Multidrug resistance (MDR) is a serious medical problem and presents a major challenge to the treatment of disease and the development of novel therapeutics. ABC transporters that are associated with multidrug resistance (MDR-ABC transporters) translocate hydrophobic drugs and lipids from the inner to the outer leaflet of the cell membrane. To better elucidate the structural basis for the "flip-flop" mechanism of substrate movement across the lipid bilayer, we have determined the structure of the lipid flippase MsbA from Escherichia coli by x-ray crystallography to a resolution of 4.5 angstroms. MsbA is organized as a homodimer with each subunit containing six transmembrane alpha-helices and a nucleotide-binding domain. The asymmetric distribution of charged residues lining a central chamber suggests a general mechanism for the translocation of substrate by MsbA and other MDR-ABC transporters. The structure of MsbA can serve as a model for the MDR-ABC transporters that confer multidrug resistance to cancer cells and infectious microorganisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, G -- Roth, C B -- GM61905-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1793-800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, MB-9, The Scripps Research Institute, La Jolla, CA 92037, USA. gchang@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546864" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/metabolism ; Binding Sites ; Biological Transport ; Crystallography, X-Ray ; Dimerization ; *Drug Resistance, Microbial ; *Drug Resistance, Multiple ; Escherichia coli/*enzymology ; Lipid A/metabolism ; Membrane Proteins/*chemistry/genetics/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; Static Electricity ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-04-16
    Description: Vancomycin is an important drug for the treatment of Gram-positive bacterial infections. Resistance to vancomycin has begun to appear, posing a serious public health threat. Vancomycin analogs containing modified carbohydrates are very active against resistant microorganisms. Results presented here show that these carbohydrate derivatives operate by a different mechanism than vancomycin; moreover, peptide binding is not required for activity. It is proposed that carbohydrate-modified vancomycin compounds are effective against resistant bacteria because they interact directly with bacterial proteins involved in the transglycosylation step of cell wall biosynthesis. These results suggest new strategies for designing glycopeptide antibiotics that overcome bacterial resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, M -- Chen, Z -- Onishi, H R -- Kohler, J -- Silver, L L -- Kerns, R -- Fukuzawa, S -- Thompson, C -- Kahne, D -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):507-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Princeton University Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10205063" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/chemistry/metabolism/*pharmacology ; Carbohydrates/chemistry ; Cell Membrane/metabolism ; Dipeptides/*metabolism ; Drug Design ; Drug Resistance, Microbial ; Enterococcus faecalis/drug effects ; Escherichia coli/drug effects/metabolism ; Glycosylation ; Hexosyltransferases/antagonists & inhibitors/metabolism ; Lipid Metabolism ; Microbial Sensitivity Tests ; Peptidoglycan/*biosynthesis ; Peptidoglycan Glycosyltransferase ; Protein Binding ; Protein Precursors/metabolism ; Structure-Activity Relationship ; Vancomycin/*analogs & derivatives/chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-06-17
    Description: Mutations introduced into human growth hormone (hGH) (Thr175 --〉 Gly-hGH) and the extracellular domain of the hGH receptor (Trp104 --〉 Gly-hGHbp) created a cavity at the protein-protein interface that resulted in binding affinity being reduced by a factor of 10(6). A small library of indole analogs was screened for small molecules that bind the cavity created by the mutations and restore binding affinity. The ligand 5-chloro-2-trichloromethylimidazole was found to increase the affinity of the mutant hormone for its receptor more than 1000-fold. Cell proliferation and JAK2 phosphorylation assays showed that the mutant hGH activates growth hormone signaling in the presence of added ligand. This approach may allow other protein-protein and protein-nucleic acid interactions to be switched on or off by the addition or depletion of exogenous small molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Z -- Zhou, D -- Schultz, P G -- New York, N.Y. -- Science. 2000 Jun 16;288(5473):2042-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10856217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Division ; Cell Line ; Human Growth Hormone/chemistry/genetics/*metabolism ; Imidazoles/*chemistry/metabolism ; Janus Kinase 2 ; Ligands ; Mice ; Molecular Sequence Data ; Peptide Library ; Phosphorylation ; Protein Binding ; Protein-Tyrosine Kinases/metabolism ; *Proto-Oncogene Proteins ; Receptors, Somatotropin/chemistry/genetics/*metabolism ; Signal Transduction ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walsh, C -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):442-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacoloy, Harvard Medical School, Boston, MA 02115, USA. walsh@med.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10232990" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/chemistry/metabolism/*pharmacology ; Bacteria/*drug effects/metabolism ; Cell Wall/metabolism ; Dipeptides/chemistry/metabolism ; Disaccharides/chemistry/metabolism/pharmacology ; Drug Design ; Drug Resistance, Microbial ; Escherichia coli/drug effects/metabolism ; Glycosylation ; Hexosyltransferases/antagonists & inhibitors/metabolism ; Hydrogen Bonding ; Peptidoglycan/*biosynthesis/metabolism ; Peptidoglycan Glycosyltransferase ; Structure-Activity Relationship ; Vancomycin/*analogs & derivatives/chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-09-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin, J -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1743-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546844" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Crystallography, X-Ray/*methods ; Drug Design ; Models, Molecular ; Protein Structure, Tertiary ; Protein Subunits ; Receptors, Vitronectin/*chemistry/metabolism ; Solubility ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-07-24
    Description: Selective protein kinase inhibitors were developed on the basis of the unexpected binding mode of 2,6,9-trisubstituted purines to the adenosine triphosphate-binding site of the human cyclin-dependent kinase 2 (CDK2). By iterating chemical library synthesis and biological screening, potent inhibitors of the human CDK2-cyclin A kinase complex and of Saccharomyces cerevisiae Cdc28p were identified. The structural basis for the binding affinity and selectivity was determined by analysis of a three-dimensional crystal structure of a CDK2-inhibitor complex. The cellular effects of these compounds were characterized in mammalian cells and yeast. In the latter case the effects were characterized on a genome-wide scale by monitoring changes in messenger RNA levels in treated cells with high-density oligonucleotide probe arrays. Purine libraries could provide useful tools for analyzing a variety of signaling and regulatory pathways and may lead to the development of new therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gray, N S -- Wodicka, L -- Thunnissen, A M -- Norman, T C -- Kwon, S -- Espinoza, F H -- Morgan, D O -- Barnes, G -- LeClerc, S -- Meijer, L -- Kim, S H -- Lockhart, D J -- Schultz, P G -- New York, N.Y. -- Science. 1998 Jul 24;281(5376):533-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9677190" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*analogs & derivatives/chemistry/metabolism/pharmacology ; Binding Sites ; *CDC2-CDC28 Kinases ; CDC28 Protein Kinase, S cerevisiae/antagonists & inhibitors ; Cell Division/drug effects ; Crystallography, X-Ray ; Cyclin A/metabolism ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/*antagonists & inhibitors ; Drug Evaluation, Preclinical ; Flavonoids/chemistry/metabolism/pharmacology ; Gene Expression Regulation, Fungal/drug effects ; Genes, Fungal ; Humans ; Hydrogen Bonding ; Oligonucleotide Probes ; Phosphates/metabolism ; Piperidines/chemistry/metabolism/pharmacology ; Protein-Serine-Threonine Kinases/antagonists & inhibitors ; Purines/chemical synthesis/chemistry/metabolism/*pharmacology ; RNA, Messenger/genetics/metabolism ; Saccharomyces cerevisiae/enzymology/genetics ; Structure-Activity Relationship ; Transcription, Genetic/drug effects ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carrell, R W -- New York, N.Y. -- Science. 1999 Sep 17;285(5435):1861.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 2XY, UK. rwc1000@cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10515791" target="_blank"〉PubMed〈/a〉
    Keywords: Antithrombin III/chemistry/*metabolism/pharmacology ; Heparin/metabolism ; Models, Molecular ; Neoplasms/blood supply/drug therapy ; Neovascularization, Pathologic/prevention & control ; Plasminogen Activator Inhibitor 1/metabolism ; Protein Binding ; Protein Conformation ; Serpins/chemistry/*metabolism/pharmacology ; Structure-Activity Relationship ; Vitronectin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2001-12-01
    Description: Phosphoinositide (PI)-binding domains play critical roles in the intracellular localization of a variety of cell-signaling proteins. The 120-amino acid Phox homology (PX) domain targets proteins to organelle membranes through interactions between two conserved basic motifs within the PX domain and specific PIs. The combination of protein-lipid and protein-protein interactions ensures the proper localization and regulation of PX domain-containing proteins. Upon proper localization, PX domain-containing proteins can then bind to additional proteins and execute their functions in a diverse set of biological pathways, including intracellular protein transport, cell growth and survival, cytoskeletal organization, and neutrophil defense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, T K -- Overduin, M -- Emr, S D -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1881-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Medicine and Howard Hughes Medical Institute, University of California at San Diego School of Medicine, La Jolla, CA 92093-0668, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729306" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Carrier Proteins/chemistry/metabolism ; Humans ; Intracellular Membranes/*metabolism ; Models, Molecular ; NADPH Oxidase ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphatidylinositols/*metabolism ; Phosphoproteins/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Protein Transport ; Signal Transduction ; Structure-Activity Relationship ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1997-12-31
    Description: Natural killer T (NKT) lymphocytes express an invariant T cell antigen receptor (TCR) encoded by the Valpha14 and Jalpha281 gene segments. A glycosylceramide-containing alpha-anomeric sugar with a longer fatty acyl chain (C26) and sphingosine base (C18) was identified as a ligand for this TCR. Glycosylceramide-mediated proliferative responses of Valpha14 NKT cells were abrogated by treatment with chloroquine-concanamycin A or by monoclonal antibodies against CD1d/Vbeta8, CD40/CD40L, or B7/CTLA-4/CD28, but not by interference with the function of a transporter-associated protein. Thus, this lymphocyte shares distinct recognition systems with either T or NK cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawano, T -- Cui, J -- Koezuka, Y -- Toura, I -- Kaneko, Y -- Motoki, K -- Ueno, H -- Nakagawa, R -- Sato, H -- Kondo, E -- Koseki, H -- Taniguchi, M -- New York, N.Y. -- Science. 1997 Nov 28;278(5343):1626-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CREST (Core Research for Evolutional Science and Technology) Project, Japan Science and Technology Corporation (JST), 1-8-1 Inohana, Chuo, Chiba 260, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9374463" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD1/*immunology ; Carbohydrate Conformation ; Cells, Cultured ; Ceramides/chemistry/metabolism/*pharmacology ; Cerebrosides/chemistry/metabolism/*pharmacology ; Coculture Techniques ; Galactosylceramides/chemistry/metabolism/pharmacology ; Glucosylceramides/chemistry/metabolism/pharmacology ; Killer Cells, Natural/*immunology ; Ligands ; *Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Receptors, Antigen, T-Cell, alpha-beta/*immunology ; Structure-Activity Relationship ; T-Lymphocyte Subsets/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-09-09
    Description: Oligonucleotides complementary to regions of U1 and U2 small nuclear RNAs (snRNAs), when injected into Xenopus laevis oocytes, rapidly induced the specific degradation of U1 and U2 snRNAs, respectively, and then themselves were degraded. After such treatment, splicing of simian virus 40 (SV40) late pre-mRNA transcribed from microinjected viral DNA was blocked in oocytes. If before introduction of SV40 DNA into oocytes HeLa cell U1 or U2 snRNAs were injected and allowed to assemble into small nuclear ribonucleoprotein particle (snRNP)-like complexes, SV40 late RNA was as efficiently spliced as in oocytes that did not receive U1 or U2 oligonucleotides. This demonstrates that oocytes can form fully functional hybrid U1 and U2 snRNPs consisting of human snRNA and amphibian proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Z Q -- Prives, C -- CA33620/CA/NCI NIH HHS/ -- CA46121/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 Sep 9;241(4871):1328-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, NY 10027.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2970672" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Humans ; Macromolecular Substances ; Oocytes ; *RNA Splicing ; *RNA, Small Nuclear ; *Ribonucleoproteins ; Ribonucleoproteins, Small Nuclear ; Species Specificity ; Structure-Activity Relationship ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1988-12-02
    Description: Human gamma-aminobutyric acid A (GABAA) receptor subunits were expressed transiently in cultured mammalian cells. This expression system allows the simultaneous characterization of ligand-gated ion channels by electrophysiology and by pharmacology. Thus, coexpression of the alpha and beta subunits of the GABAA receptor generated GABA-gated chloride channels and binding sites for GABAA receptor ligands. Channels consisting of only alpha or beta subunits could also be detected. These homomeric channels formed with reduced efficiencies compared to the heteromeric receptors. Both of these homomeric GABA-responsive channels were potentiated by barbiturate, indicating that sites for both ligand-gating and allosteric potentiation are present on receptors assembled from either subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pritchett, D B -- Sontheimer, H -- Gorman, C M -- Kettenmann, H -- Seeburg, P H -- Schofield, P R -- New York, N.Y. -- Science. 1988 Dec 2;242(4883):1306-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neuroendocrinology, ZMBH, University of Heidelberg, Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2848320" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Blotting, Northern ; Cells, Cultured ; Chloride Channels ; Chlorides/*physiology ; Cloning, Molecular ; Electric Conductivity ; Humans ; Macromolecular Substances ; Membrane Proteins/*physiology ; Muscimol/metabolism ; Receptors, GABA-A/*physiology/ultrastructure ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1988-09-16
    Description: In the proposed "zinc finger" DNA-binding motif, each repeat unit binds a zinc metal ion through invariant Cys and His residues and this drives the folding of each 30-residue unit into an independent nucleic acid-binding domain. To obtain structural information, we synthesized single and double zinc finger peptides from the yeast transcription activator ADR1, and assessed the metal-binding and DNA-binding properties of these peptides, as well as the solution structure of the metal-stabilized domains, with the use of a variety of spectroscopic techniques. A single zinc finger can exist as an independent structure sufficient for zinc-dependent DNA binding. An experimentally determined model of the single finger is proposed that is consistent with circular dichroism, one- and two-dimensional nuclear magnetic resonance, and visual spectroscopy of the single-finger peptide reconstituted in the presence of zinc.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parraga, G -- Horvath, S J -- Eisen, A -- Taylor, W E -- Hood, L -- Young, E T -- Klevit, R E -- New York, N.Y. -- Science. 1988 Sep 16;241(4872):1489-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3047872" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; DNA Mutational Analysis ; *DNA-Binding Proteins ; Magnetic Resonance Spectroscopy ; Metalloproteins ; Protein Conformation ; Saccharomyces cerevisiae ; Structure-Activity Relationship ; *Transcription Factors ; Zinc/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-01-08
    Description: The Bacillus subtilis ribonuclease P consists of a protein and an RNA. At high ionic strength the reaction is protein-independent; the RNA alone is capable of cleaving precursor transfer RNA, but the turnover is slow. Kinetic analyses show that high salt concentrations facilitate substrate binding in the absence of the protein, probably by decreasing the repulsion between the polyanionic enzyme and substrate RNAs, and also slow product release and enzyme turnover. It is proposed that the ribonuclease P protein, which is small and basic, provides a local pool of counter-ions that facilitates substrate binding without interfering with rapid product release.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reich, C -- Olsen, G J -- Pace, B -- Pace, N R -- GM34527/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Jan 8;239(4836):178-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Indiana University, Bloomington 47405.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3122322" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/*enzymology ; Endoribonucleases/*physiology ; Kinetics ; Nucleic Acid Precursors/metabolism ; RNA, Transfer/metabolism ; Ribonuclease P ; Ribonucleoproteins/*physiology ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1988-07-01
    Description: A method of combinatorial cassette mutagenesis was designed to readily determine the informational content of individual residues in protein sequences. The technique consists of simultaneously randomizing two or three positions by oligonucleotide cassette mutagenesis, selecting for functional protein, and then sequencing to determine the spectrum of allowable substitutions at each position. Repeated application of this method to the dimer interface of the DNA-binding domain of lambda repressor reveals that the number and type of substitutions allowed at each position are extremely variable. At some positions only one or two residues are functionally acceptable; at other positions a wide range of residues and residue types are tolerated. The number of substitutions allowed at each position roughly correlates with the solvent accessibility of the wild-type side chain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reidhaar-Olson, J F -- Sauer, R T -- AI-15706/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1988 Jul 1;241(4861):53-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3388019" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Codon ; DNA/genetics/metabolism ; *DNA-Binding Proteins ; Macromolecular Substances ; Molecular Sequence Data ; Mutation ; Plasmids ; Protein Conformation ; Repressor Proteins/*genetics ; Structure-Activity Relationship ; Transcription Factors/*genetics ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1988-12-02
    Description: D-galactose-binding (or chemoreceptor) protein of Escherichia coli serves as an initial component for both chemotaxis towards galactose and glucose and high-affinity active transport of the two sugars. Well-refined x-ray structures of the liganded forms of the wild-type and a mutant protein isolated from a strain defective in chemotaxis but fully competent in transport have provided a molecular view of the sugar-binding site and of a site for interacting with the Trg transmembrane signal transducer. The geometry of the sugar-binding site, located in the cleft between the two lobes of the bilobate protein, is novel in that it is designed for tight binding and sequestering of either the alpha or beta anomer of the D-stereoisomer of the 4-epimers galactose and glucose. Binding specificity and affinity are conferred primarily by polar planar side-chain residues that form intricate networks of cooperative and bidentate hydrogen bonds with the sugar substrates, and secondarily by aromatic residues that sandwich the pyranose ring. Each of the pairs of anomeric hydroxyls and epimeric hydroxyls is recognized by a distinct Asp residue. The site for interaction with the transducer is about 18 A from the sugar-binding site. Mutation of Gly74 to Asp at this site, concomitant with considerable changes in the local ordered water structures, contributes to the lack of productive interaction with the transmembrane signal transducer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vyas, N K -- Vyas, M N -- Quiocho, F A -- New York, N.Y. -- Science. 1988 Dec 2;242(4883):1290-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3057628" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*ultrastructure ; Binding Sites ; *Calcium-Binding Proteins ; Carrier Proteins/*ultrastructure ; *Chemotaxis ; Computer Simulation ; DNA Mutational Analysis ; Escherichia coli ; Galactose/metabolism ; Glucose/metabolism ; Hydrogen Bonding ; Models, Molecular ; *Monosaccharide Transport Proteins ; *Periplasmic Binding Proteins ; Protein Conformation ; Structure-Activity Relationship ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-24
    Description: The N-methyl-D-aspartate (NMDA) class of excitatory amino acid receptors regulates the strength and stability of excitatory synapses and appears to play a major role in excitotoxic neuronal death associated with stroke and epilepsy. The conductance increase gated by NMDA is potentiated by the amino acid glycine, which acts at an allosteric site tightly coupled to the NMDA receptor. Indole-2-carboxylic acid (I2CA) specifically and competitively inhibits the potentiation by glycine of NMDA-gated current. In solutions containing low levels of glycine, I2CA completely blocks the response to NMDA, suggesting that NMDA alone is not sufficient for channel activation. I2CA will be useful for defining the interaction of glycine with NMDA receptors and for determining the in vivo role of glycine in excitotoxicity and synapse stabilization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huettner, J E -- HL-35034/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 24;243(4898):1611-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2467381" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspartic Acid/*analogs & derivatives/physiology ; Cells, Cultured ; Electric Conductivity ; Glycine/*antagonists & inhibitors ; In Vitro Techniques ; Indoles/*pharmacology ; Ion Channels/drug effects ; N-Methylaspartate ; Neural Inhibition ; Rats ; Receptors, N-Methyl-D-Aspartate ; Receptors, Neurotransmitter/*drug effects ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-24
    Description: Repeating copolymers of (dT-dC)n.(dA-dG)n sequences (TC.AGn) can assume a hinged DNA structure (H-DNA) which is composed of triple-stranded and single-stranded regions. A model for the formation of H-DNA is proposed, based on two-dimensional gel electrophoretic analysis of DNA's with different lengths of (TC.AG)n copolymers. In this model, H-DNA formation is initiated at a small denaturation bubble in the interior of the copolymer, which allows the duplexes on either side to rotate slightly and to fold back, in order to make the first base triplet. This nucleation establishes which of several nonequivalent H-DNA conformations is to be assumed by any DNA molecule, thereby trapping each molecule in one of several metastable conformers that are not freely interconvertible. Subsequently, the acceptor region spools up single-stranded polypyrimidines as they are released by progressive denaturation of the donor region; both the spooling and the denaturation result in relaxation of negative supercoils in the rest of the DNA molecule. From the model, it can be predicted that the levels of supercoiling of the DNA determine which half of the (dT-dC)n repeat is to become the donated third strand.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Htun, H -- Dahlberg, J E -- GM 30220/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 24;243(4898):1571-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, University of Wisconsin-Madison 53706.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2648571" target="_blank"〉PubMed〈/a〉
    Keywords: DNA/*ultrastructure ; DNA, Single-Stranded ; DNA, Superhelical ; *Nucleic Acid Conformation ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1989-03-24
    Description: The compound 1,6-dihydropurine ribonucleoside, prepared by reduction of nebularine in the presence of ultraviolet light, is bound by adenosine deaminase approximately 10(8)-fold less tightly than 6-hydroxy-1,6-dihydropurine ribonucleoside, a nearly ideal transition-state analog. This difference in affinities, which is associated with the presence of a single hydroxyl group in the second compound, suggests the degree to which one or a few hydrogen bonds may stabilize the transition state in an enzyme reaction of this type.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kati, W M -- Wolfenden, R -- GM-18325/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 24;243(4898):1591-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of North Carolina, Chapel Hill 27514.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2928795" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/*metabolism ; Adenosine Deaminase Inhibitors ; Hydrogen Bonding ; Hydroxides ; Ligands ; Nucleoside Deaminases/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1989-04-07
    Description: Protein engineering and x-ray crystallography have been used to study the role of a surface loop that is present in pancreatic phospholipases but is absent in snake venom phospholipases. Removal of residues 62 to 66 from porcine pancreatic phospholipase A2 does not change the binding constant for micelles significantly, but it improves catalytic activity up to 16 times on micellar (zwitterionic) lecithin substrates. In contrast, the decrease in activity on negatively charged substrates is greater than fourfold. A crystallographic study of the mutant enzyme shows that the region of the deletion has a well-defined structure that differs from the structure of the wild-type enzyme. No structural changes in the active site of the enzyme were detected.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuipers, O P -- Thunnissen, M M -- de Geus, P -- Dijkstra, B W -- Drenth, J -- Verheij, H M -- de Haas, G H -- New York, N.Y. -- Science. 1989 Apr 7;244(4900):82-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2704992" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Crystallography ; Enzyme Activation ; Kinetics ; Molecular Sequence Data ; Mutation ; Pancreas/enzymology ; Phospholipases/*metabolism ; Phospholipases A/genetics/*metabolism/physiology ; Phospholipases A2 ; *Protein Conformation ; Snake Venoms/analysis ; Structure-Activity Relationship ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1989-09-22
    Description: Bleomycin is a metal- and oxygen-dependent DNA cleaver. The chemistry of DNA damage has been proposed to involve rate-limiting abstraction of the 4'-hydrogen. A DNA fragment has been prepared that contains [4'-2H]thymidine residues of high isotopic content. Primary kinetic isotope effects have been directly observed at individual thymidine residues with DNA sequencing technology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kozarich, J W -- Worth, L Jr -- Frank, B L -- Christner, D F -- Vanderwall, D E -- Stubbe, J -- GM 34454/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Sep 22;245(4924):1396-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2476851" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Bleomycin ; *DNA Damage ; Deuterium ; Iron ; Oxygen ; Structure-Activity Relationship ; Thymidine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-08-04
    Description: The origin of allostery is an unanswered question in the evolution of complex regulatory proteins. Anabolic ornithine transcarbamoylase, a trimer of identical subunits, is not an allosteric enzyme per se. However, when the active-site residue arginine-106 of the Escherichia coli enzyme is replaced with a glycine through site-directed mutagenesis, the resultant mutant enzyme manifests substrate cooperativity that is absent in the wild-type enzyme. Both homotropic and heterotropic interactions occur in the mutant enzyme. The initial velocity saturation curves of the substrates, carbamoyl phosphate and L-ornithine, conform to the Hill equation. The observed cooperativity depends on substrate but not enzyme concentration. The finding underscores the possibility that a single mutation of the enzyme in the cell could turn transcarbamoylation into a regulatory junction in the biosynthesis of L-arginine and urea.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuo, L C -- Zambidis, I -- Caron, C -- DK01721/DK/NIDDK NIH HHS/ -- DK38089/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 4;245(4917):522-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Metcalf Center for Science and Engineering, Boston University, MA 02215.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2667139" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Binding Sites ; Carbamyl Phosphate/metabolism ; Escherichia coli/*enzymology ; Glycine ; Kinetics ; Macromolecular Substances ; *Mutation ; Ornithine/metabolism ; Ornithine Carbamoyltransferase/*genetics/metabolism ; Structure-Activity Relationship ; Zinc/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1989-08-18
    Description: CD4 is a cell surface glycoprotein that is thought to interact with nonpolymorphic determinants of class II major histocompatibility (MHC) molecules. CD4 is also the receptor for the human immunodeficiency virus (HIV), binding with high affinity to the HIV-1 envelope glycoprotein, gp120. Homolog-scanning mutagenesis was used to identify CD4 regions that are important in class II MHC binding and to determine whether the gp120 and class II MHC binding sites of CD4 are related. Class II MHC binding was abolished by mutations in each of the first three immunoglobulin-like domains of CD4. The gp120 binding could be abolished without affecting class II MHC binding and vice versa, although at least one mutation examined reduced both functions significantly. These findings indicate that, while there may be overlap between the gp120 and class II MHC binding sites of CD4, these sites are distinct and can be separated. Thus it should be possible to design CD4 analogs that can block HIV infectivity but intrinsically lack the ability to affect the normal immune response by binding to class II MHC molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamarre, D -- Ashkenazi, A -- Fleury, S -- Smith, D H -- Sekaly, R P -- Capon, D J -- New York, N.Y. -- Science. 1989 Aug 18;245(4919):743-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire d'Immunologie, Institut de Recherches Cliniques de Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2549633" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, Surface ; Binding Sites ; DNA, Recombinant ; HIV/*metabolism ; HIV Envelope Protein gp120 ; HLA-DP Antigens/immunology ; Histocompatibility Antigens Class II/*immunology ; Humans ; Hybridomas ; Mice ; Molecular Sequence Data ; Mutation ; Receptors, HIV ; Receptors, Virus/genetics/immunology/*metabolism ; Retroviridae Proteins/immunology/*metabolism ; Rosette Formation ; Structure-Activity Relationship ; T-Lymphocytes/immunology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-31
    Description: C/EBP is a rat liver nuclear protein capable of sequence-specific interaction with DNA. The DNA sequences to which C/EBP binds in vitro have been implicated in the control of messenger RNA synthesis. It has therefore been predicted that C/EBP will play a role in regulating gene expression in mammalian cells. The region of the C/EBP polypeptide required for direct interaction with DNA has been identified and shown to bear amino acid sequence relatedness with the product of the myc, fos, and jun proto-oncogenes. The arrangement of these related amino acid sequences led to the prediction of a new structural motif, termed the "leucine zipper," that plays a role in facilitating sequence-specific interaction between protein and DNA. Experimental tests now provide support for the leucine zipper hypothesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landschulz, W H -- Johnson, P F -- McKnight, S L -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1681-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2494700" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Cross-Linking Reagents ; DNA/*metabolism ; Glutaral ; Leucine ; Liver/*analysis ; Macromolecular Substances ; Molecular Weight ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Protein Conformation ; Rats ; Repetitive Sequences, Nucleic Acid ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1990-11-02
    Description: Voltage-gated sodium channels are transmembrane proteins of approximately 2000 amino acids and consist of four homologous domains (I through IV). In current topographical models, domains III and IV are linked by a highly conserved cytoplasmic sequence of amino acids. Disruptions of the III-IV linker by cleavage or antibody binding slow inactivation, the depolarization-induced closed state characteristic of sodium channels. This linker might be the positively charged "ball" that is thought to cause inactivation by occluding the open channel. Therefore, groups of two or three contiguous lysines were neutralized or a glutamate was substituted for an arginine in the III-IV linker of type III rat brain sodium channels. In all cases, inactivation occurred more rapidly rather than more slowly, contrary to predictions. Furthermore, activation was delayed in the arginine to glutamate mutation. Hence, the III-IV linker does not simply act as a charged blocker of the channel but instead influences all aspects of sodium channel gating.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moorman, J R -- Kirsch, G E -- Brown, A M -- Joho, R H -- HL-36930/HL/NHLBI NIH HHS/ -- KL-01858/PHS HHS/ -- NS-23877/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Nov 2;250(4981):688-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Texas Medical Branch, Galveston 77550.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2173138" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cytoplasm/physiology ; Molecular Sequence Data ; *Mutation ; RNA, Messenger/analysis ; Sodium Channels/chemistry/genetics/*physiology ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-05-04
    Description: Anesthesia "cutoff" refers to the phenomenon of loss of anesthetic potency in a homologous series of alkanes and their derivatives when their sizes become too large. In this study, hydrogen bonding of 1-alkanol series (ethanol to eicosanol) to dipalmitoyl-L-alpha-phosphatidylcholine (DPPC) was studied by Fourier transform infrared spectroscopy (FTIR) in DPPC-D2O-in-CCl4 reversed micelles. The alkanols formed hydrogen bonds with the phosphate moiety of DPPC and released the DPPC-bound deuterated water, evidenced by increases in the bound O-H stretching signal of the alkanol-DPPC complex and also in the free O-D stretching band of unbound D2O. These effects increased according to the elongation of the carbon chain of 1-alkanols from ethanol (C2) to 1-decanol (C10), but suddenly almost disappeared at 1-tetradecanol (C14). Anesthetic potencies of these alkanols, estimated by the activity of brine shrimps, were linearly related to hydrogen bond-breaking activities below C10 and agreed with the FTIR data in the cutoff at C10.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chiou, J S -- Ma, S M -- Kamaya, H -- Ueda, I -- GM25716/GM/NIGMS NIH HHS/ -- GM27670/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 May 4;248(4955):583-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anesthesia, University of Utah School of Medicine, Salt Lake City.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2159183" target="_blank"〉PubMed〈/a〉
    Keywords: *1,2-Dipalmitoylphosphatidylcholine ; *Alcohols ; *Anesthesia ; *Carbon Tetrachloride ; Deuterium ; Deuterium Oxide ; Fourier Analysis ; Hydrogen Bonding ; Liposomes ; Models, Biological ; Structure-Activity Relationship ; Thermodynamics ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1990-02-16
    Description: Sulfonylurea-sensitive adenosine triphosphate (ATP)-regulated potassium (KATP) channels are present in brain cells and play a role in neurosecretion at nerve terminals. KATP channels in substantia nigra, a brain region that shows high sulfonylurea binding, are inactivated by high glucose concentrations and by antidiabetic sulfonylureas and are activated by ATP depletion and anoxia. KATP channel inhibition leads to activation of gamma-aminobutyric acid (GABA) release, whereas KATP channel activation leads to inhibition of GABA release. These channels may be involved in the response of the brain to hyper- and hypoglycemia (in diabetes) and ischemia or anoxia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amoroso, S -- Schmid-Antomarchi, H -- Fosset, M -- Lazdunski, M -- New York, N.Y. -- Science. 1990 Feb 16;247(4944):852-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Pharmacologie Moleculaire et Cellulaire, UPR 411 du CNRS, Valbonne, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2305257" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*physiology ; Animals ; Cell Hypoxia ; Deoxyglucose/pharmacology ; Glucose/metabolism/*pharmacology ; Hypoglycemic Agents/*pharmacology ; In Vitro Techniques ; Kinetics ; Oligomycins/pharmacology ; Potassium/pharmacology ; Potassium Channels/drug effects/*physiology ; Rubidium/metabolism ; Structure-Activity Relationship ; Substantia Nigra/drug effects/*physiology ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1991-03-22
    Description: Serine 130 is one of seven residues that form a total of seven hydrogen bonds with the sulfate completely sequestered deep in the cleft between the two lobes of the bilobate sulfate-binding protein from Salmonella typhimurium. This residue has been replaced with Cys, Ala, and Gly by site-directed mutagenesis in an Escherichia coli expression system. Replacement with the isosteric Cys caused a 3200-fold decrease in the sulfate-binding activity relative to the wild-type activity, whereas replacement with Ala and Gly resulted in only 100- and 15-fold decreases, respectively. The effect of the Cys substitution is attributed largely to steric effect, whereas the Gly substitution more nearly reflects the loss of one hydrogen bond to the bound sulfate with a strength of only 1.6 kilocalories per mole.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, J J -- Quiocho, F A -- New York, N.Y. -- Science. 1991 Mar 22;251(5000):1479-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1900953" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Proteins ; Binding Sites ; Carrier Proteins/chemistry/*genetics/metabolism ; Cysteine ; DNA Mutational Analysis ; *Escherichia coli Proteins ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Models, Molecular ; *Periplasmic Binding Proteins ; Salmonella typhimurium ; Serine ; Structure-Activity Relationship ; Sulfates/*chemistry ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-07-12
    Description: The most frequently occurring RNA hairpins in 16S and 23S ribosomal RNA contain a tetranucleotide loop that has a GNRA consensus sequence. The solution structures of the GCAA and GAAA hairpins have been determined by nuclear magnetic resonance spectroscopy. Both loops contain an unusual G-A base pair between the first and last residue in the loop, a hydrogen bond between a G base and a phosphate, extensive base stacking, and a hydrogen bond between a sugar 2'-end OH and a base. These interactions explain the high stability of these hairpins and the sequence requirements for the variant and invariant nucleotides in the GNRA tetranucleotide loop family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heus, H A -- Pardi, A -- AI 27026/AI/NIAID NIH HHS/ -- AI 30726/AI/NIAID NIH HHS/ -- RR03283/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1991 Jul 12;253(5016):191-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1712983" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Computer Graphics ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligoribonucleotides/chemistry ; RNA/chemistry/*ultrastructure ; Structure-Activity Relationship ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1991-03-22
    Description: Defensins (molecular weight 3500 to 4000) act in the mammalian immune response by permeabilizing the plasma membranes of a broad spectrum of target organisms, including bacteria, fungi, and enveloped viruses. The high-resolution crystal structure of defensin HNP-3 (1.9 angstrom resolution, R factor 0.19) reveals a dimeric beta sheet that has an architecture very different from other lytic peptides. The dimeric assembly suggests mechanisms by which defensins might bind to and permeabilize the lipid bilayer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hill, C P -- Yee, J -- Selsted, M E -- Eisenberg, D -- New York, N.Y. -- Science. 1991 Mar 22;251(5000):1481-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eisenberg, Molecular Biology Institute, Los Angeles, CA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2006422" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blood Proteins/chemistry/*ultrastructure ; Cell Membrane Permeability ; Crystallography ; Defensins ; Guinea Pigs ; Humans ; Macromolecular Substances ; Membrane Proteins/chemistry/ultrastructure ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Protein Conformation ; Rabbits ; Rats ; Structure-Activity Relationship ; X-Ray Diffraction ; *alpha-Defensins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1991-06-21
    Description: Basic fibroblast growth factor (bFGF) binds to heparan sulfate proteoglycans at the cell surface and to receptors with tyrosine kinase activity. Prevention of binding between cell surface heparan sulfate and bFGF (i) substantially reduces binding of fibroblast growth factor to its cell-surface receptors, (ii) blocks the ability of bFGF to support the growth of Swiss 3T3 fibroblasts, and (iii) induces terminal differentiation of MM14 skeletal muscle cells, which is normally repressed by fibroblast growth factor. These results indicate that cell surface heparan sulfate is directly involved in bFGF cell signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rapraeger, A C -- Krufka, A -- Olwin, B B -- 5T32H007118/PHS HHS/ -- AR39467/AR/NIAMS NIH HHS/ -- HD21881/HD/NICHD NIH HHS/ -- R01 AR039467/AR/NIAMS NIH HHS/ -- R01 HD021881/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1991 Jun 21;252(5013):1705-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Wisconsin, Madison 53706.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1646484" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Line ; Chlorates/pharmacology ; Fibroblast Growth Factor 2/*metabolism ; Fibroblasts/*cytology ; Heparitin Sulfate/*physiology ; In Vitro Techniques ; Mice ; Muscles/*cytology ; Polysaccharide-Lyases/pharmacology ; Protein Binding ; Receptors, Cell Surface/metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1991-02-08
    Description: Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis. In order to evaluate its function, CFTR was expressed in HeLa, Chinese hamster ovary (CHO), and NIH 3T3 fibroblast cells, and anion permeability was assessed with a fluorescence microscopic assay and the whole-cell patch-clamp technique. Adenosine 3',5'-monophosphate (cAMP) increased anion permeability and chloride currents in cells expressing CFTR, but not in cells expressing a mutant CFTR (delta F508) or in nontransfected cells. The simplest interpretation of these observations is that CFTR is itself a cAMP-activated chloride channel. The alternative interpretation, that CFTR directly or indirectly regulates chloride channels, requires that these cells have endogenous cryptic, chloride channels that are stimulated by cAMP only in the presence of CFTR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anderson, M P -- Rich, D P -- Gregory, R J -- Smith, A E -- Welsh, M J -- New York, N.Y. -- Science. 1991 Feb 8;251(4994):679-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1704151" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chloride Channels ; Chlorides/*metabolism ; Cricetinae ; Cyclic AMP/*physiology ; Cystic Fibrosis Transmembrane Conductance Regulator ; Humans ; Membrane Proteins/*metabolism/*physiology ; Mice ; Mutation ; Recombinant Proteins ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1991-03-01
    Description: Cellular factors controlling alternative splicing of precursor messenger RNA are largely unknown, even though this process plays a central role in specifying the diversity of proteins in the eukaryotic cell. For the identification of such factors, a segment of the rat preprotachykinin gene was used in which differential expression of neuropeptides gamma and K is dependent on alternative splicing of the fourth exon (E4). Sequence variants of the three-exon segment, (E3-E4-E5) were created, resulting in a sensitive assay for factors mediating the splicing switch between E4-skipping and E4-inclusion. A dinucleotide mutation in the 5' splice site of E4 that increase base-pairing of this site to U1 small nuclear RNA resulted in uniform selection of E4, whereas a control mutation that destroyed base-pairing resulted in uniform E4-skipping. Affinity selection of spliceosomes formed on these functionally distinct substrates revealed that the extreme difference in splicing was mediated by differential binding of the U1 small nuclear ribonucleoprotein particle (snRNP) to the 5' splice site of E4. These data show that, apart from its established role in selecting 5' splice sites, U1 snRNP plays a fundamental role in 3' exon selection and provides insight into possible mechanisms of alternative splicing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuo, H C -- Nasim, F H -- Grabowski, P J -- GM-39695/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Mar 1;251(4997):1045-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Biochemistry, Brown University, Providence, RI 02912.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1825520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA Mutational Analysis ; Exons ; Hydrogen Bonding ; Macromolecular Substances ; Molecular Sequence Data ; Protein Precursors/*genetics ; *RNA Splicing ; RNA, Messenger/*metabolism ; RNA, Small Nuclear/*physiology ; Rats ; Ribonucleoproteins/chemistry/*physiology ; Ribonucleoproteins, Small Nuclear ; Structure-Activity Relationship ; Tachykinins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-25
    Description: SP-B is a protein in pulmonary surfactant that is, in greatest part, responsible for resistance to surface tension and prevention of collapse of pulmonary alveoli. Peptides of 21 residues, synthesized following the sequence of SP-B or resembling the hydrophobic and hydrophilic domains of SP-B (such as RLLLLRLLLLRLLLLRLLLLR, R, Arg, and L, Leu), enhanced the abilities of phospholipids to reduce surface tension both in vitro and in vivo. Intermittent positively charged residues were essential for this activity. The SP-B-like peptides were found by tryptophan fluorescence to partition within the phospholipid layer in contact with both polar head groups and acyl side chains. These data, together with findings that the SP-B-related peptides increase inter- and intramolecular order of the phospholipid layer, suggest that SP-B resists surface tension by increasing lateral stability of the phospholipid layer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cochrane, C G -- Revak, S D -- GM-37696/GM/NIGMS NIH HHS/ -- HL-23584/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 25;254(5031):566-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1948032" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Kinetics ; Molecular Sequence Data ; Peptides/*chemical synthesis/chemistry ; Phospholipids/metabolism ; Proteolipids/chemistry/*metabolism ; Pulmonary Surfactants/chemistry/*metabolism ; Structure-Activity Relationship ; Surface Tension
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1991-08-16
    Description: Analysis of the heteromeric DNA binding protein GABP has revealed the interaction of two distinct peptide sequence motifs normally associated with proteins located in different cellular compartments. The alpha subunit of GABP contains an 85-amino acid segment related to the Ets family of DNA binding proteins. The ETS domain of GABP alpha facilitates weak binding to DNA and, together with an adjacent segment of 37 amino acids, mediates stable interaction with GABP beta. The beta subunit of GABP contains four imperfect repeats of a sequence present in several transmembrane proteins including the product of the Notch gene of Drosophila melanogaster. These amino-terminal repeats of GABP beta mediate stable interaction with GABP alpha and, when complexed with GABP alpha, directly contact DNA. These observations provide evidence for a distinct biochemical role for the 33-amino acid repeats, and suggest that they may serve as a module for the generation of specific dimerization interfaces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thompson, C C -- Brown, T A -- McKnight, S L -- New York, N.Y. -- Science. 1991 Aug 16;253(5021):762-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1876833" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cross-Linking Reagents ; DNA/metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; GA-Binding Protein Transcription Factor ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Weight ; Multigene Family ; Nuclear Proteins/*chemistry/metabolism ; Oligonucleotides/chemistry ; Proto-Oncogene Proteins/chemistry ; Proto-Oncogene Proteins c-ets ; Rats ; Recombinant Proteins ; Structure-Activity Relationship ; Transcription Factors/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-08-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoffman, M -- New York, N.Y. -- Science. 1991 Aug 16;253(5021):742.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1831563" target="_blank"〉PubMed〈/a〉
    Keywords: Ankyrins ; Base Sequence ; Binding Sites ; Blood Proteins/*chemistry ; Membrane Proteins/*chemistry ; Molecular Sequence Data ; *Protein Binding ; Structure-Activity Relationship ; Transcription Factors/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-11-29
    Description: The N-end rule relates the in vivo half-life of a protein to the identity of its amino-terminal residue. Distinct versions of the N-end rule operate in all eukaryotes examined. It is shown that the bacterium Escherichia coli also has the N-end rule pathway. Amino-terminal arginine, lysine, leucine, phenylalanine, tyrosine, and tryptophan confer 2-minute half-lives on a test protein; the other amino-terminal residues confer greater than 10-hour half-lives on the same protein. Amino-terminal arginine and lysine are secondary destabilizing residues in E. coli because their activity depends on their conjugation to the primary destabilizing residues leucine or phenylalanine by leucine, phenylalanine-transfer RNA-protein transferase. The adenosine triphosphate-dependent protease Clp (Ti) is required for the degradation of N-end rule substrates in E. coli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tobias, J W -- Shrader, T E -- Rocap, G -- Varshavsky, A -- DK39520/DK/NIDDK NIH HHS/ -- GM31530/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 29;254(5036):1374-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1962196" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacteria/*metabolism ; Bacterial Proteins/*metabolism ; Escherichia coli/enzymology/metabolism ; Half-Life ; Kinetics ; Molecular Sequence Data ; Rabbits ; Reticulocytes/metabolism ; Saccharomyces cerevisiae/enzymology/metabolism ; Structure-Activity Relationship ; beta-Galactosidase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-01-04
    Description: Virion protein 16 (VP16) of herpes simplex virus type 1 contains an acidic transcriptional activation domain. Missense mutations within this domain have provided insights into the structural elements critical for its function. Net negative charge contributed to, but was not sufficient for, transcriptional activation by VP16. A putative amphipathic alpha helix did not appear to be an important structural component of the activation domain. A phenylalanine residue at position 442 was exquisitely sensitive to mutation. Transcriptional activators of several classes contain hydrophobic amino acids arranged in patterns resembling that of VP16. Therefore, the mechanism of transcriptional activation by VP16 and other proteins may involve both ionic and specific hydrophobic interactions with target molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cress, W D -- Triezenberg, S J -- AI 27323/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1991 Jan 4;251(4989):87-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Michigan State University, East Lansing 48824-1319.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1846049" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Immediate-Early Proteins ; Molecular Sequence Data ; Mutation ; Protein Conformation ; *Simplexvirus ; Structure-Activity Relationship ; Transcription Factors/*chemistry/genetics/pharmacology ; Transcription, Genetic/*drug effects ; Transfection ; Viral Proteins/*genetics ; Virion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1991-12-06
    Description: Although multiple related genes encoding nicotinic acetylcholine receptor (AChR) subunits have been identified, how each of these subunits contributes to AChRs in neurons is not known. Sympathetic neurons express four classes of AChR channels and six AChR subunit genes (alpha 3, alpha 4, alpha 5, alpha 7, beta 2, and beta 4). The contribution of individual subunits to AChR channel subtypes in these neurons was examined by selective deletion with antisense oligonucleotides. An alpha 3 antisense oligonucleotide decreased the number and altered the properties of the normally expressed ACh-activated channels. The remaining AChR channels have distinct biophysical and pharmacological properties that indicate an important functional contribution of the alpha 7 subunit.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2366811/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2366811/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Listerud, M -- Brussaard, A B -- Devay, P -- Colman, D R -- Role, L W -- NS 29071/NS/NINDS NIH HHS/ -- NS27680/NS/NINDS NIH HHS/ -- R01 NS029071/NS/NINDS NIH HHS/ -- R01 NS029071-09/NS/NINDS NIH HHS/ -- R01 NS029071-10/NS/NINDS NIH HHS/ -- R01 NS029071-11/NS/NINDS NIH HHS/ -- R01 NS029071-12/NS/NINDS NIH HHS/ -- R01 NS029071-13/NS/NINDS NIH HHS/ -- R01 NS029071-13S1/NS/NINDS NIH HHS/ -- R01 NS029071-14/NS/NINDS NIH HHS/ -- R01 NS029071-15/NS/NINDS NIH HHS/ -- R01 NS029071-16/NS/NINDS NIH HHS/ -- R01 NS029071-17/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Dec 6;254(5037):1518-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Cell Biology, Columbia College of Physicians and Surgeons, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1720573" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Bungarotoxins/pharmacology ; Chick Embryo ; Gene Expression ; Ion Channel Gating ; Ion Channels/*physiology ; Molecular Sequence Data ; Oligonucleotides, Antisense/pharmacology ; Polymerase Chain Reaction ; RNA, Messenger/genetics ; Receptors, Nicotinic/*physiology/ultrastructure ; Structure-Activity Relationship ; Sympathetic Nervous System/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-01-18
    Description: The CCAAT-enhancer binding protein (C/EBP) has now been found to promote the terminal differentiation of adipocytes. During the normal course of adipogenesis, C/EBP expression is restricted to a terminal phase wherein proliferative growth is arrested, and specialized cell phenotype is first manifested. A conditional form of C/EBP was developed, making it feasible to test its capacity to regulate the differentiation of cultured adipocytes. Premature expression of C/EBP in adipoblasts caused a direct cessation of mitotic growth. Moreover, when abetted by the effects of three adipogenic hormones, C/EBP promoted terminal cell differentiation. Since C/EBP is expressed in a variety of tissues, it may have a fundamental role in regulating the balance between cell growth and differentiation in higher animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Umek, R M -- Friedman, A D -- McKnight, S L -- New York, N.Y. -- Science. 1991 Jan 18;251(4991):288-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Department of Embryology, Carnegic Institution of Washington, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1987644" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/*cytology ; Animals ; CCAAT-Enhancer-Binding Proteins ; *Cell Differentiation ; Cell Division ; DNA-Binding Proteins/*physiology ; Gene Expression Regulation ; L Cells (Cell Line) ; Mice ; Nuclear Proteins/*physiology ; Receptors, Steroid/physiology ; Regulatory Sequences, Nucleic Acid ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1992-09-25
    Description: Two major developmentally regulated isoforms of the Drosophila chorion transcription factor CF2 differ by an extra zinc finger within the DNA binding domain. The preferred DNA binding sites were determined and are distinguished by an internal duplication of TAT in the site recognized by the isoform with the extra finger. The results are consistent with modular interactions between zinc fingers and trinucleotides and also suggest rules for recognition of AT-rich DNA sites by zinc finger proteins. The results show how modular finger interactions with trinucleotides can be used, in conjunction with alternative splicing, to alter the binding specificity and increase the spectrum of sites recognized by a DNA binding domain. Thus, CF2 may potentially regulate distinct sets of target genes during development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gogos, J A -- Hsu, T -- Bolton, J -- Kafatos, F C -- New York, N.Y. -- Science. 1992 Sep 25;257(5078):1951-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1290524" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA-Binding Proteins/*metabolism ; *Drosophila Proteins ; Drosophila melanogaster/genetics ; Hydrogen Bonding ; Molecular Sequence Data ; Oligodeoxyribonucleotides/chemistry/metabolism ; Protein Binding ; *Regulatory Sequences, Nucleic Acid ; Structure-Activity Relationship ; Transcription Factors/*metabolism ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1992-10-09
    Description: In order to understand the structural bases of ion conduction, ion selectivity, and gating in the nicotinic acetylcholine receptor, mutagenesis and covalent modification were combined to identify the amino acid residues that line the channel. The side chains of alternate residues--Ser248, Leu250, Ser252, and Thr254--in M2, a membrane-spanning segment of the alpha subunit, are exposed in the closed channel. Thus alpha 248-254 probably forms a beta strand, and the gate is closer to the cytoplasmic end of the channel than any of these residues. On channel opening, Leu251 is also exposed. These results lead to a revised view of the closed and open channel structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Akabas, M H -- Stauffer, D A -- Xu, M -- Karlin, A -- NS07065/NS/NINDS NIH HHS/ -- NS07258/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1992 Oct 9;258(5080):307-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1384130" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/metabolism/pharmacology ; Amino Acid Sequence ; Animals ; Cysteine/*chemistry ; Gene Expression ; Ion Channel Gating ; Ion Channels/*chemistry/physiology ; Mice ; Molecular Sequence Data ; Muscles/chemistry ; *Mutagenesis ; Oocytes/metabolism ; Receptors, Cholinergic/*chemistry/genetics ; Structure-Activity Relationship ; Sulfhydryl Reagents/pharmacology ; Thermodynamics ; Transfection ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1992-09-04
    Description: The transcriptional antiterminator protein BglG inhibits transcription termination of the bgl operon in Escherichia coli when it is in the nonphosphorylated state. The BglG protein is now shown to exist in two configurations, an active, dimeric nonphosphorylated form and an inactive, monomeric phosphorylated form. The migration of BglG on native polyacrylamide gels was consistent with it existing as a dimer when nonphosphorylated and as a monomer when phosphorylated. Only the nonphosphorylated dimer was found to bind to the target RNA. When the dimerization domain of the lambda repressor was replaced with BglG, the resulting chimera behaved like an intact lambda repressor in its ability to repress lambda gene expression, which suggests that BglG dimerizes in vivo. Repression by the lambda-BglG hybrid was significantly reduced by BglF, the BglG kinase, an effect that was relieved by conditions that stimulate dephosphorylation of BglG by BglF. These results suggest that the phosphorylation and the dephosphorylation of BglG regulate its activity by controlling its dimeric state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amster-Choder, O -- Wright, A -- New York, N.Y. -- Science. 1992 Sep 4;257(5075):1395-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Microbiology, Tufts University Health Sciences Campus, Boston, MA 02111.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1382312" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Bacteriophage lambda/genetics ; Binding Sites ; Electrophoresis, Polyacrylamide Gel ; Escherichia coli/metabolism ; Macromolecular Substances ; Molecular Weight ; Operon ; Phosphorylation ; RNA/metabolism ; RNA-Binding Proteins/*chemistry/metabolism ; Repressor Proteins/metabolism ; Structure-Activity Relationship ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1989-12-01
    Description: A single-site mutant of Escherichia coli glutaminyl-synthetase (D235N, GlnRS7) that incorrectly acylates in vivo the amber suppressor supF tyrosine transfer RNA (tRNA(Tyr] with glutamine has been described. Two additional mutant forms of the enzyme showing this misacylation property have now been isolated in vivo (D235G, GlnRS10; I129T, GlnRS15). All three mischarging mutant enzymes still retain a certain degree of tRNA specificity; in vivo they acylate supE glutaminyl tRNA (tRNA(Gln] and supF tRNA(Tyr) but not a number of other suppressor tRNA's. These genetic experiments define two positions in GlnRS where amino acid substitution results in a relaxed specificity of tRNA discrimination. The crystal structure of the GlnRS:tRNA(Gln) complex provides a structural basis for interpreting these data. In the wild-type enzyme Asp235 makes sequence-specific hydrogen bonds through its side chain carboxylate group with base pair G3.C70 in the minor groove of the acceptor stem of the tRNA. This observation implicates base pair 3.70 as one of the identity determinants of tRNA(Gln). Isoleucine 129 is positioned adjacent to the phosphate of nucleotide C74, which forms part of a hairpin structure adopted by the acceptor end of the complexed tRNA molecule. These results identify specific areas in the structure of the complex that are critical to accurate tRNA discrimination by GlnRS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perona, J J -- Swanson, R N -- Rould, M A -- Steitz, T A -- Soll, D -- New York, N.Y. -- Science. 1989 Dec 1;246(4934):1152-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2686030" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Amino Acyl-tRNA Synthetases/genetics/*metabolism ; Aspartic Acid ; Binding Sites ; Crystallization ; Escherichia coli/*enzymology/genetics ; Glutamine/metabolism ; Hydrogen Bonding ; Isoleucine ; Molecular Structure ; *Mutation ; RNA, Transfer, Gln/metabolism ; RNA, Transfer, Tyr ; Structure-Activity Relationship ; Substrate Specificity ; Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-05-12
    Description: The group I intron from Tetrahymena catalyzes phosphodiester transfer reactions on various RNA substrates. A modified RNA substrate with a phosphorothioate group in one stereoisomeric form at the site of reaction was synthesized in order to determine the stereochemical course of an RNA-catalyzed reaction. The reaction product was digested with a stereospecific nuclease to determine the configuration of the product phosphorothioate. The reaction occurs with inversion of configuration at phosphorus, implying an in-line pathway for the reaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rajagopal, J -- Doudna, J A -- Szostak, J W -- New York, N.Y. -- Science. 1989 May 12;244(4905):692-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2470151" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalysis ; DNA-Directed RNA Polymerases/metabolism ; Exons ; Guanosine/metabolism ; Introns ; Molecular Conformation ; Oligonucleotides/metabolism ; Phosphorus ; RNA/chemical synthesis/metabolism ; RNA Precursors/metabolism ; RNA Splicing ; RNA, Catalytic ; RNA, Ribosomal/*metabolism ; Ribonucleases/metabolism ; Structure-Activity Relationship ; T-Phages/enzymology ; Templates, Genetic ; Tetrahymena/*genetics ; Thionucleotides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-03
    Description: Passage of proteins across membranes during export from their site of synthesis to their final destination is mediated by leader peptides that paradoxically exhibit a unity of function in spite of a diversity of sequence. These leader peptides act in at least two stages of the export process: at entry into the pathway and subsequently during translocation across the membrane. How selectivity is imposed on the system in the absence of a consensus among the sequences of leader peptides is the main issue discussed here.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Randall, L L -- Hardy, S J -- GM29798/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 3;243(4895):1156-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry/Biophysics Program, Washington State University, Pullman 99164.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2646712" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Transport ; Cell Membrane/*metabolism ; Escherichia coli/metabolism ; *Models, Biological ; Protein Conformation ; Protein Precursors/metabolism ; Protein Sorting Signals/*physiology ; Proteins/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1989-09-29
    Description: Synapsins are neuronal phosphoproteins that coat synaptic vesicles, bind to the cytoskeleton, and are believed to function in the regulation of neurotransmitter release. Molecular cloning reveals that the synapsins comprise a family of four homologous proteins whose messenger RNA's are generated by differential splicing of transcripts from two genes. Each synapsin is a mosaic composed of homologous amino-terminal domains common to all synapsins and different combinations of distinct carboxyl-terminal domains. Immunocytochemical studies demonstrate that all four synapsins are widely distributed in nerve terminals, but that their relative amounts vary among different kinds of synapses. The structural diversity and differential distribution of the four synapsins suggest common and different roles of each in the integration of distinct signal transduction pathways that modulate neurotransmitter release in various types of neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sudhof, T C -- Czernik, A J -- Kao, H T -- Takei, K -- Johnston, P A -- Horiuchi, A -- Kanazir, S D -- Wagner, M A -- Perin, M S -- De Camilli, P -- AA 06944/AA/NIAAA NIH HHS/ -- MH 39327/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1989 Sep 29;245(4925):1474-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Dallas, TX.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2506642" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Molecular Sequence Data ; Nerve Tissue Proteins/*genetics ; Neuropeptides/*genetics ; Phosphoproteins/*genetics ; Sequence Homology, Nucleic Acid ; Structure-Activity Relationship ; Synapsins ; Synaptic Vesicles/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1990-02-23
    Description: Bacterial MerR proteins are dimeric DNA-binding proteins that mediate the Hg(II)-dependent induction of mercury resistance operons. Site-directed mutagenesis of the Bacillus sp. RC607 MerR protein reveals that three of four Cys residues per monomer are required for Hg(II) binding at the single high-affinity binding site. Inactive mutant homodimers can exchange subunits to form heterodimers active for Hg(II) binding. Studies of a heterodimer retaining only three of eight cysteine residues per dimer reveal that Cys79 in one subunit and Cys114 and Cys123 in the second subunit are necessary and sufficient for high-affinity Hg(II) binding in an asymmetric, subunit bridging coordination complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Helmann, J D -- Ballard, B T -- Walsh, C T -- GM20011/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 23;247(4945):946-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2305262" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus/*analysis/genetics ; Bacterial Proteins/genetics/*metabolism ; Base Sequence ; Binding Sites ; Cations ; DNA-Binding Proteins/genetics/*metabolism ; Macromolecular Substances ; Mercury/*metabolism ; Molecular Sequence Data ; Mutation ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1990-09-14
    Description: Proteolytically produced carboxyl-terminal fragments of the human immunodeficiency virus type-1 (HIV-1) Tat protein that include a conserved region rich in arginine and lysine bind specifically to transactivation response RNA sequences (TAR). A chemically synthesized 14-residue peptide spanning the basic subdomain also recognizes TAR, identifying this subdomain as central for RNA interaction. TAR RNA forms a stable hairpin that includes a six-residue loop, a trinucleotide pyrimidine bulge, and extensive duplex structure. Competition and interference experiments show that the Tat-derived fragments bind to double-stranded RNA and interact specifically at the pyrimidine bulge and adjacent duplex of TAR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weeks, K M -- Ampe, C -- Schultz, S C -- Steitz, T A -- Crothers, D M -- GM-21966/GM/NIGMS NIH HHS/ -- GM-39546/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 14;249(4974):1281-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Yale University, New Haven, CT.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2205002" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding, Competitive ; Gene Products, tat/*metabolism ; HIV-1/*genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; Peptide Fragments/isolation & purification/metabolism ; Peptide Hydrolases ; RNA, Messenger/genetics/*metabolism ; RNA, Viral/genetics/*metabolism ; Recombinant Fusion Proteins/isolation & purification/metabolism ; Regulatory Sequences, Nucleic Acid/genetics/physiology ; Structure-Activity Relationship ; Trans-Activators/*metabolism ; Transcriptional Activation/genetics ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1990-05-25
    Description: RNA polymerase, the principal enzyme of gene expression, possesses structural features conserved in evolution. A substitution of an evolutionarily invariant amino acid (Lys1065----Arg) in the beta subunit of Escherichia coli RNA polymerase apparently disrupts its catalytic center. The mutant protein inhibited cell growth when expressed from an inducible promoter. The assembled holoenzyme carrying the mutant subunit formed stable promoter complexes that continuously synthesized promoter-specific dinucleotides but that did not enter the elongation step. The mutant polymerase inhibited transcription by blocking the access of the wild-type enzyme to promoters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kashlev, M -- Lee, J -- Zalenskaya, K -- Nikiforov, V -- Goldfarb, A -- GM30717/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 May 25;248(4958):1006-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Genetics, U.S.S.R. Academy of Sciences, Moscow.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1693014" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; DNA Mutational Analysis ; DNA-Directed RNA Polymerases/*genetics/metabolism ; Escherichia coli/enzymology/genetics ; Genes, Dominant ; Molecular Sequence Data ; Promoter Regions, Genetic ; RNA/biosynthesis ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1991-08-16
    Description: Pit-1, a tissue-specific POU domain transcription factor, is required for the activation of the prolactin, growth hormone, and Pit-1 promoters that confer regulation by epidermal growth factor, adenosine 3',5'-monophosphate (cAMP), and phorbol esters. Pit-1 is phosphorylated in pituitary cells at two distinct sites in response to phorbol esters and cAMP. Phosphorylation of Pit-1 modifies its conformation on DNA recognition elements and results in increased binding at certain sites and decreased binding at other sites, dependent on DNA sequences adjacent to the core Pit-1 binding motif. One residue (Thr220), located in the POU homeodomain within a sequence conserved throughout the POU-domain family, confers these responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kapiloff, M S -- Farkash, Y -- Wegner, M -- Rosenfeld, M G -- DK 18477/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Aug 16;253(5021):786-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eukaryotic Regulatory Biology Program, School of Medicine, University of California, San Diego, La Jolla 92093-0648.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1652153" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Cell Line ; Cyclic AMP/pharmacology ; DNA/metabolism ; DNA-Binding Proteins/chemistry/*physiology ; In Vitro Techniques ; Molecular Sequence Data ; Peptide Mapping ; Phosphorylation ; Phosphothreonine/metabolism ; Pituitary Gland/*physiology ; Protein Kinases/metabolism ; Regulatory Sequences, Nucleic Acid ; Structure-Activity Relationship ; Tetradecanoylphorbol Acetate/pharmacology ; Transcription Factor Pit-1 ; Transcription Factors/chemistry/*physiology ; Trypsin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1991-06-21
    Description: The nucleotides crucial for the specific aminoacylation of yeast tRNA(Asp) by its cognate synthetase have been identified. Steady-state aminoacylation kinetics of unmodified tRNA transcripts indicate that G34, U35, C36, and G73 are important determinants of tRNA(Asp) identity. Mutations at these positions result in a large decrease (19- to 530-fold) of the kinetic specificity constant (ratio of the catalytic rate constant kcat and the Michaelis constant Km) for aspartylation relative to wild-type tRNA(Asp). Mutation to G10-C25 within the D-stem reduced kcat/Km eightfold. This fifth mutation probably indirectly affects the presentation of the highly conserved G10 nucleotide to the synthetase. A yeast tRNA(Phe) was converted into an efficient substrate for aspartyl-tRNA synthetase through introduction of the five identity elements. The identity nucleotides are located in regions of tight interaction between tRNA and synthetase as shown in the crystal structure of the complex and suggest sites of base-specific contacts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Putz, J -- Puglisi, J D -- Florentz, C -- Giege, R -- New York, N.Y. -- Science. 1991 Jun 21;252(5013):1696-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Biochimie, Institut de Biologie Moleculaire et Cellulaire du CNRS, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2047878" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartate-tRNA Ligase/*metabolism ; Base Sequence ; Computer Graphics ; DNA Mutational Analysis ; Fungal Proteins/metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; RNA, Fungal/metabolism ; RNA, Transfer, Amino Acyl/metabolism ; RNA, Transfer, Asp/*metabolism ; Saccharomyces cerevisiae/*enzymology ; Structure-Activity Relationship ; Substrate Specificity ; *Transfer RNA Aminoacylation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-12-13
    Description: Recent experiments, advances in theory, and analogies to other complex systems such as glasses and spin glasses yield insight into protein dynamics. The basis of the understanding is the observation that the energy landscape is complex: Proteins can assume a large number of nearly isoenergetic conformations (conformational substates). The concepts that emerge from studies of the conformational substates and the motions between them permit a quantitative discussion of one simple reaction, the binding of small ligands such as carbon monoxide to myoglobin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frauenfelder, H -- Sligar, S G -- Wolynes, P G -- New York, N.Y. -- Science. 1991 Dec 13;254(5038):1598-603.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Advanced Study, University of Illinois, Champaign, Urbana 61801.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1749933" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Monoxide/chemistry ; Chemistry, Physical ; Motion ; Myoglobin/*chemistry ; Physicochemical Phenomena ; Protein Conformation ; Structure-Activity Relationship ; Temperature ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-04
    Description: The 17-amino acid peptide from chicken ovalbumin, Ova(323-339), was labeled at the amino terminus with fluorescein [FOva(323-339)] and near the carboxyl terminus with Texas Red [AcOva(323-338)KTR]. Fluorescence spectroscopy was carried out on resolved electrophoretic bands on nonreducing polyacrylamide gels derived from incubation mixtures containing major histocompatibility complex (MHC) class II molecules IAd and the FOva(323-339)- and AcOva(323-338)KTR-labeled peptides. Energy transfer between fluorescein and Texas Red was observed in the "floppy" alpha beta heterodimer band, but not in the "compact" alpha beta heterodimer band. Energy transfer was detected between the truncated peptides FOva(323-328)CONH2 and AcOva(331-338)KTR in both the compact alpha beta and floppy alpha beta gel bands. The energy-transfer data suggest that the two binding sites of floppy alpha beta arise from splitting apart a putative large, single binding site region in compact alpha beta.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tampe, R -- Clark, B R -- McConnell, H M -- 2R37 AI 13587-16/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 4;254(5028):87-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stauffer Laboratory for Physical Chemistry, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1656526" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Energy Transfer ; Histocompatibility Antigens Class II/chemistry/*metabolism ; In Vitro Techniques ; Mice ; Molecular Sequence Data ; Ovalbumin/chemistry ; Peptides/chemistry/*metabolism ; Spectrometry, Fluorescence ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1991-07-12
    Description: The cystic fibrosis transmembrane conductance regulator (CFTR), which forms adenosine 3',5'-monophosphate (cAMP)-regulated chloride channels, is defective in patients with cystic fibrosis. This protein contains two putative nucleotide binding domains (NBD1 and NBD2) and an R domain. CFTR in which the R domain was deleted (CFTR delta R) conducted chloride independently of the presence of cAMP. However, sites within CFTR other than those deleted also respond to cAMP, because the chloride current of CFTR delta R increased further in response to cAMP stimulation. In addition, deletion of the R domain suppressed the inactivating effect of a mutation in NBD2 (but not NBD1), a result which suggests that NBD2 interacts with the channel through the R domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rich, D P -- Gregory, R J -- Anderson, M P -- Manavalan, P -- Smith, A E -- Welsh, M J -- New York, N.Y. -- Science. 1991 Jul 12;253(5016):205-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1712985" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chloride Channels ; Chlorides/*physiology ; Cyclic AMP/physiology ; Cystic Fibrosis ; Cystic Fibrosis Transmembrane Conductance Regulator ; DNA Mutational Analysis ; Electric Conductivity ; HeLa Cells ; Humans ; In Vitro Techniques ; Ion Channel Gating ; Ion Channels/chemistry/*physiology ; Membrane Potentials ; Membrane Proteins/chemistry/*physiology ; Nitrates/metabolism ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-12-23
    Description: Receptors that transmit signals across cell membranes are typically composed of multiple subunits. To test whether subunit interactions are required for transmembrane signaling by the bacterial aspartate receptor, dimers were constructed with (i) two full-length subunits, (ii) one full-length subunit and one subunit lacking the cytoplasmic domain, or (iii) one full-length subunit and one subunit lacking both the cytoplasmic and the transmembrane domains. Methylation of the cytoplasmic domain of all three receptor constructs was stimulated by the binding of aspartate. These findings demonstrate that transmembrane signaling does not require interactions between cytoplasmic or transmembrane domains of adjacent subunits and suggest that signaling occurs via conformational changes transduced through a single subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milligan, D L -- Koshland, D E Jr -- DK 09765/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Dec 13;254(5038):1651-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1661030" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/*physiology ; DNA Mutational Analysis ; Ligands ; Macromolecular Substances ; Methylation ; Protein Conformation ; *Receptors, Amino Acid ; Receptors, Cell Surface/*chemistry ; Recombinant Proteins ; Salmonella typhimurium ; Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-10-04
    Description: Transcription factor E3 (mTFE3) is a murine transcription activator that binds to the intronic enhancer of the immunoglobulin heavy chain gene. A naturally occurring splice product of mTFE3 messenger RNA (mRNA) lacked 105 nucleotides that encode an activation domain; both absolute and relative amounts of long and truncated mRNAs varied in different tissues. Cells were cotransfected with complementary DNAs that encoded the two mRNA forms in amounts that corresponded to the amounts of each mRNA found in different cells. Small changes in substoichiometric amounts of the truncated form of mRNA effected trans-dominant negative modulation of mTFE3 activity. These findings identify a function for differential splicing in the regulation of transcription factor activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roman, C -- Cohn, L -- Calame, K -- R01CA38571/CA/NCI NIH HHS/ -- R01GM28361/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Oct 4;254(5028):94-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1840705" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ; DNA-Binding Proteins/*genetics ; *Gene Expression Regulation ; Mice ; Molecular Sequence Data ; RNA Splicing ; RNA, Messenger/genetics ; Regulatory Sequences, Nucleic Acid ; Structure-Activity Relationship ; Transcription Factors/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1991-08-16
    Description: An acceptor stem G3.U70 base pair is a major determinant of the identity of an alanine transfer RNA. Hairpin helices and RNA duplexes consisting of complementary single strands are aminoacylated with alanine if they contain G3.U70. Chemical synthesis of RNA duplexes enabled the introduction of base analogs that tested the role of specific functional groups in the major and minor grooves of the RNA helix. The results of these experiments indicate that an unpaired guanine 2-amino group at a specific position in the minor groove of an RNA helix marks a molecule for aminoacylation with alanine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Musier-Forsyth, K -- Usman, N -- Scaringe, S -- Doudna, J -- Green, R -- Schimmel, P -- GM15539/GM/NIGMS NIH HHS/ -- GM37641/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Aug 16;253(5021):784-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1876835" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Alanine-tRNA Ligase/*metabolism ; Base Sequence ; In Vitro Techniques ; Molecular Sequence Data ; Molecular Structure ; Nucleic Acid Conformation ; Oligonucleotides/chemistry ; RNA, Transfer, Ala/chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1991-10-04
    Description: LIV-I, a high-affinity system that transports neutral, branched-chain amino acids into Escherichia coli, has two components, LivG and LivF, that are homologous to the cystic fibrosis (CF) transmembrane conductance regulator (CFTR). CF-associated mutations of human CFTR were introduced into corresponding regions of LivG, and their effects on leucine transport could be grouped into three classes. Mutations were found that (i) abolished LIV-I--directed transport, (ii) retained about a quarter of wild-type activity at the Michaelis-Menten constant (KM), and (iii) had minimal activity at the KM. A mutation equivalent to a benign polymorphism had no effect on transport. The correlation of these mutational phenotypes in LivG and CFTR suggests that the LIV-I prokaryotic transporter is functionally similar to the CF protein and that this similarity can be exploited to clarify the properties of the nucleotide-binding fold in this superfamily of proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibson, A L -- Wagner, L M -- Collins, F S -- Oxender, D L -- New York, N.Y. -- Science. 1991 Oct 4;254(5028):109-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1718037" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters ; Amino Acid Sequence ; Bacterial Proteins/*genetics ; Biological Transport, Active ; Cloning, Molecular ; Cystic Fibrosis/*genetics ; Cystic Fibrosis Transmembrane Conductance Regulator ; DNA Mutational Analysis ; Escherichia coli/genetics ; *Escherichia coli Proteins ; Humans ; Kinetics ; Leucine/metabolism ; Membrane Proteins/*genetics ; *Membrane Transport Proteins ; Molecular Sequence Data ; Protein Binding ; Restriction Mapping ; Sequence Alignment ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1991-11-22
    Description: Acidic and basic fibroblast growth factors (FGFs) are members of a family of proteins that are broad-spectrum mitogens, have diverse hormone-like activities, and function in tumorigenesis. FGF's ability to raise the concentration of intracellular calcium ion suggests that FGF could induce the synthesis of endothelium-derived relaxing factor (EDRF) and consequently vasodilation. Systemic administration of FGF decreased arterial blood pressure. This effect was mediated by EDRF and by adenosine triphosphate-sensitive potassium ion channels. The hypotensive effect of FGF was segregated from its mitogenic activity by protein engineering. These results extend the range of FGF autocrine activities and potential therapeutic applications, emphasize the role of endothelium as an arterial blood pressure--regulating organ, and provide insight on the structural basis of FGF functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuevas, P -- Carceller, F -- Ortega, S -- Zazo, M -- Nieto, I -- Gimenez-Gallego, G -- New York, N.Y. -- Science. 1991 Nov 22;254(5035):1208-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hospital Universitario Ramon y Cajal, Carretera de Colmenar, Madrid, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1957172" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Pressure/*drug effects ; Dose-Response Relationship, Drug ; Fibroblast Growth Factors/chemistry/*pharmacology ; Glyburide/pharmacology ; Nitric Oxide/physiology ; Potassium Channels/drug effects ; Rabbits ; Rats ; Structure-Activity Relationship ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-11-20
    Description: A synthetic RNA-DNA bubble duplex construct intended to mimic the nucleic acid framework of a functional transcription elongation complex was designed and assembled. The construct consisted of a double-stranded DNA duplex of variable length (the template and nontemplate strands) containing an internal noncomplementary DNA "bubble" sequence. The 3' end of an RNA oligonucleotide that is partially complementary to the template DNA strand was hybridized within the DNA bubble to form an RNA-DNA duplex with a non-complementary 5'-terminal RNA tail. The addition of either Escherichia coli or T7 RNA polymerase to this construct formed a complex that synthesized RNA with good efficiency from the hybridized RNA primer in a template-directed and processive manner, and displayed other features of a normal promoter-initiated transcription elongation complex. Other such constructs can be designed to examine many of the functional and regulatory properties of transcription systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Daube, S S -- von Hippel, P H -- GM-15792/GM/NIGMS NIH HHS/ -- GM-29158/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Nov 20;258(5086):1320-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1280856" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA/genetics ; DNA-Directed RNA Polymerases/*metabolism ; Escherichia coli/enzymology/genetics ; In Vitro Techniques ; Molecular Sequence Data ; Nucleic Acid Hybridization ; *Promoter Regions, Genetic ; RNA/genetics ; Structure-Activity Relationship ; Templates, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1992-01-10
    Description: Six "cavity-creating" mutants, Leu46----Ala (L46A), L99A, L118A, L121A, L133A, and Phe153----Ala (F153A), were constructed within the hydrophobic core of phage T4 lysozyme. The substitutions decreased the stability of the protein at pH 3.0 by different amounts, ranging from 2.7 kilocalories per mole (kcal mol-1) for L46A and L121A to 5.0 kcal mol-1 for L99A. The double mutant L99A/F153A was also constructed and decreased in stability by 8.3 kcal mol-1. The x-ray structures of all of the variants were determined at high resolution. In every case, removal of the wild-type side chain allowed some of the surrounding atoms to move toward the vacated space but a cavity always remained, which ranged in volume from 24 cubic angstroms (A3) for L46A to 150 A3 for L99A. No solvent molecules were observed in any of these cavities. The destabilization of the mutant Leu----Ala proteins relative to wild type can be approximated by a constant term (approximately 2.0 kcal mol-1) plus a term that increases in proportion to the size of the cavity. The constant term is approximately equal to the transfer free energy of leucine relative to alanine as determined from partitioning between aqueous and organic solvents. The energy term that increases with the size of the cavity can be expressed either in terms of the cavity volume (24 to 33 cal mol-1 A-3) or in terms of the cavity surface area (20 cal mol-1 A-2). The results suggest how to reconcile a number of conflicting reports concerning the strength of the hydrophobic effect in proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eriksson, A E -- Baase, W A -- Zhang, X J -- Heinz, D W -- Blaber, M -- Baldwin, E P -- Matthews, B W -- GM12989/GM/NIGMS NIH HHS/ -- GM13709/GM/NIGMS NIH HHS/ -- GM21967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Jan 10;255(5041):178-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, Howard Hughes Medical Institute, Eugene, OR.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1553543" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calorimetry ; Models, Molecular ; Molecular Sequence Data ; Muramidase/*chemistry/*genetics ; Mutagenesis, Site-Directed ; Protein Conformation ; Structure-Activity Relationship ; T-Phages/enzymology/genetics ; Thermodynamics ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1992-03-27
    Description: A slowly activating, voltage-dependent potassium channel protein cloned from rat kidney was expressed in Xenopus oocytes. Two activators of protein kinase C, 1-oleoyl-2-acetyl-rac-glycerol and phorbol 12,13-didecanoate, inhibited the current. This inhibition was blocked by the kinase inhibitor staurosporine. Inhibition of the current was not seen in channels in which Ser103 was replaced by Ala, although other properties of the current were unchanged. These results indicate that inhibition of the potassium current results from direct phosphorylation of the channel subunit protein at Ser103.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Busch, A E -- Varnum, M D -- North, R A -- Adelman, J P -- DA03160/DA/NIDA NIH HHS/ -- NS28504/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1992 Mar 27;255(5052):1705-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health Sciences University, Portland 97201.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1553557" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; DNA/genetics ; Diglycerides/pharmacology ; Ion Channel Gating ; Membrane Potentials ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Phorbol Esters/pharmacology ; Phosphorylation ; Potassium Channels/*physiology ; Protein Kinase C/*metabolism ; Rats ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-01-10
    Description: A number of unnatural amino acids and amino acid analogs with modified backbone structures were substituted for alanine-82 in T4 lysozyme. Replacements included alpha,alpha-disubstituted amino acids, N-alkyl amino acids, and lactic acid, an isoelectronic analog of alanine. The effects of these electronic and structural perturbations on the stability of T4 lysozyme were determined. The relatively broad substrate specificity of the Escherichia coli protein biosynthetic machinery suggests that a wide range of backbone and side-chain substitutions can be introduced, allowing a more precise definition of the factors affecting protein stability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ellman, J A -- Mendel, D -- Schultz, P G -- New York, N.Y. -- Science. 1992 Jan 10;255(5041):197-200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1553546" target="_blank"〉PubMed〈/a〉
    Keywords: *Alanine ; Amino Acid Sequence ; *Amino Acids ; Circular Dichroism ; Codon ; Enzyme Stability ; Escherichia coli/enzymology/genetics ; Muramidase/*biosynthesis/*chemistry/genetics ; *Mutagenesis, Site-Directed ; Protein Conformation ; Structure-Activity Relationship ; Substrate Specificity ; T-Phages/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1992-09-04
    Description: The N-methyl-D-aspartate (NMDA) receptor forms a cation-selective channel with a high calcium permeability and sensitivity to channel block by extracellular magnesium. These properties, which are believed to be important for the induction of long-term changes in synaptic strength, are imparted by asparagine residues in a putative channel-forming segment of the protein, transmembrane 2 (TM2). In the NR1 subunit, replacement of this asparagine by a glutamine residue decreases calcium permeability of the channel and slightly reduces magnesium block. The same substitution in NR2 subunits strongly reduces magnesium block and increases the magnesium permeability but barely affects calcium permeability. These asparagines are in a position homologous to the site in the TM2 region (Q/R site) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that is occupied by either glutamine (Q) or arginine (R) and that controls divalent cation permeability of the AMPA receptor channel. Hence AMPA and NMDA receptor channels contain common structural motifs in their TM2 segments that are responsible for some of their ion selectivity and conductance properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burnashev, N -- Schoepfer, R -- Monyer, H -- Ruppersberg, J P -- Gunther, W -- Seeburg, P H -- Sakmann, B -- New York, N.Y. -- Science. 1992 Sep 4;257(5075):1415-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abteilung Zellphysiologie, Max-Planck-Institut fur Medizinische Forschung, Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1382314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Asparagine/*chemistry ; Binding Sites ; Calcium/*metabolism/pharmacology ; Cell Line ; Electric Conductivity ; Glutamates/pharmacology ; Glutamic Acid ; Ion Channels/chemistry/*physiology ; Magnesium/metabolism/*pharmacology ; Mice ; Molecular Sequence Data ; Mutagenesis ; Oocytes/metabolism ; Permeability ; Rats ; Receptors, N-Methyl-D-Aspartate/chemistry/genetics/*physiology ; Structure-Activity Relationship ; Transfection ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-04-10
    Description: The mechanism of action of the anticancer compound cis-diamminedichloroplatinum(II) (cisplatin) involves covalent binding to DNA. In an effort to understand the tumor-specific cytotoxicity of such DNA damage, the interactions of these lesions with cellular proteins have been studied. One such protein has been identified as the high-mobility group protein HMG1. Recombinant rat HMG1 binds specifically (dissociation constant 3.7 +/- 2.0 x 10(-7) molar) to DNA containing cisplatin d(GpG) or d(ApG) intrastrand cross-links, which unwind and bend DNA in a specific manner, but not to DNA modified by therapeutically inactive platinum analogs. These results suggest how HMG1 might bind to altered DNA structures and may be helpful in designing new antitumor drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pil, P M -- Lippard, S J -- CA34992/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Apr 10;256(5054):234-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1566071" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Nucleus/metabolism ; Cisplatin/*pharmacology ; *DNA Damage ; DNA, Neoplasm/drug effects/*metabolism ; HeLa Cells ; High Mobility Group Proteins/*metabolism ; Humans ; Molecular Sequence Data ; Oligodeoxyribonucleotides/*metabolism ; Protein Binding ; Rats ; Recombinant Proteins/metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1992-01-03
    Description: The p107 protein and the retinoblastoma protein (RB) both bind specifically to two viral oncoproteins, the SV40 T antigen (T) and adenoviral protein E1A (E1A). Like RB, p107 contains a segment (the pocket) that, alone, can bind specifically to T, E1A, and multiple cellular proteins. Cyclin A bound to the p107 pocket, but not the RB pocket. Although both pockets contain two, related collinear subsegments (A and B), the unique sequence in the p107 pocket that occupies the space between A and B is required for the interaction with cyclin A.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ewen, M E -- Faha, B -- Harlow, E -- Livingston, D M -- New York, N.Y. -- Science. 1992 Jan 3;255(5040):85-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1532457" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus Early Proteins ; Amino Acid Sequence ; Antigens, Polyomavirus Transforming/*metabolism ; Base Sequence ; Binding Sites ; Cell Line ; Cloning, Molecular ; Cyclins/*metabolism ; Escherichia coli/genetics ; Eye Neoplasms ; Glutathione Transferase/genetics/metabolism ; Humans ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; *Nuclear Proteins ; Oligodeoxyribonucleotides ; Oncogene Proteins, Viral/genetics/*metabolism ; Protein Conformation ; Proteins/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Retinoblastoma ; Retinoblastoma Protein/genetics/*metabolism ; Retinoblastoma-Like Protein p107 ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-10-16
    Description: Unequal homologous recombination events between green and red cone pigment genes produce the red-green or green-red hybrid pigment genes found in many individuals with variant color vision. Photobleaching difference absorption spectroscopy of hybrid pigments produced in cultured cells shows that the spectral sensitivity of each hybrid pigment is intermediate between the parental green and red pigment sensitivities. Amino acids encoded by exons 2, 3, 4, and 5 produce spectral shifts at the wavelength of maximal absorbance of 0 to 4, 0 to 4, 3 to 4, and 15 to 21 nanometers, respectively, the exact value depending on the identities of amino acids elsewhere in the hybrid.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merbs, S L -- Nathans, J -- New York, N.Y. -- Science. 1992 Oct 16;258(5081):464-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1411542" target="_blank"〉PubMed〈/a〉
    Keywords: Color Perception/*physiology ; Humans ; Recombinant Proteins/chemistry ; Recombination, Genetic ; Retinal Pigments/*chemistry/genetics ; Spectrum Analysis ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-04-17
    Description: The proto-oncogene c-abl encodes a protein tyrosine kinase that is localized in the cytoplasm and the nucleus. The large carboxyl-terminal segment of c-Abl was found to contain a DNA-binding domain that was necessary for the association of c-Abl with chromatin. The DNA-binding activity of c-Abl was lost during mitosis when the carboxyl-terminal segment became phosphorylated. In vitro phosphorylation of the DNA-binding domain by cdc2 kinase abolished DNA binding. Homozygous mutant mice expressing a c-Abl tyrosine kinase without the DNA-binding domain have been reported to die of multiple defects at birth. Thus, binding of the c-Abl tyrosine kinase to DNA may be essential to its biological function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kipreos, E T -- Wang, J Y -- CA 43054/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Apr 17;256(5055):382-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California San Diego, La Jolla 92093-0116.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1566087" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Cycle/*physiology ; Chromatography, Affinity ; DNA/*metabolism ; *Genes, abl ; Mice ; Molecular Sequence Data ; Mutagenesis ; Phosphorylation ; Phosphoserine/metabolism ; Phosphothreonine/metabolism ; Protein-Tyrosine Kinases/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-abl/chemistry/genetics/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1989-03-17
    Description: Ornithine decarboxylase (ODC) was converted from a protein with a short intracellular half-life in mammalian cells to a stable protein by truncating 37 residues at its carboxyl terminus. Cells expressing wild-type protein lost ODC activity with a half-life of approximately 1 hour. Cells expressing the truncated protein, however, retained full activity for at least 4 hours. Pulse-chase experiments in which immunoprecipitation and gel electrophoresis were used confirmed the stabilizing effect of the truncation. Thus, a carboxyl-terminal domain is responsible for the rapid intracellular degradation of murine ODC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghoda, L -- van Daalen Wetters, T -- Macrae, M -- Ascherman, D -- Coffino, P -- CA 09043/CA/NCI NIH HHS/ -- CA 29048/CA/NCI NIH HHS/ -- CA 47721/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Mar 17;243(4897):1493-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2928784" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cloning, Molecular ; Mice ; Ornithine Decarboxylase/genetics/*metabolism ; Recombinant Proteins/metabolism ; Structure-Activity Relationship ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1989-02-10
    Description: Signal transducing guanine nucleotide binding (G) proteins are heterotrimers with different alpha subunits that confer specificity for interactions with receptors and effectors. Eight to ten such G proteins couple a large number of receptors for hormones and neurotransmitters to at least eight different effectors. Although one G protein can interact with several receptors, a given G protein was thought to interact with but one effector. The recent finding that voltage-gated calcium channels are stimulated by purified Gs, which stimulates adenylyl cyclase, challenged this concept. However, purified Gs may have four distinct alpha-subunit polypeptides, produced by alternative splicing of messenger RNA. By using recombinant DNA techniques, three of the splice variants were synthesized in Escherichia coli and each variant was shown to stimulate both adenylyl cyclase and calcium channels. Thus, a single G protein alpha subunit may regulate more than one effector function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mattera, R -- Graziano, M P -- Yatani, A -- Zhou, Z -- Graf, R -- Codina, J -- Birnbaumer, L -- Gilman, A G -- Brown, A M -- DK-19318/DK/NIDDK NIH HHS/ -- HL-31164/HL/NHLBI NIH HHS/ -- HL-39262/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Feb 10;243(4892):804-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2536957" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/*physiology ; Animals ; Calcium Channels/*physiology ; GTP-Binding Proteins/*genetics/physiology/ultrastructure ; In Vitro Techniques ; Macromolecular Substances ; RNA Splicing ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1989-06-23
    Description: A free NH2-terminal group has been previously shown to be an obligatory signal for recognition and subsequent degradation of proteins in a partially fractionated and reconstituted ubiquitin proteolytic system. Naturally occurring proteins with acetylated NH2-termini--most cellular proteins fall in this category--were not degraded by this system. Other studies have suggested that the identity of the NH2-terminal residue is important in determining the metabolic stability of a protein in vivo (N-end rule). Whole reticulocyte lysate and antibodies directed against the ubiquitin-activating enzyme (E1) have now been used to show that such acetylated proteins are degraded in a ubiquitin-dependent mode. Although fractionation of lysate does not affect its proteolytic activity toward substrates with free NH2-termini, it completely abolishes the activity toward the blocked substrates, indicating that an important component of the system was either removed or inactivated during fractionation. An NH2-terminal "unblocking" activity that removes the blocking group, thus exposing a free NH2-terminus for recognition according to the N-end rule, does not seem to participate in this pathway. Incubation of whole lysate with labeled histone H2A results in the formation of multiple ubiquitin conjugates. In contrast, the fractionated system is devoid of any significant conjugating activity. These results suggest that a novel conjugating enzyme (possibly a ubiquitin-protein ligase) may be responsible for the degradation of these acetylated proteins by recognizing structural features of the substrate that are downstream and distinct from the NH2-terminal residue.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayer, A -- Siegel, N R -- Schwartz, A L -- Ciechanover, A -- New York, N.Y. -- Science. 1989 Jun 23;244(4911):1480-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unit of Biochemistry, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2544030" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Actins/metabolism ; Adenosine Triphosphate/metabolism ; Crystallins/metabolism ; Dipeptides/pharmacology ; Electrophoresis, Polyacrylamide Gel ; Histones/metabolism ; Muramidase/metabolism ; Phosphates/metabolism ; Proteins/*metabolism ; Reticulocytes/metabolism ; Serum Albumin, Bovine/metabolism ; Structure-Activity Relationship ; Ubiquitins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-02-10
    Description: A novel approach to the control of enzyme catalysis is presented in which a disulfide bond engineered into the active-site cleft of bacteriophage T4 lysozyme is capable of switching the activity on and off. Two cysteines (Thr21----Cys and Thr142----Cys) were introduced by oligonucleotide-directed mutagenesis into the active-site cleft. These cysteines spontaneously formed a disulfide bond under oxidative conditions in vitro, and the catalytic activity of the oxidized (cross-linked) T4 lysozyme was completely lost. On exposure to reducing agent, however, the disulfide bond was rapidly broken, and the reduced (non-cross-linked) lysozyme was restored to full activity. Thus an enzyme has been engineered such that redox potential can be used to control catalytic activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsumura, M -- Matthews, B W -- GM21967/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Feb 10;243(4892):792-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2916125" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatography, High Pressure Liquid ; DNA Mutational Analysis ; *Disulfides ; Models, Molecular ; Muramidase/*physiology ; *Protein Engineering ; Recombinant Proteins ; Structure-Activity Relationship ; T-Phages/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-17
    Description: The adult form of Tay-Sachs disease, adult GM2 gangliosidosis, is an autosomal recessive disorder that results from mutations in the alpha chain of beta-hexosaminidase A. This disorder, like infantile Tay-Sachs disease, is more frequent in the Ashkenazi Jewish population. A point mutation in the alpha-chain gene was identified that results in the substitution of Gly with Ser in eight Ashkenazi adult GM2 gangliosidosis patients from five different families. This amino acid substitution was shown to depress drastically the catalytic activity of the alpha chain after expression in COS-1 cells. All of these patients proved to be compound heterozygotes of the allele with the Gly to Ser change and one of the two Ashkenazi infantile Tay-Sachs alleles. These findings will aid in the diagnosis and understanding of beta-hexosaminidase A deficiency disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Navon, R -- Proia, R L -- New York, N.Y. -- Science. 1989 Mar 17;243(4897):1471-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2522679" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; Humans ; Jews ; Pedigree ; RNA, Messenger/genetics ; Structure-Activity Relationship ; Tay-Sachs Disease/*genetics ; beta-N-Acetylhexosaminidases/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1989-09-22
    Description: The inhibition by charybdotoxin of A-type potassium channels expressed in Xenopus oocytes was studied for several splicing variants of the Drosophila Shaker gene and for several site-directed mutants of this channel. Charybdotoxin blocking affinity is lowered by a factor of 3.5 upon replacing glutamate-422 with glutamine, and by a factor of about 12 upon substituting lysine in this position. Replacement of glutamate-422 by aspartate had no effect on toxin affinity. Thus, the glutamate residue at position 422 of this potassium channel is near or in the externally facing mouth of the potassium conduction pathway, and the positively charged toxin is electrostatically focused toward its blocking site by the negative potential set up by glutamate-422.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacKinnon, R -- Miller, C -- AR 19826/AR/NIAMS NIH HHS/ -- GM 31768/GM/NIGMS NIH HHS/ -- NS 07292/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1989 Sep 22;245(4924):1382-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2476850" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Charybdotoxin ; DNA Mutational Analysis ; Drosophila melanogaster ; Ions ; Membrane Proteins/genetics/metabolism/ultrastructure ; Potassium Channels/*metabolism/ultrastructure ; Scorpion Venoms/*metabolism ; Structure-Activity Relationship ; Transfection ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1989-05-12
    Description: Calicheamicin gamma 1I is a recently discovered diyne-ene-containing antitumor antibiotic that cleaves DNA in a double-stranded fashion, a rarity among drugs, at specific sequences. It is proposed that the cutting specificity is due to a combination of the complementarity of the diyne-ene portion of the aglycone with DNA secondary structures and stabilization by association of the thiobenzoate-carbohydrate tail with the minor groove.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zein, N -- Poncin, M -- Nilakantan, R -- Ellestad, G A -- New York, N.Y. -- Science. 1989 May 12;244(4905):697-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cyanamid Company, Medical Research Division, Lederle Laboratories, Pearl River, NY 10965.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2717946" target="_blank"〉PubMed〈/a〉
    Keywords: *Aminoglycosides ; Animals ; Anti-Bacterial Agents/*metabolism ; Antibiotics, Antineoplastic ; Base Sequence ; Benzoates ; Binding Sites ; Carbohydrates ; Cattle ; Computer Simulation ; DNA/*metabolism ; Enediynes ; Models, Molecular ; Molecular Structure ; Nucleic Acid Conformation ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 1989-03-31
    Description: The discovery that the AP-1 family of enhancer binding factors includes a complex of the cellular Fos (cFos) and cellular Jun (cJun) proteins established a direct and important link between oncogenesis and transcriptional regulation. Homodimeric cJun protein synthesized in vitro is capable of binding selectively to AP-1 recognition sites, whereas the cFos polypeptide is not. When cotranslated, the cFos and cJun proteins can form a stable, heterodimeric complex with the DNA binding properties of AP-1/cJun. The related proteins Jun B and vJun are also able to form DNA binding complexes with cFos. Directed mutagenesis of the cFos protein reveals that a leucine repeat structure is required for binding to cJun, in a manner consistent with the proposed function of the "leucine zipper." A novel domain adjacent to, but distinct from, the leucine repeat of cFos is required for DNA binding by cFos-cJun heterodimers. Thus experimental evidence is presented that leucine repeats can mediate complex formation between heterologous proteins and that promotes further understanding of the molecular mechanisms underlying the function of two proto-oncogene products.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turner, R -- Tjian, R -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1689-94.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2494701" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Chromatography, Affinity ; DNA/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Gene Expression Regulation ; Humans ; *Leucine ; Macromolecular Substances ; Molecular Sequence Data ; Mutation ; Oncogenes ; Protein Biosynthesis ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-fos ; Proto-Oncogene Proteins c-jun ; Rats ; Repetitive Sequences, Nucleic Acid ; Structure-Activity Relationship ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 1990-03-16
    Description: An amino acid sequence encodes a message that determines the shape and function of a protein. This message is highly degenerate in that many different sequences can code for proteins with essentially the same structure and activity. Comparison of different sequences with similar messages can reveal key features of the code and improve understanding of how a protein folds and how it performs its function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bowie, J U -- Reidhaar-Olson, J F -- Lim, W A -- Sauer, R T -- AI-15706/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 16;247(4948):1306-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2315699" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Sequence ; Computer Graphics ; *DNA-Binding Proteins ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Proteins/*physiology/ultrastructure ; Repressor Proteins ; Structure-Activity Relationship ; Surface Properties ; Viral Proteins ; Viral Regulatory and Accessory Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-10-26
    Description: The potassium channels encoded by the Drosophila Shaker gene activate and inactivate rapidly when the membrane potential becomes more positive. Site-directed mutagenesis and single-channel patch-clamp recording were used to explore the molecular transitions that underlie inactivation in Shaker potassium channels expressed in Xenopus oocytes. A region near the amino terminus with an important role in inactivation has now been identified. The results suggest a model where this region forms a cytoplasmic domain that interacts with the open channel to cause inactivation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoshi, T -- Zagotta, W N -- Aldrich, R W -- NS07158/NS/NINDS NIH HHS/ -- NS23294/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Oct 26;250(4980):533-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University, School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2122519" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; DNA/genetics ; Drosophila melanogaster/*genetics ; Electric Conductivity ; Ion Channel Gating/drug effects/*physiology ; Kinetics ; Membrane Potentials/physiology ; Molecular Sequence Data ; Mutagenesis ; Mutagenesis, Site-Directed ; Oocytes/metabolism ; Potassium Channels/genetics/*physiology ; RNA Splicing ; Structure-Activity Relationship ; Trypsin/pharmacology ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1990-07-20
    Description: Angiotensin II (AII) stimulates rapid increases in the concentration of cytosolic calcium in follicular oocytes from Xenopus laevis. This calcium response was not present in denuded oocytes, indicating that it is mediated by AII receptors on the adherent follicular cells. The endogenous AII receptors differed in their binding properties from mammalian AII receptors expressed on the oocyte surface after injection of rat adrenal messenger RNA. Also, the calcium responses to activation of the amphibian AII receptor, but not the expressed mammalian AII receptor, were blocked reversibly by octanol and intracellular acidification, treatments that inhibit cell coupling through gap junctions. In addition, AII increased the rate of progesterone-induced maturation. Thus, an AII-induced calcium-mobilizing signal is transferred from follicle cells to the oocyte through gap junctions and may play a physiological role in oocyte maturation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sandberg, K -- Bor, M -- Ji, H -- Markwick, A -- Millan, M A -- Catt, K J -- New York, N.Y. -- Science. 1990 Jul 20;249(4966):298-301.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2374929" target="_blank"〉PubMed〈/a〉
    Keywords: Aequorin ; Angiotensin II/*analogs & derivatives/metabolism/*pharmacology ; Animals ; Calcium/*metabolism ; Cytosol/drug effects/metabolism ; Female ; Intercellular Junctions/drug effects/*physiology ; Kinetics ; Luminescence ; Oocytes/drug effects/*physiology ; Progesterone/pharmacology ; Receptors, Angiotensin/metabolism ; *Signal Transduction/drug effects ; Structure-Activity Relationship ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1991-03-15
    Description: Relative orientations of the DNA strands within a purine.purine.pyrimidine triple helix have been determined by affinity cleaving. A purine-rich oligonucleotide bound in the major groove of double-helical DNA antiparallel to the Watson-Crick purine strand. Binding depended upon the concentration of multivalent cations such as spermine or Mg2+, and appeared to be relatively independent of pH. Two models with specific hydrogen-bonding patterns for base triplets (G.GC, A.AT, and T.AT) are proposed to explain the sequence specificity of binding. The two models differ in the conformation about the glycosyl bond (syn or anti) and the location of the phosphate-deoxyribose backbone in the major groove of DNA. This motif broadens the structural frameworks available as a basis for the design of sequence-specific DNA binding molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beal, P A -- Dervan, P B -- New York, N.Y. -- Science. 1991 Mar 15;251(4999):1360-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Arnold and Mabel Beckman Laboratories of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2003222" target="_blank"〉PubMed〈/a〉
    Keywords: DNA/*chemistry/ultrastructure ; Molecular Structure ; *Nucleic Acid Conformation ; Oligodeoxyribonucleotides/*chemistry ; Purines ; Pyrimidines ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1991-03-01
    Description: The mammalian transcription factor AP-2 is a retinoic acid inducible sequence-specific DNA-binding protein that is developmentally regulated. In this report, the functional domains necessary for AP-2 DNA binding were studied. AP-2 required a dimerization domain and an adjacent region of net basic charge to achieve a sequence-specific protein:DNA interaction. The sequences responsible for dimerization consisted of two putative amphipathic alpha helices separated by a large intervening span region. This helix-span-helix (HSH) domain was unable to bind DNA when separated from the basic region, but was still capable of dimerization. The ability of the HSH domain to function as a module that promotes DNA binding through dimerization was further demonstrated by attaching it to the heterologous basic region of the c-Jun proto-oncogene product. The resulting chimeric protein specifically recognized an AP-1 DNA-binding site in the absence of an intact c-Jun leucine repeat and in a manner that was dependent on the presence of a functional AP-2 dimerization domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, T -- Tjian, R -- New York, N.Y. -- Science. 1991 Mar 1;251(4997):1067-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1998122" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; DNA/*metabolism ; DNA Mutational Analysis ; DNA-Binding Proteins/chemistry/*metabolism ; Macromolecular Substances ; Molecular Sequence Data ; Protein Binding ; Recombinant Fusion Proteins/chemistry/metabolism ; Structure-Activity Relationship ; Transcription Factor AP-2 ; Transcription Factors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1991-06-28
    Description: Trypanosoma brucei, the protozoan parasite responsible for African sleeping sickness, evades the host immune response through the process of antigenic variation. The variant antigen, known as the variant surface glycoprotein (VSG), is anchored to the cell surface by a glycosyl phosphatidylinositol (GPI) structure that contains myristate (n-tetradecanoate) as its only fatty acid component. The utilization of heteroatom-containing analogs of myristate was studied both in a cell-free system and in vivo. Results indicated that the specificity of fatty acid incorporation depends on chain length rather than on hydrophobicity. One analog, 10-(propoxy)decanoic acid, was highly toxic to trypanosomes in culture although it is nontoxic to mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doering, T L -- Raper, J -- Buxbaum, L U -- Adams, S P -- Gordon, J I -- Hart, G W -- Englund, P T -- 5T32GM07309/GM/NIGMS NIH HHS/ -- AI21334/AI/NIAID NIH HHS/ -- AI27179/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1991 Jun 28;252(5014):1851-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1829548" target="_blank"〉PubMed〈/a〉
    Keywords: Acyl Coenzyme A/metabolism ; Animals ; Cell-Free System ; Glycolipids/metabolism ; Glycosylphosphatidylinositols ; Kinetics ; Mice ; Myristic Acid ; Myristic Acids/*metabolism/*pharmacology ; Phosphatidylinositols/metabolism ; Structure-Activity Relationship ; Trypanosoma brucei brucei/*drug effects/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1991-07-12
    Description: The inverse protein folding problem, the problem of finding which amino acid sequences fold into a known three-dimensional (3D) structure, can be effectively attacked by finding sequences that are most compatible with the environments of the residues in the 3D structure. The environments are described by: (i) the area of the residue buried in the protein and inaccessible to solvent; (ii) the fraction of side-chain area that is covered by polar atoms (O and N); and (iii) the local secondary structure. Examples of this 3D profile method are presented for four families of proteins: the globins, cyclic AMP (adenosine 3',5'-monophosphate) receptor-like proteins, the periplasmic binding proteins, and the actins. This method is able to detect the structural similarity of the actins and 70- kilodalton heat shock proteins, even though these protein families share no detectable sequence similarity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bowie, J U -- Luthy, R -- Eisenberg, D -- New York, N.Y. -- Science. 1991 Jul 12;253(5016):164-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of California, Los Angeles 90024-1570.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1853201" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/chemistry/ultrastructure ; Algorithms ; Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry ; *Escherichia coli Proteins ; Molecular Structure ; Myoglobin/chemistry/ultrastructure ; *Periplasmic Binding Proteins ; *Protein Conformation ; Proteins/*chemistry ; Receptors, Cyclic AMP/chemistry/ultrastructure ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1991-06-21
    Description: The tumor-suppressor gene p53 is altered by missense mutation in numerous human malignancies. However, the biochemical properties of p53 and the effect of mutation on these properties are unclear. A human DNA sequence was identified that binds specifically to wild-type human p53 protein in vitro. As few as 33 base pairs were sufficient to confer specific binding. Certain guanines within this 33-base pair region were critical, as methylation of these guanines or their substitution with thymine-abrogated binding. Human p53 proteins containing either of two missense mutations commonly found in human tumors were unable to bind significantly to this sequence. These data suggest that a function of p53 may be mediated by its ability to bind to specific DNA sequences in the human genome, and that this activity is altered by mutations that occur in human tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kern, S E -- Kinzler, K W -- Bruskin, A -- Jarosz, D -- Friedman, P -- Prives, C -- Vogelstein, B -- CA06973/CA/NCI NIH HHS/ -- CA33620/CA/NCI NIH HHS/ -- CA43460/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 Jun 21;252(5013):1708-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2047879" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; DNA Mutational Analysis ; DNA Replication ; DNA-Binding Proteins/*metabolism ; HeLa Cells ; Humans ; In Vitro Techniques ; Methylation ; Molecular Sequence Data ; Regulatory Sequences, Nucleic Acid ; Structure-Activity Relationship ; Tumor Suppressor Protein p53/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 1991-05-31
    Description: The rate of long-distance electron transfer in proteins rapidly decreases with distance, which is indicative of an electron tunneling process. Calculations predict that the distance dependence of electron transfer in native proteins is controlled by the protein's structural motif. The helix and sheet content of a protein and the tertiary arrangement of these secondary structural units define the distance dependence of electronic coupling in that protein. The calculations use a tunneling pathway model applied previously with success to ruthenated proteins. The analysis ranks the average distance decay constant for electronic coupling in electron transfer proteins and identifies the amino acids that are coupled to the charge localization site more strongly or weakly than average for their distance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beratan, D N -- Betts, J N -- Onuchic, J N -- New York, N.Y. -- Science. 1991 May 31;252(5010):1285-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Beratan, Jet Propulsion Laboratory, California Institute of Technology, Pasadena 91109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1656523" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/chemistry ; Azurin/chemistry/metabolism ; *Bacterial Proteins ; Chemistry, Physical ; Cytochrome c Group/chemistry/metabolism ; Cytochromes b5/chemistry/metabolism ; *Electron Transport ; Iron-Sulfur Proteins/chemistry/metabolism ; Mathematics ; Models, Molecular ; Myoglobin/chemistry/metabolism ; *Photosynthetic Reaction Center Complex Proteins ; Physicochemical Phenomena ; Protein Conformation ; Proteins/*chemistry/metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 1991-04-05
    Description: The crystal structure of the ribonuclease (RNase) H domain of HIV-1 reverse transcriptase (RT) has been determined at a resolution of 2.4 A and refined to a crystallographic R factor of 0.20. The protein folds into a five-stranded mixed beta sheet flanked by an asymmetric distribution of four alpha helices. Two divalent metal cations bind in the active site surrounded by a cluster of four conserved acidic amino acid residues. The overall structure is similar in most respects to the RNase H from Escherichia coli. Structural features characteristic of the retroviral protein suggest how it may interface with the DNA polymerase domain of p66 in the mature RT heterodimer. These features also offer insights into why the isolated RNase H domain is catalytically inactive but when combined in vitro with the isolated p51 domain of RT RNase H activity can be reconstituted. Surprisingly, the peptide bond cleaved by HIV-1 protease near the polymerase-RNase H junction of p66 is completely inaccessible to solvent in the structure reported here. This suggests that the homodimeric p66-p66 precursor of mature RT is asymmetric with one of the two RNase H domains at least partially unfolded.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davies, J F 2nd -- Hostomska, Z -- Hostomsky, Z -- Jordan, S R -- Matthews, D A -- GM 39599/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Apr 5;252(5002):88-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agouron Pharmaceuticals, Inc., La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1707186" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Computer Graphics ; Crystallography ; Endoribonucleases/chemistry/*ultrastructure ; Escherichia coli/enzymology ; HIV-1/*enzymology ; Manganese/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; RNA-Directed DNA Polymerase/chemistry/*ultrastructure ; Ribonuclease H ; Structure-Activity Relationship ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1991-08-16
    Description: A technique for producing non-peptide compounds (mimetics) of designed specificities was developed that permitted the synthesis of a conformationally restricted molecule that mimicked the binding and functional properties of monoclonal antibody (MAb) 87.92.6, which recognizes the reovirus type 3 cellular receptor. Binding of either MAb 87.92.6, peptide analogs, or 87.1-mimetic to the cellular receptor inhibited cellular proliferation. The mimetic was a synthetic beta-loop structure that mimics the second complementarity-determining region of the MAb. These studies may lead to strategies for the synthetic design of antibody complementarity regions, ligands, and other pharmacologically active agents that are water soluble, resistant to proteolysis, and nonimmunogenic.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saragovi, H U -- Fitzpatrick, D -- Raktabutr, A -- Nakanishi, H -- Kahn, M -- Greene, M I -- New York, N.Y. -- Science. 1991 Aug 16;253(5021):792-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1876837" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal/*chemistry ; Cell Division/drug effects ; Drug Design ; Endopeptidases/pharmacology ; Mammalian orthoreovirus 3 ; Models, Molecular ; Molecular Conformation ; Peptides/metabolism ; Piperidines/chemical synthesis/*chemistry/pharmacology ; Receptors, Virus/drug effects/*immunology/metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 1992-03-27
    Description: The high sensitivity of voltage-gated ion channels to changes in membrane potential implies that the process of channel opening is accompanied by large charge movements. Previous estimates of the total charge displacement, q, have been deduced from the voltage dependence of channel activation and have ranged from 4 to 8 elementary charges (e0). A more direct measurement of q in Drosophila melanogaster Shaker 29-4 potassium channels yields a q value of 12.3 e0. A similar q value is obtained from mutated Shaker channels having reduced voltage sensitivity. These results can be explained by a model for channel activation in which the equilibria of voltage-dependent steps are altered in the mutant channels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schoppa, N E -- McCormack, K -- Tanouye, M A -- Sigworth, F J -- New York, N.Y. -- Science. 1992 Mar 27;255(5052):1712-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1553560" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA Mutational Analysis ; Drosophila melanogaster ; Electric Conductivity ; In Vitro Techniques ; *Ion Channel Gating ; Membrane Potentials ; Oocytes ; Potassium Channels/*physiology ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1992-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, C -- New York, N.Y. -- Science. 1992 Oct 9;258(5080):240-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1384128" target="_blank"〉PubMed〈/a〉
    Keywords: Electric Conductivity ; Ion Channel Gating/physiology ; Ion Channels/*chemistry/genetics/*physiology ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1989-08-18
    Description: Oligonucleotides that bind to duplex DNA in a sequence-specific manner by triple helix formation offer an approach to the experimental manipulation of sequence-specific protein binding. Micromolar concentrations of pyrimidine oligodeoxyribonucleotides are shown to block recognition of double helical DNA by prokaryotic modifying enzymes and a eukaryotic transcription factor at a homopurine target site. Inhibition is sequence-specific. Oligonucleotides containing 5-methylcytosine provide substantially more efficient inhibition than oligonucleotides containing cytosine. The results have implications for gene-specific repression by oligonucleotides or their analogs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maher, L J 3rd -- Wold, B -- Dervan, P B -- New York, N.Y. -- Science. 1989 Aug 18;245(4919):725-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2549631" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine ; Animals ; Base Sequence ; Cytosine/analogs & derivatives ; DNA/*metabolism ; DNA Restriction Enzymes ; DNA, Recombinant ; DNA-Binding Proteins/*antagonists & inhibitors/metabolism ; Deoxyribonucleases, Type II Site-Specific/metabolism ; Metallothionein/genetics ; Methylation ; Mice ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/*pharmacology ; Plasmids ; Promoter Regions, Genetic ; Structure-Activity Relationship ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1989-03-31
    Description: The protein products of the fos and jun proto-oncogenes form a heterodimeric complex that participates in a stable high affinity interaction with DNA elements containing AP-1 binding sites. The effects of deletions and point mutations in Fos and Jun on protein complex formation and DNA binding have been examined. The data suggest that Fos and Jun dimerize via a parallel interaction of helical domains containing a heptad repeat of leucine residues (the leucine zipper). Dimerization is required for DNA binding and results in the appropriate juxtaposition of basic amino acid regions from Fos and Jun, both of which are required for association with DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gentz, R -- Rauscher, F J 3rd -- Abate, C -- Curran, T -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1695-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Roche Institute of Molecular Biology, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2494702" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cross-Linking Reagents ; DNA/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Glutaral ; Immunosorbent Techniques ; *Leucine ; Macromolecular Substances ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-fos ; Proto-Oncogene Proteins c-jun ; Rats ; Repetitive Sequences, Nucleic Acid ; Structure-Activity Relationship ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-17
    Description: The beta-amyloid protein is progressively deposited in Alzheimer's disease as vascular amyloid and as the amyloid cores of neuritic plaques. Contrary to its metabolically inert appearance, this peptide may have biological activity. To evaluate this possibility, a peptide ligand homologous to the first 28 residues of the beta-amyloid protein (beta 1-28) was tested in cultures of hippocampal pyramidal neurons for neurotrophic or neurotoxic effects. The beta 1-28 appeared to have neurotrophic activity because it enhanced neuronal survival under the culture conditions examined. This finding may help elucidate the sequence of events leading to plaque formation and neuronal damage in Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whitson, J S -- Selkoe, D J -- Cotman, C W -- AG00538/AG/NIA NIH HHS/ -- AG07918/AG/NIA NIH HHS/ -- MH19691/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 17;243(4897):1488-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychobiology, University of California, Irvine 92717.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2928783" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/*pharmacology ; *Amyloid beta-Peptides ; *Amyloid beta-Protein Precursor ; Animals ; Cell Adhesion/drug effects ; Cell Survival ; Cells, Cultured ; Hippocampus/*cytology/embryology ; Neurons/cytology ; Peptide Fragments/*pharmacology ; Rats ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1990-09-14
    Description: A complementary DNA clone (designated GAT-1) encoding a transporter for the neurotransmitter gamma-aminobutyric acid (GABA) has been isolated from rat brain, and its functional properties have been examined in Xenopus oocytes. Oocytes injected with GAT-1 synthetic messenger RNA accumulated [3H]GABA to levels above control values. The transporter encoded by GAT-1 has a high affinity for GABA, is sodium-and chloride-dependent, and is pharmacologically similar to neuronal GABA transporters. The GAT-1 protein shares antigenic determinants with a native rat brain GABA transporter. The nucleotide sequence of GAT-1 predicts a protein of 599 amino acids with a molecular weight of 67 kilodaltons. Hydropathy analysis of the deduced protein suggests multiple transmembrane regions, a feature shared by several cloned transporters; however, database searches indicate that GAT-1 is not homologous to any previously identified proteins. Therefore, GAT-1 appears to be a member of a previously uncharacterized family of transport molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guastella, J -- Nelson, N -- Nelson, H -- Czyzyk, L -- Keynan, S -- Miedel, M C -- Davidson, N -- Lester, H A -- Kanner, B I -- GM 10991/GM/NIGMS NIH HHS/ -- GM 29836/GM/NIGMS NIH HHS/ -- NS 16708/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 14;249(4974):1303-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1975955" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Brain/metabolism ; Carrier Proteins/antagonists & inhibitors/*genetics/metabolism ; Chlorine/physiology ; Cloning, Molecular ; GABA Plasma Membrane Transport Proteins ; Gene Expression ; Membrane Proteins/antagonists & inhibitors/*genetics/metabolism ; *Membrane Transport Proteins ; Microinjections ; Molecular Sequence Data ; Nerve Tissue Proteins/antagonists & inhibitors/*genetics/metabolism ; Oocytes/metabolism ; *Organic Anion Transporters ; Poly A/analysis ; RNA, Messenger/analysis ; Rats ; Sodium/physiology ; Structure-Activity Relationship ; Xenopus ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-06-08
    Description: Movement of macromolecules through low concentration agarose gels was investigated with linear poly(styrenesulfonate), linear DNA, star-shaped poly(styrenesulfonate), and circular DNA. Mobilities of weakly entangled flexible macromolecules were independent of molecular radius; within a homologous chemical sequence, electrophoretic separation at low field strengths depended solely on the degree of polymerization. These observations cannot be explained either by sieving or by reptation mechanisms; transport was apparently controlled by spatial variations of chain configurational entropy. Only when the chain was highly entangled did chain topology affect mobility. Evidence for entropically regulated transport clarifies how gel electrophoresis separates flexible macromolecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smisek, D L -- Hoagland, D A -- New York, N.Y. -- Science. 1990 Jun 8;248(4960):1221-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Polymer Science and Engineering, University of Massachusetts, Amherst 01003.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2349481" target="_blank"〉PubMed〈/a〉
    Keywords: DNA/*isolation & purification ; DNA, Circular/*isolation & purification ; Electrophoresis, Agar Gel/methods ; Molecular Conformation ; Polystyrenes/*isolation & purification ; Resins, Synthetic ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1990-02-23
    Description: Ras proteins participate as a molecular switch in the early steps of the signal transduction pathway that is associated with cell growth and differentiation. When the protein is in its GTP complexed form it is active in signal transduction, whereas it is inactive in its GDP complexed form. A comparison of eight three-dimensional structures of ras proteins in four different crystal lattices, five with a nonhydrolyzable GTP analog and three with GDP, reveals that the "on" and "off" states of the switch are distinguished by conformational differences that span a length of more than 40 A, and are induced by the gamma-phosphate. The most significant differences are localized in two regions: residues 30 to 38 (the switch I region) in the second loop and residues 60 to 76 (the switch II region) consisting of the fourth loop and the short alpha-helix that follows the loop. Both regions are highly exposed and form a continuous strip on the molecular surface most likely to be the recognition sites for the effector and receptor molecule(or molecules). The conformational differences also provide a structural basis for understanding the biological and biochemical changes of the proteins due to oncogenic mutations, autophosphorylation, and GTP hydrolysis, and for understanding the interactions with other proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milburn, M V -- Tong, L -- deVos, A M -- Brunger, A -- Yamaizumi, Z -- Nishimura, S -- Kim, S H -- CA45593/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Feb 23;247(4945):939-45.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2406906" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Models, Molecular ; Molecular Structure ; Protein Conformation ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins p21(ras) ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 1990-03-09
    Description: The gene encoding the yeast mitochondrial outer membrane channel VDAC was subjected to site-directed mutagenesis to change amino acids at 29 positions to residues differing in charge from the wild-type sequence. The mutant genes were then expressed in yeast, and the physiological consequences of single and multiple amino acid changes were assessed after isolation and insertion of mutant channels into phospholipid bilayers. Selectivity changes were observed at 14 sites distributed throughout the length of the molecule. These sites are likely to define the position of the protein walls lining the aqueous pore and hence, the transmembrane segments. These results have been used to develop a model of the open state of the channel in which each polypeptide contributes 12 beta strands and one alpha helix to form the aqueous transmembrane pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blachly-Dyson, E -- Peng, S -- Colombini, M -- Forte, M -- GM35759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 9;247(4947):1233-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland 97201.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1690454" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cloning, Molecular ; Intracellular Membranes/physiology ; *Ion Channels ; Lipid Bilayers/metabolism ; Membrane Potentials ; Membrane Proteins/*genetics/physiology ; Mitochondria/ultrastructure ; Molecular Sequence Data ; *Mutation ; *Porins ; Protein Conformation ; Saccharomyces cerevisiae/*genetics/ultrastructure ; Structure-Activity Relationship ; Voltage-Dependent Anion Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...