ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    IntechOpen | IntechOpen
    Publication Date: 2024-04-11
    Description: Aerodynamics, the study of air motion around solid objects, allows us to understand and measure the dominating forces acting on aircrafts, buildings, bridges, automobiles, and other structures. The forces that result in an aircraft overcoming gravity and drag are called thrust and lift. Various parameters such as geometrical configurations of objects, as well as physical properties of air, which may be functions of position and time, affect those forces. This book covers some of the latest studies regarding the application of the principles of aerodynamics to the design of many different engineered objects. This book will be of interest to mechanical and aerospace engineering students, academics, and researchers who are looking for new insights into this fascinating branch of fluid mechanics.
    Keywords: Aerodynamics ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materials::TGM Materials science
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    IntechOpen | IntechOpen
    Publication Date: 2024-04-11
    Description: Aerodynamics, from a modern point of view, is a branch of physics that study physical laws and their applications, regarding the displacement of a body into a fluid, such concept could be applied to any body moving in a fluid at rest or any fluid moving around a body at rest. This Book covers a small part of the numerous cases of stationary and non stationary aerodynamics; wave generation and propagation; wind energy; flow control techniques and, also, sports aerodynamics. It's not an undergraduate text but is thought to be useful for those teachers and/or researchers which work in the several branches of applied aerodynamics and/or applied fluid dynamics, from experiments procedures to computational methods.
    Keywords: Aerodynamics ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materials::TGM Materials science
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    IntechOpen | IntechOpen
    Publication Date: 2024-04-11
    Description: Some sixty years after the experimental flights of the North American X-15 hypersonic rocket-powered aircraft, sustained hypervelocity travel is still the next frontier in high-speed transportation. Today, there is much excitement and interest regarding hypersonic vehicles. In fact, many aerospace agencies, large industries, and several start-ups are involved in design activities and experimental campaigns both in wind tunnels and in-flight with full-scale experimental flying test beds and prototypes to make hypersonic travel almost as easy and convenient as airliner travel. Achieving this goal will radically revolutionize the future of civil transportation. This book contains valuable contributions that focus on various design issues related to hypersonic aircraft.
    Keywords: Aerodynamics ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materials::TGM Materials science::TGMF Engineering: Mechanics of fluids::TGMF1 Aerodynamics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    IntechOpen | IntechOpen
    Publication Date: 2024-04-11
    Description: This book is intended to be a valuable addition to students, engineers, scientists, industrialists, consultants and others providing greater insight into wind tunnel designs and their enormous research potential. It is a compilation of works from world experts on subsonic and supersonic wind tunnel designs, applicable to a diverse range of disciplines. The book is organised in two sections. The first section comprises of three chapters on various aspects of stationary and portable subsonic wind tunnel designs, followed by one chapter on supersonic wind tunnel and the final chapter discusses a method to address unsteadiness effects of fan blade rotation. The second section contains four chapters regarding wind tunnel applications across a multitude of engineering fields including civil, mechanical, chemical and environmental engineering.
    Keywords: Aerodynamics ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materials::TGM Materials science
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    MDPI - Multidisciplinary Digital Publishing Institute
    Publication Date: 2023-11-30
    Description: Active flow control (AFC) utilizes local active perturbations to induce changes in global flow behavior that result in aero/hydrodynamic performance improvement. It has been a vibrant research area with potential applications in a wide range of engineering fields. This Special Issue is a collection of 11 excellent research papers published in Actuators, showcasing and discussing new advances in both fundamental and applied AFC technologies.
    Keywords: Active flow control ; Actuators ; Aerodynamics ; Synthetic jets&nbsp ; bic Book Industry Communication::T Technology, engineering, agriculture::TB Technology: general issues
    Language: English
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    IntechOpen | IntechOpen
    Publication Date: 2024-04-11
    Description: This book reports the latest development and trends in the low Re number aerodynamics, transition from laminar to turbulence, unsteady low Reynolds number flows, experimental studies, numerical transition modelling, control of low Re number flows, and MAV wing aerodynamics. The contributors to each chapter are fluid mechanics and aerodynamics scientists and engineers with strong expertise in their respective fields. As a whole, the studies presented here reveal important new directions toward the realization of applications of MAV and wind turbine blades.
    Keywords: Aerodynamics ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materials::TGM Materials science
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    IntechOpen
    Publication Date: 2024-04-04
    Description: Spacecraft attitude maneuvers comply with Euler's moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research. This book is meant for basic scientifically inclined readers, and commences with a chapter on the basics of spaceflight and leverages this remediation to reveal very advanced topics to new spaceflight enthusiasts. The topics learned from reading this text will prepare students and faculties to investigate interesting spaceflight problems in an era where cube satellites have made such investigations attainable by even small universities. It is the fondest hope of the editor and authors that readers enjoy this book.
    Keywords: Science ; Mechanics ; Aerodynamics ; bic Book Industry Communication::P Mathematics & science::PH Physics::PHD Classical mechanics::PHDF Fluid mechanics ; thema EDItEUR::P Mathematics and Science::PH Physics::PHD Classical mechanics::PHDF Physics: Fluid mechanics
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    IntechOpen | IntechOpen
    Publication Date: 2024-04-11
    Description: Although great advances in computational methods have been made in recent years, wind tunnel tests remain essential for obtaining the full range of data required to guide detailed design decisions for various practical engineering problems. This book collects original and innovative research studies on recent applications in wind tunnel tests, exhibiting various investigation directions and providing a bird’s eye view on this broad subject area. It is composed of seven chapters that have been grouped in two major parts. The first part of the book (chapters 1–4) deals with wind tunnel technologies and devices. The second part (chapters 5–7) deals with the latest applications of wind tunnel testing. The text is addressed not only to researchers but also to professional engineers, engineering lecturers, and students seeking to gain better understanding of the current status of wind tunnels. Through its seven chapters, the reader will have an access to a wide range of works related to wind tunnel testing.
    Keywords: Aerodynamics ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materials::TGM Materials science
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    IntechOpen | IntechOpen
    Publication Date: 2024-04-11
    Description: Spacecraft attitude maneuvers comply with Euler's moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research. This book is meant for basic scientifically inclined readers, and commences with a chapter on the basics of spaceflight and leverages this remediation to reveal very advanced topics to new spaceflight enthusiasts. The topics learned from reading this text will prepare students and faculties to investigate interesting spaceflight problems in an era where cube satellites have made such investigations attainable by even small universities. It is the fondest hope of the editor and authors that readers enjoy this book.
    Keywords: Aerodynamics ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TG Mechanical engineering and materials::TGM Materials science
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mathematical biology 24 (1986), S. 1-24 
    ISSN: 1432-1416
    Keywords: Aerodynamics ; Pollination ; Ephedra ; Computer simulations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract Computer simulations are used to predict the behavior of pollen grains with different physical properties within the acceleration field created around the ovules of the gymnosperm Ephedra trifurca. A modelling procedure is given that (1) calculates the number of pollen grains captured by an ovule's pollination-droplet and (2) gives a correlation between pollination efficiency and the physical properties (= mass, size) of different types of pollen. Based on this procedure, the number of Ephedra pollen grains captured by micropyles can be less than the number captured from other species. However, the mass and size of Ephedra pollen grains appear to coincide with those predicted to yield a local maximum of pollination efficiency, i.e. slightly larger or smaller values of either mass or size would decrease the probability of capture. In addition, the properties of Ephedra pollen grains operate synergistically in the aerodynamic environment around ovules and are focused to collide with pollination-droplets. By analogy, the properties of Ephedra pollen coincide with those predicted for a localized “adaptive peak”. The physical properties of pollen grain types other than E. trifurca that can maximize pollen capture are not generally represented in the aerobiology of Ephedra during the pollination season. Therefore, the phenology of pollen release, community taxonomic-composition, and the physics of particle capture play collectively important roles in the reproductive success of Ephedra trifurca.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 167 (1990), S. 145-154 
    ISSN: 1432-1351
    Keywords: Moth ; Flight ; Migration ; Kinematics ; Aerodynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Air speeds and wing kinematics were determined for the Neotropical moth Urania fulgens in natural migratory flight over Lake Gatun, Republic of Panama. Morphological parameters are presented for the same insects filmed in free flight. A quasi-steady aerodynamic analysis was used to show that unsteady mechanisms of lift generation are probably not necessary to produce the forces necessary for fast forward flight. Mechanical power requirements of forward flight were estimated from the biomechanical and morphological data. Over an airspeed range of 1.5 to 4.5 m/s, the mechanical power required to fly is predicted to increase dramatically with forward speed. A comparison of estimated metabolic rates with endogenous lipid reserves suggests that U. fulgens feeds extensively on flower nectar during migration from Central into South America.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    The international journal of advanced manufacturing technology 14 (1998), S. 894-900 
    ISSN: 1433-3015
    Keywords: Aerodynamics ; Concurrent engineering ; Manufacturing costs ; Optimisation ; Statistical models ; Tolerances
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A component of the direct operating cost of aircraft is that associated with the manufacturing cost. This affects depreciation, interest, insurance and maintenance charges. By relaxing the requirements for aerodynamic surface smoothness the manufacturing cost can be reduced at the expense of an increase in drag and corresponding fuel costs. This work is part of a study to examine this multidisciplinary problem. Only isolated turbofan nacelles are considered. The costs associated with assigning different tolerance levels to the feature dimensions on nacelles are assessed. A statistical procedure is employed to estimate the cost-tolerance relationship for eleven features involving gaps, steps, surface profile and fastener flushness. This procedure requires actual manufacturing and cost source data. A knowledge of the cost-tolerance relationships is useful in a concurrent engineering context. It will allow aerodynamicists to optimise surface smoothness in consultation with production engineers, thus achieving the best compromise between cost and drag.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Meccanica 34 (1999), S. 199-229 
    ISSN: 1572-9648
    Keywords: Aerodynamics ; Kutta condition ; Edge singularities ; Boundary integral equations ; Fluid dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract This review paper presents a unified formulation of the Kutta condition for steady and unsteady flows, implemented by removing all unbounded velocity singularities (of power‐law and logarithmic type) at the trailing edge, and including nonlinear wakes and thick swept‐back wings. A suitable boundary integral approach is adopted and the uniqueness issue is discussed for several wing configurations of interest in aerodynamics. Sommario. Si presenta una formulazione unificata della condizione di Kutta per flussi stazionari e non stazionari, ottenuta imponendo la limitatezza della velocità al bordo d'uscita, e valida nel caso nonlineare anche per ali a freccia. Si utilizza un opportuno approccio integrale al contorno e si discute il problema dell'unicità per svariate configurazioni alari di interesse nelle applicazioni.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 24 (1978), S. 169-206 
    ISSN: 1573-2878
    Keywords: Aerodynamics ; integral equation of the first kind ; singular kernels ; Galerkin's method ; collocation method
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We consider the numerical solution of a class of integral equations arising in the determination of the compressible flow about a thin airfoil in a ventilated wind tunnel. The integral equations are of the first kind with kernels having a Cauchy singularity. Using appropriately chosen Hilbert spaces, it is shown that the kernel gives rise to a mapping which is the sum of a unitary operator and a compact operator. This enables us to study the problem in terms of an equivalent integral equation of the second kind. Using Galerkin's method, we are able to derive a convergent numerical algorithm for its solution. It is shown that this algorithm is numerically equivalent to Bland's collocation method, which is then used as our method of computation. Extensive numerical calculations are presented establishing the validity of the theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 162 (1992), S. 267-277 
    ISSN: 1432-136X
    Keywords: Aerodynamics ; Insect flight ; Body drag ; Drag coefficient ; Lift coefficient ; Honeybee
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Drag forces and lift forces acting on honeybee trunks were measured by using specially built sensitive mechanical balances. Measurements were made on prepared bodies in ‘good’ and in ‘bad’ flight position, with and without legs, at velocities between 0.5 and 5m·s-1 (Reynolds numbers between 4·102 and 4·103) and at angles of attack between-20° and +20°. From the forces drag coefficients and lift coefficients were calculated. The drag coefficient measured with a zero angle of attack was 0.45 at 3≤v≤5m·s-1, 0.6 at 2m·s-1, 0.9 at 1m·s-1 and 1.35 at 0.5m·s-1, thus demonstrating a pronounced effect of Reynolds number on drag. These values are about 2 times lower (better) than those of a “drag disc” with the same diameter and attacked at the same velocity. The drag coefficient (related to constant minimal frontal area) was minimal at zero angle of attack, rising symmetrically to larger (+) and smaller (-) angles of attack in a non-linear fashion. The absolute value is higher and the rise is steeper at lower speeds or Reynolds numbers, but the incremental factors are independent of Reynolds number. For example, the drag coefficient is 1.44±0.05 times higher at an angle of attack of 20° than at one of 0°. On a double-logarithmic scale the slope of the drag versus Reynolds number plot was 1.5: with decreasing Reynolds number the relationship between drag and velocity changes from quadratic (Newton's law) to linear (viscous flow). Trunk drag was not systematically increased by the legs at any velocity or Reynolds number or any angle of attack. The legs appear to shape the trunk “aerodynamically”, to form a relatively low-drag trunk-leg system. The body is able to generate dynamic lift. Highly significant positive linear correlations between lift coefficient and angle of attack were determined for the trunk-leg system in the typical flight position. Lift coefficient was +0.05 at zero angle of attack (possibly attained during very fast flight), +0.1 at 5° (attained during fast flight), +0.25 at +20° (attained during slow flight) and +0.55 at 45° (attained whilst changing over to hovering). Average slope ΔcLΔα was 0.66±0.07, and average profile efficiency was 0.10. Non-wing lift contribution due to body form and banking only accounts for a few percent of body weight during fast flight. A non-wing lift contribution due to the legs has been demonstrated. The legs increase trunk lift by 23–24%. Reynolds number lift effects are present but of no biological significance. Force and power calculations do not support maximum flight speeds substantially higher than approximately 7m · s-1 relative to the ambient air. At this speed body drag attains 35% and body lift 8.4% of the body weight, and parasite power is 5% of the maximum metabolic power.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 168 (1998), S. 434-444 
    ISSN: 1432-136X
    Keywords: Key words Hovering flight power ; Aerodynamics ; Fast-response respirometry ; Bat ; Hummingbird
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Hover-feeding glossophagine bats provide, in addition to the hummingbirds, a second vertebrate model for the analysis of hovering flight based on metabolic measurement and aerodynamic theory. In this study, the power input of hovering Glossophaga soricina bats (11.9 g) was measured by standard respirometry and fast-response (〈0.2 s) oxygen analysis. Bats needed 5–7 s after a rest-to-flight transition to return to a respiratory steady state. Therefore, only hovering events preceeded by a 7-s flight interval were evaluated. V˙O2 during hovering fluctuated with a frequency of 3–5 Hz, which corresponded in frequency to the licking movement of the tongue. During hovering, bats often may have hypoventilated as indicated by reduced V˙O2 and a respiratory exchange ratio (RER) well below the steady-state value of 1. Steady-state oxygen consumption (and derived power input) during hovering was estimated to be 27 (25–29) ml O2 g−1 h−1 (158 W kg−1 or 1.88 W) in the 11.9-g bats as indicated by three independent findings: (1) V˙O2 was 26 ml O2 g−1 h−1 after 6.5 s of hovering, (2) the mean RER during single hovering events was at its steady-state level of 1 only at oxygen uptake rates of 25–29 ml g−1 h−1, and (3) when the oxygen potentially released from estimated oxygen stores was added to the measured oxygen uptake, the upper limit for oxygen consumption during hovering was found to be 29 ml O2 g−1 h−1. Hovering power input was about 1.2 times the value of minimum flight power input (Winter and von Helversen 1998) and thus well below the 1.7–2.6 difference in power output postulated by aerodynamic theory (Norberg et al. 1993). Mass specific power input was 40% less than in hummingbirds. Thus, within the possible modes of hovering flight, Glossophaga bats seem to operate at the high-efficiency end of the spectrum.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 15 (1992), S. 427-451 
    ISSN: 0271-2091
    Keywords: Aerodynamics ; Rotor ; Blade-vortex ; Interactions ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A finite-difference procedure has been developed for the prediction of three-dimensional rotor blade-vortex interactions. The interaction velocity field was obtained through a non-linear superposition of the rotor flow field, computed using the unsteady three-dimensional Euler equations, and the embedded vortex wake flow field, computed using the law of Biot-Savart. In the Euler model, near wake rotational effects were simulated using the surface velocity ‘transpiration’ approach. As a result, a modified surface boundary condition was prescribed and enforced at each time step of the computations to satisfy the tangency boundary condition. For supercritical interactions using an upstream-generated vortex, accuracy of the numerical results were found to rely on the user-specified vortex core radius and vortex strength. For the more general self-generated subcritical interactions, vortex wake trajectories were computed using the lifting-line helicopter/rotor trim code CAMRAD. For these interactions, accuracy of the results were found to rely heavily on the CAMRAD-predicted vortex strength, vortex orientation with respect to the blade, and to a large extent on the user-specified vortex core radius. Results for the one-seventh scale model OLS rotor and for a non-lifting rectangular blade having a NACA0012 section are presented. Comparisons with the experimental windtunnel data are also made.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 18 (1994), S. 415-432 
    ISSN: 0271-2091
    Keywords: Aerodynamics ; Aerodynamic design ; Inverse problems ; Body shaping ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The axial singularity inverse method for designing bodies of revolution has been improved by using higher-order doublet elements. The performance of the method for various element orders and other solution parameters is presented in detail. The results indicate that the method is generally more robust, less sensitive to insets and has a better-conditioned coefficient matrix compared with the source method of the same order. The condition number of the matrix is shown to increase with the thickness of the body, the order of the method, the number of elements and the degree of stretching of the node distribution. In general, good performance is attained for most bodies even with ƒr as low as 2 by using 10-12 second-order doublet elements with insets greater than 0.02L from rounded ends. Increasing the insets to 0.06L appears to improve the accuracy of the method for most bodies but slows its convergence.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 11 (1990), S. 39-56 
    ISSN: 0271-2091
    Keywords: Aerodynamics ; Turbulence ; Separation ; CLmax ; Laminar ; Bubble ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The algebraic turbulent model of Baldwin and Lomax was incorporated into the incompressible full Navier-Stokes code FIDAP. This model was extensively tested in the past in finite difference codes. We believe that the incorporation of the model also into the finite element code has resulted in a practical method to compute a variety of separated turbulent 2D flows. Firstly, we use the model to compute the attached flow about an aerofoil. Next, the application of the model to separated flows is presented by computing the flows at high angles of attack up to maximum lift. It is shown that the model is capable of predicting separation, steady stall and CLmax. As a difficult test of the model we compute the laminar separation bubble development directly using the full Navier-Stokes finite element code. As far as we know, this approach has not yet been reported. The importance of using an appropriate upwinding is discussed. When possible, comparison of computed results with experiments is presented and the agreement is good.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-10-14
    Description: The paper reviews a combined numerical and experimental activity on the Shuttle Orbiter, first performed at NASA Langley within the Orbiter Experiment (OEX) and subsequently at ESA, as part of the AGARD FDP WG 18 activities. The study at Langley was undertaken to resolve the pitch up anomaly observed during the entry of the first flight of the Shuttle Orbiter. The present paper will focus on real gas effects on aerodynamics and not on heating. The facilities used at NASA Langley were the 15-in. Mach 6, the 20-in, Mach 6, the 31-in. Mach 10 and the 20-in. Mach 6 CF4 facility. The paper focuses on the high Mach, high altitude portion of the first entry of the Shuttle where the vehicle exhibited a nose-up pitching moment relative to pre-flight prediction of (Delta C(sub m)) = 0.03. In order to study the relative contribution of compressibility, viscous interaction and real gas effects on basic body pitching moment and flap efficiency, an experimental study was undertaken to examine the effects of Mach, Reynolds and ratio of specific heats at NASA. At high Mach, a decrease of gamma occurs in the shock layer due to high temperature effects. The primary effect of this lower specific heat ratio is a decrease of the pressure on the aft windward expansion surface of the Orbiter causing the nose-up pitching moment. Testing in the heavy gas, Mach 6 CF4 tunnel, gave a good simulation of high temperature effects. The facilities used at ESA were the lm Mach 10 at ONERA Modane, the 0.7 m hot shot F4 at ONERA Le Fauga and the 0.88 m piston driven shock tube HEG at DLR Goettingen. Encouraging good force measurements were obtained in the F4 facility on the Orbiter configuration. Testing of the same model in the perfect gas Mach 10 S4 Modane facility was performed so as to have "reference" conditions. When one compares the F4 and S4 test results, the data suggests that the Orbiter "pitch up" is due to real gas effects. In addition, pressure measurements, performed on the aft portion of the windward side of the Halis configuration in HEG and F4, confirm that the pitch up is mainly attributed to a reduction of pressure due to a local decrease in gamma.
    Keywords: Aerodynamics
    Type: Hypersonic Experimental and Computational Capability, Improvement and Validation; Volume 2; AGARD-AR-319-Vol-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-10-14
    Description: Optical pressure measurements have been made on a NACA 0012 airfoil coated with Pressure Sensitive Paint (PSP) at very low flow speeds (less than 50 m/s). Angle of attack was limited to 5 deg. for most measurements. Effects of temperature gradients and mis-registration errors on PSP response have been established and minimized. By reducing measurement error caused by these effects. PSP sensitivity has been enhanced. Acceptable aerodynamic data at flow speeds down to 20 m/s have been obtained and valid pressure paint response was observed down to 10 m/s. Measurement errors (in terms of pressure and pressure coefficient) using PSP with pressure taps as a reference are provided for the range of flow speeds from 50 m/s to 10 m/s.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-10-14
    Description: Only recently have large amounts of model deformation data been acquired in NASA wind tunnels. This acquisition of model deformation data was made possible by the development of an automated video photogrammetric system to measure the changes in wing twist and bending under aerodynamic load. The measurement technique is based upon a single view photogrammetric determination of two dimensional coordinates of wing targets with a fixed third dimensional coordinate, namely the spanwise location. A major consideration in the development of the measurement system was that use of the technique must not appreciably reduce wind tunnel productivity. The measurement technique has been used successfully for a number of tests at four large production wind tunnels at NASA and a dedicated system is nearing completion for a fifth facility. These facilities are the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel at NASA Langley, and the 12-FT Pressure Tunnel at NASA Ames. A dedicated system for the Langley 16-Foot Transonic Tunnel is scheduled to be used for the first time for a test in September. The advantages, limitations, and strategy of the technique as currently used in NASA wind tunnels are presented. Model deformation data are presented which illustrate the value of these measurements. Plans for further enhancements to the technique are presented.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-12-03
    Description: This investigation concerns the time and frequency formulations of non-linear two-dimensional lifting surfaces exposed to an incompressible flow field and subjected to an external pressure pulse. In order to address this problem, Volterra series approach in conjunction with the multidimensional Laplace transform is used. This methodology enabling one to solve the aeroelastic governing equations of lifting surfaces opens the way to connect this methodology with that based on neural networks and NARMAX/NARX networks models. Moreover, this extended way to address this problem constitutes a good basis for treatment of the theory of 3D lifting surfaces.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-12-03
    Description: The use of balloons/aerobots on Mars has been under consideration for many years. Concepts include deployment during entry into the atmosphere from a carrier spacecraft, deployment from a lander, use of super-pressurized systems for long duration flights, 'hot-air' systems, etc. Principal advantages include the ability to obtain high-resolution data of the surface because balloons provide a low-altitude platform which moves relatively slowly. Work conducted within the last few years has removed many of the technical difficulties encountered in deployment and operation of balloons/aerobots on Mars. The concept proposed here (a tethered balloon released from a lander) uses a relatively simple approach which would enable aspects of Martian balloons to be tested while providing useful and potentially unique science results. Tethered Micro-Balloons on Mars (TMBM) would be carried to Mars on board a future lander as a stand-alone experiment having a total mass of one to two kilograms. It would consist of a helium balloon of up to 50 cubic meters that is inflated after landing and initially tethered to the lander. Its primary instrumentation would be a camera that would be carried to an altitude of up to tens of meters above the surface. Imaging data would be transmitted to the lander for inclusion in the mission data stream. The tether would be released in stages allowing different resolutions and coverage. In addition during this staged release a lander camera system may observe the motion of the balloon at various heights above he lander. Under some scenarios upon completion of the primary phase of TMBM operations, the tether would be cut, allowing TMBM to drift away from the landing site, during which images would be taken along the ground.
    Keywords: Aerodynamics
    Type: Concepts and Approaches for Mars Exploration; Part 2; 285; LPI-Contrib-1062-Pt-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-12-03
    Description: The work to be described was performed at the NASA Langley UPWT (4-ft supersonic), test section #2, during 21-24 May 1996. The configuration being tested was the 1.675% Ref H controls model; test conditions were Ma = 2.40, Re = 3 million/ft. This was an exploration of a new technique, and it was not intended to provide definitive comparison of measured and computed skin friction results. It is, however, hoped that the experience gained will make such a rigorous comparison possible in the future.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance; Volume 1; Part 2; 1478-1499; NASA/CP-1999-209691/VOL1/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-12-03
    Description: To summarize the significant highlights in this report: (1) Data quality, determined by multiple repeat runs performed on the TCA baseline configuration, and long-term repeatability, determined by comparing baseline Reference H data from this test to a previous test, have been shown to be good. (2) The longitudinal stability of the TCA is more non-linear than for the Reference H, and while it is similar at normal lift values, the TCA has considerably more pitch-up at higher lift. (3) Longitudinal control effectiveness of the TCA is similar to the Reference H and the ratio of elevator effectiveness to horizontal tail effectiveness is approximately 0.3. 4) The directional stability of the TCA is improved relative to Reference H at higher angles-of attack. The chine is effective for improving directional stability. (5) The directional control effectiveness 'of the TCA rudder is the same as that of the Reference H rudder at low angles-of-attack, after taking factors, such as number of rudder panels deflected and vertical tail volume into account. However, rudder effectiveness was shown to be reduced at higher angles-of-attack. (6) The lateral stability was shown to be reduced relative to the Reference H, which may be beneficial at low speeds for alleviating lateral control saturation. (7) Lateral control effectiveness for the TCA was shown to be similar to the Reference H for negative trailing-edge flap deflections and was reduced by approximately 25% for positive trailing-edge flap deflections.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 612-668; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2004-12-03
    Description: This paper gives the results of a grid study, a turbulence model study, and a Reynolds number effect study for transonic flows over a high-speed aircraft using the thin-layer, upwind, Navier-Stokes CFL3D code. The four turbulence models evaluated are the algebraic Baldwin-Lomax model with the Degani-Schiff modifications, the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, and Menter's two-equation Shear-Stress-Transport (SST) model. The flow conditions, which correspond to tests performed in the NASA Langley National Transonic Facility (NTF), are a Mach number of 0.90 and a Reynolds number of 30 million based on chord for a range of angle-of-attacks (1 degree to 10 degrees). For the Reynolds number effect study, Reynolds numbers of 10 and 80 million based on chord were also evaluated. Computed forces and surface pressures compare reasonably well with the experimental data for all four of the turbulence models. The Baldwin-Lomax model with the Degani-Schiff modifications and the one-equation Baldwin-Barth model show the best agreement with experiment overall. The Reynolds number effects are evaluated using the Baldwin-Lomax with the Degani-Schiff modifications and the Baldwin-Barth turbulence models. Five angles-of-attack were evaluated for the Reynolds number effect study at three different Reynolds numbers. More work is needed to determine the ability of CFL3D to accurately predict Reynolds number effects.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1185-1214; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-12-03
    Description: The NASA High Speed Research (HSR) Program is intended to establish a technology base enabling industry development of an economically viable and environmentally acceptable second generation high speed civil transport (HSCT). The HSR program consists of work directed towards several broad technology areas, one of which is aerodynamic performance. The objective of the Configuration Aerodynamics task of the Aerodynamic Performance technology area is the development of aerodynamic drag reduction, stability and control, and propulsion airframe integration technologies required to support the HSCT development process. Towards this goal, computational and empirical based aerodynamic design tools are being developed, evaluated, and validated through ground based experimental testing. In addition, methods for ground to flight scaling are being developed and refined. Successful development of validated design and scaling methodologies will result in improved economy of operation for an HSCT and reduce uncertainty in full-scale flight predictions throughout the development process.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 539-569; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: It is not unusual when comparing CFD data to experimental data to find discrepancies between the results. Sometimes forces and moments compare well, while surface pressures do not, and vice versa. It is commonplace for the researcher to believe that the flow field has been accurately simulated when these types of measurements compare well. However, being able to routinely predict boundary layer transition and separated flows are not guaranteed. In fact accurate simulation of these types of flow physics has been a challenge to the CFD community. In order to improve Navier-Stokes predictions for complex vortical flow fields, more detailed information about the flow physics is necessary. Unfortunately, the many wind-tunnel tests performed in Langley's NTF and 14x22 facilities as well as in the Ames' 12 ft. Tunnel provided little information about the detailed flow physics, and no priority was given to obtaining any CFD measurements. Using the latest experimental techniques, this information can and should be obtained for present and future use.
    Keywords: Aerodynamics
    Type: 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 2; Part 2; 913-948; NASA/CP-1999-209704/VOL2/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-12-03
    Description: This paper focuses on the parallel computation of aerodynamic derivatives via automatic differentiation of the Euler/Navier-Stokes solver CFL3D. The comparison with derivatives obtained by finite differences is presented and the scaling of the time required to obtain the derivatives relative to the number of processors employed for the computation is shown. Finally, the derivative computations are coupled with an optimizer and surface/volume grid deformation tools to perform an optimization to reduce the drag of a three-dimensional wing.
    Keywords: Aerodynamics
    Type: HPCCP/CAS Workshop Proceedings 1998; 219-224; NASA/CP-1999-208757
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2004-12-03
    Description: This paper provides an overview of the NASA High-Speed Research (HSR) Program dedicated to establishing the technology foundation to support the US transport industry's decision for an environmentally acceptable, economically viable 300 passenger, 5000 n.mi., Mach 2.4 aircraft. The HSR program, begun in 1990, is supported by a team of US aerospace companies. The international economic stakes are high. The projected market for more than 500 High-Speed Civil Transport (HSCT) airplanes introduced between the years 2000 and 2015 translates to more than $200 billion in aircraft sales, and the potential of 140,000 new jobs. The paper addresses the history of supersonic commercial air transportation beginning with the Concorde and TU-144 developments in the early 1960 time period. The technology goals for the HSR program are derived from market study results, projections on environmental requirements, and technical goals for each discipline area referenced to the design and operational features of the Concorde. Progress since the inception of the program is reviewed and a summary of some of the lessons learned will be highlighted. An outline is presented of the remaining technological challenges. Emphasis in this paper will be on the traditional aeronautical technologies that lead to higher performance to ensure economic viability. Specific discussion will center around aerodynamic performance, flight deck research, materials and structures development and propulsion systems. The environmental barriers to the HSCT and that part of the HSR program that addresses those technologies are reviewed and assessed in a companion paper.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2004-12-03
    Description: Current parallel computational approaches involve distributed and shared memory paradigms. In the distributed memory paradigm, each processor has its own independent memory. Message passing typically uses a function library such as MPI or PVM. In the shared memory paradigm, such as that used on the SGI Origin 2000 machine, compiler directives are used to instruct the compiler to schedule multiple threads to perform calculations. In this paradigm, it must be assured that processors (threads) do not simultaneously access regions of memory in such away that errors would occur. This paper utilizes the latest version of the SGI MPI function library to combine the two parallelization paradigms to perform aerodynamic shape optimization of a generic wing/body.
    Keywords: Aerodynamics
    Type: HPCCP/CAS Workshop Proceedings 1998; 207-212; NASA/CP-1999-208757
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2004-12-03
    Description: Progress in aerodynamics over the past 50 years has been evidenced by the development of increasingly sophisticated and efficient flight vehicles throughout the flight spectrum. Advances have generally arisen in an evolutionary manner from experience gained in wind tunnel testing, flight testing, and improvements in analytical and computational capabilities. As a result of this evolutionary development, both military and commercial vehicles operate at a relatively high efficiency level. This observation plus the fact that airplanes have not changed appreciably in outward appearance over recent years has led some skeptics to conclude incorrectly that aerodynamics is a mature technology, with little to be gained from further developments in the field. It is of interest to note that progress in aerodynamics has occurred without a thorough understanding of the fundamental physics of flow, turbulence, vortex dynamics, and separated flow, for example. The present understanding of transition, turbulence, and boundary layer separation is actually very limited. However, these fundamental flow phenomena provide the key to reducing the viscous drag of aircraft. Drag reduction provides the greatest potential for increased flight efficiency from the standpoint of both saving energy and maximizing performance. Recent advances have led to innovative concepts for reducing turbulent friction drag by modifying the turbulent structure within the boundary layer. Further advances in this basic area should lead to methods for reducing skin friction drag significantly. The current challenges for military aircraft open entirely new fields of investigation for the aerodynamicist. The ability through very high speed information processing technology to totally integrate the flight and propulsion controls can permit an aircraft to fly with "complete abandon," avoiding departure, buffet, and other undesirable characteristics. To utilize these new control concepts, complex aerodynamic phenomena will have to be understood, predicted, and controlled. Current requirements for military aircraft include configuration optimization through a widened envelope from subsonic to supersonic and from low to high angles of attack. This task is further complicated by requirements for control of observables. These challenging new designs do not have the luxury of a large experimental data base from which to optimize for various parameter combinations. Consequently, there exists a strong need for better techniques, both experimental and computational, to permit design optimization in a complete sense.
    Keywords: Aerodynamics
    Type: Aeronautics Technology Possibilities for 2000: Report of a Workshop; 15-46; NASA-CR-205283
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2004-12-03
    Description: The primary objectives of this study were to expand the data base showing the effects of LE radius distribution and corresponding sensitivity to Rn at subsonic and transonic conditions, and to assess the predictive capability of CFD for these effects. Several key elements led to the initiation of this project: 1) the necessity of meeting multipoint design requirements to enable a viable HSCT, 2) the demonstration that blunt supersonic leading-edges can be associated with performance gain at supersonic speeds , and 3) limited data. A test of a modified Reference H model with the TCA planform and 2 LE radius distributions was performed in the NTF, in addition to Navier-Stokes analysis for an additional 3 LE radius distributions. Results indicate that there is a tremendous potential to improve high-lift performance through the use of a blunt LE across the span given an integrated, fully optimized design, and that low Rn data alone is probably not sufficient to demonstrate the benefit.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 588-611; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2004-12-03
    Description: This paper presents results of a study which attempted to provide some understanding of the relationship between skin friction drag estimates produced by flat plate methods and those produced by Navier-Stokes computations. A brief introduction is followed by analysis, including a flat plate grid study, analysis of the wing flow, an analysis of the fuselage flow. Other results of interest are then presented, including turbulence model sensitivities, and brief analysis of other configurations.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance; Volume 1; Part 2; 1452-1477; NASA/CP-1999-209691/VOL1/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2004-12-03
    Description: Efforts towards understanding boundary layer transition characteristics on a High Speed Civil Transport (HSCT)-class configuration in the National Transonic Facility (NTF) are ongoing. The majority of the High Speed Research (HSR) data base in the NTF has free transition on the wing, even at low Reynolds numbers (Rn) attainable in conventional facilities. Limited data has been obtained and is described herein showing the effects of a conventional, Braslow method based wing boundary-layer trip on drag. Comparisons are made using force data polars and surface flow visualization at selected angles-of-attack and Mach number. Minimum drag data obtained in this study suggest that boundary layer transition occurred very near the wing leading edge by a chord Rn of 30 million. Sublimating chemicals were used in the air mode of operation only at low Rn and low angles-of-attack with no flap deflections; sublimation results suggest that the forebody and outboard wing panel are the only regions with significant laminar flow. The process and issues related to the sublimating chemical technique as applied in the NTF are discussed. Beyond the existing experience, status of efforts to develop a production transition detection system applicable to both air and cryogenic nitrogen environments is presented.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Pt. 2; 579-596; NASA/CP-1999-209690/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2004-12-03
    Description: Model deformation measurement techniques have been investigated and developed at NASA's Langley Research Center. The current technique is based upon a single video camera photogrammetric determination of two dimensional coordinates of wing targets with a fixed (and known) third dimensional coordinate, namely the spanwise location. Variations of this technique have been used to measure wing twist and bending at a few selected spanwise locations near the wing tip on HSR models at the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel. Automated measurements have been made at both the Transonic Dynamics Tunnel and at Unitary Plan Wind Tunnel during the past year. Automated measurements were made for the first time at the NTF during the recently completed HSR Reference H Test 78 in early 1996. A major problem in automation for the NTF has been the need for high contrast targets which do not exceed the stringent surface finish requirements. The advantages and limitations (including targeting) of the technique as well as the rationale for selection of this particular technique are discussed. Wing twist examples from the HSR Reference H model are presented to illustrate the run-to-run and test-to-test repeatability of the technique in air mode at the NTF. Examples of wing twist in cryogenic nitrogen mode at the NTF are also presented.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Pt. 2; 561-578; NASA/CP-1999-209690/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2004-12-03
    Description: To develop full scale flight performance predictions an understanding of Reynolds number effects on HSCT-class configurations is essential. A wind tunnel database utilizing a 2.2% scale Reference H model in NASA Langley Research Centers National Transonic Facility is being developed to assess these Reynolds number effects. In developing this database temperature and aeroelastic corrections to the wind tunnel data have been identified and are being analyzed. Once final corrections have been developed and applied, then pure Reynolds number effects can be determined. In addition, final corrections will yield the data required for CFD validation at q = 0. Presented in this report are the results of seven tests involving the wing/body configuration. This includes summaries of data acquired in these tests, uncorrected Reynolds number effects, and temperature and aeroelastic corrections. The data presented herein illustrates the successes achieved to date as well as the challenges that will be faced in obtaining full scale flight performance predictions.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1073-1107; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2004-12-03
    Description: Experience with afterbody closure effects and accompanying test techniques issues on a High Speed Civil Transport (HSCT)-class configuration is described. An experimental data base has been developed which includes force, moment, and surface pressure data for the High Speed Research (HSR) Reference H configuration with a closed afterbody at subsonic and transonic speeds, and with a cylindrical afterbody at transonic and supersonic speeds. A supporting computational study has been performed using the USM3D unstructured Euler solver for the purposes of computational fluid dynamics (CFD) method assessment and model support system interference assessment with a focus on lower blade mount effects on longitudinal data at transonic speeds. Test technique issues related to a lower blade sting mount strategy are described based on experience in the National Transonic Facility (NTF). The assessment and application of the USM3D code to the afterbody/sting interference problem is discussed. Finally, status and plans to address critical test technique issues and for continuation of the computational study are presented.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Pt. 2; 529-560; NASA/CP-1999-209690/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2004-12-03
    Description: The Boeing Reference H configuration was tested in the NASA Ames 9x7 Supersonic Wind Tunnel. A simulated unstarted inlet was evaluated as well as the aerodynamic performance of the configuration with and without nacelle and diverter components. These experimental results were compared with computational results from the unstructured grid Euler flow solver AIRPLANE. The comparisons between computational and experimental results were good, and demonstrated that the Euler code is capable of efficiently and accurately predicting the changes in the aerodynamic coefficients associated with inlet unstart and the effects of the nacelle and diverter components.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1285-1325; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2004-12-03
    Description: This presentation will describe the organization and conduct of the workshops, list the topics discussed, and conclude with a more-detailed examination of a related set of issues dear to the presenters heart. Because the current HSCT configuration is expected to have (mostly) turbulent flow over the wings, and because current CFD predictions assume fully-turbulent flow, the wind tunnel testing to date has attempted to duplicate this condition at the lower Reynolds numbers attainable on the ground. This frequently requires some form of artificial boundary layer trip to induce transition near the wing's leading edge. But this innocent-sounding goal leads to a number of complications, and it is not clear that present-day testing technology is adequate to the task. An description of some of the difficulties, and work underway to address them, forms the "Results" section of this talk. Additional results of the testing workshop will be covered in presentations by other team members.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 515-537; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This paper presents The Propulsion Airframe Integration Advisory report in viewgraph form. The approach of the advisory group is to identify and prioritize technology elements (1.0 Inlet Issues, 2.0 Nozzle Issues, 3.0 Nacelle Design, and 4.0 Airframe Integration).
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 31-39; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2004-12-03
    Description: Preliminary human acceptability studies of sonic booms indicate that supersonic flight is unlikely to be acceptable even at noise levels significantly below 1994 low boom designs (reference 1, p. 288). Further, these low boom designs represent considerable changes to baseline configurations, and changes translate into additional effort and uncertain structural weight penalties that may provide no annoyance benefit, increasing the risk of including low boom technology. Since over land sonic boom designs were so risky (and yet the acceptability studies highlight how annoying sonic booms are), boom softening studies were undertaken to reduce the boom of baseline configurations using minor modifications that would not significantly change the designs. The goal of this work is to reduce boom levels over water. Even though Concorde over water boom has not been found to have any adverse environmental impact, boom levels for baseline HSCT designs are 50% higher in overpressure than the Concorde (due to a doubling in configuration weight with only a 50% increase in length),
    Keywords: Aerodynamics
    Type: 1995 NASA High-Speed Research Program Sonic Boom Workshop; Volume 2; 162-174; NASA/CP-1999-209520/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2004-12-03
    Description: Officially, the Tu-144 was the first supersonic-cruise, passenger-carrying aircraft to enter commercial service. Design, construction, and testing were carried out by the Soviet Union, flight certification was by the Soviet Union, and the only regular passenger flights were scheduled and flown across the territory of the Soviet Union. Although it was not introduced to international passenger service, there were many significant engineering accomplishments achieved in the design, production, and flight of this aircraft. Development of the aircraft began with a prototype stage. Systematic testing and redesign led to a production aircraft in discrete stages that measurably improved the performance of the aircraft from the starting concept to final aircraft certification. It flew in competition with the English-French Concorde for a short time, but was withdrawn from national commercial service due to a lack of interest by airlines outside the Soviet Union. NASA became interested in the Tu- 144 aircraft when it was offered for use as a flying "testbed" in the study of operating characteristics of a supersonic-cruise commercial airplane. Since it had been in supersonic-cruise service, the Tu- 144 had operational characteris'tics similar to those anticipated in the conceptual aircraft designs being studied by the United States aircraft companies. In addition to the other operational tests being conducted on the Tu-144 aircraft, it was proposed that two sets of sonic-boom pressure signature measurements be made. The first set would be made on the ground, using techniques and devices similar to those in reference I and many other subsequent studies. A second set would be made in the air with an instrumented aircraft flying close under the Tu-144 in supersonic flight. Such in-flight measurements would require pressure gages that were capable of accurately recording the flow-field overpressures generated by the Tu- 144 at relatively close distances under the vehicle. Therefore, an analysis of the Tu-144 was made to obtain predictions of pressure signature shape and shock strengths at cruise conditions so that the range and characteristics of the required pressure gages could be determined well in advance of the tests. Cancellation of the sonic-boom signature measurement part of the tests removed the need for these pressure gages. Since CFD methods would be used to analyze the aerodynamic performance of the Tu-144 and make similar pressure signature predictions, the relatively quick and simple Whitham-theory pressure signature predictions presented in this paper could be used for comparisons. Pressure signature predictions of sonic-boom disturbances from the Tu- 144 aircraft were obtained from geometry derived from a three-view description of the production aircraft. The geometry was used to calculate aerodynamic performance characteristics at supersonic-cruise conditions. These characteristics and Whitham/Walkden sonic-boom theory were employed to obtain F-functions and flow-field pressure signature predictions at a Mach number of 2.2, at a cruise altitude of 61000 feet, and at a cruise weight of 350000 pounds.
    Keywords: Aerodynamics
    Type: 1995 NASA High-Speed Research Program Sonic Boom Workshop; Volume 2; 1-16; NASA/CP-1999-209520/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2004-12-03
    Description: This document contains the details of the thermal analysis of the X-38 aft fin during re-entry. This analysis was performed in order to calculate temperature response of the aft fin components. This would be provided as input to a structural analysis and would also define the operating environment for the electromechanical actuator (EMA). The calculated structural temperature response would verify the performance of the thermal protection system (TPS). The geometric representation of the aft fin was derived from an I-DEAS finite element model that was used for structural analysis. The thermal mass network model was derived from the geometric representation.
    Keywords: Aerodynamics
    Type: Ninth Thermal and Fluids Analysis Workshop Proceedings; 91-106; NASA/CP-1999-208695
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2004-12-03
    Description: NASA and FAA initiated a program in 1994 to develop methods of setting spacings for landing aircraft by incorporating information on the real-time behavior of aircraft wake vortices. The current wake separation standards were developed in the 1970's when there was relatively light airport traffic and a logical break point by which to categorize aircraft. Today's continuum of aircraft sizes and increased airport packing densities have created a need for re-evaluation of wake separation standards. The goals of this effort are to ensure that separation standards are adequate for safety and to reduce aircraft spacing for higher airport capacity. Of particular interest are the different requirements for landing under visual flight conditions and instrument flight conditions. Over the years, greater spacings have been established for instrument flight than are allowed for visual flight conditions. Preliminary studies indicate that the airline industry would save considerable money and incur fewer passenger delays if a dynamic spacing system could reduce separations at major hubs during inclement weather to the levels routinely achieved under visual flight conditions. The sensor described herein may become part of this dynamic spacing system known as the "Aircraft VOrtex Spacing System" (AVOSS) that will interface with a future air traffic control system. AVOSS will use vortex behavioral models and short-term weather prediction models in order to predict vortex behavior sufficiently into the future to allow dynamic separation standards to be generated. The wake vortex sensor will periodically provide data to validate AVOSS predictions. Feasibility of measuring wake vortices using a lidar was first demonstrated using a continuous wave (CW) system from NASA Marshall Space Flight Sensor and tested at the Volpe National Transportation Systems Center's wake vortex test site at JFK International Airport. Other applications of CW lidar for wake vortex measurement have been made more recently, including a system developed by the MIT Lincoln Laboratory. This lidar has been used for detailed measurements of wake vortex velocities in support of wake vortex model validation. The first measurements of wake vortices using a pulsed, lidar were made by Coherent Technologies, Inc. (CTI) using a 2 micron solid-state, flashlamp-pumped system operating at 5 Hz. This system was first deployed at Denver's Stapleton Airport. Pulsed lidar has been selected as the baseline technology for an operational sensor due to its longer range capability.
    Keywords: Aerodynamics
    Type: Nineteenth International Laser Radar Conference; Part 2; 681-684; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2004-12-03
    Description: A research is performed: to define wake non-encounter & hazard, to provide requirements for sensors, and to obtain input from the user community. This research includes: validating wake encounter simulation models, establishing a metric to quantify the upset potential of a wake encounter, applying hazard metric and simulation models to the commercial fleet for development of candidate acceptable encounter limits, and applying technology to near term problems to evaluate current status of technology. The following lessons are learned from this project: technology is not adequate to determine absolute spacing requirements; time, not distance, determines the duration of the wake hazard; Optimum standards depend on the traffic; Wing span is an important parameter for characterizing both generator and follower; and Short span "biz jets" are easily rolled.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 342-350; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2004-12-03
    Description: The overall approach should be to: (1) Seek simplest, sufficiently robust, integrated ground based sensor systems (wakes and weather) for AVOSS; (2) Expand all sensor performance cross-comparisons and data mergings in on-going field deployments; and (3) Achieve maximal cost effectiveness through hardware/info sharing. An effective team is in place to accomplish the above tasks.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 324-332; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2004-12-03
    Description: In the overview, a description of the LaRC trailer facility, lasers and transceivers, scanners, data systems and deployment are presented.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 247-260; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2004-12-03
    Description: Included in the overview is a discussion of the 1.5 micron laser specifications, eye safety and cost, scan rates, pulselength, range capability issues, Raman beam cleanup, receiver layout, and the real-time processor and display.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 292-298; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2004-12-03
    Description: Results from parametric runs using two-dimensional TASS are presented. First, a set of experiments are presented that examine the sensitivity of the aircraft initiation height for an "in ground effect" case with weak crosswind. Interaction between the ground and the wake vortex produces an oscillatory rebound whose phase and amplitude are a function of the generation height. A second set of experiments are presented which examine the influence on crosswind shear. Shear layers, such as may be found between the nocturnal stable layer and the residual layer, can act to deflect vortices upward. Further investigation reveals that the second derivative of the crosswind can differentially reduce the descent speed of each member of a vortex pair, causing tilting of the vortex pair. If sufficiently large, the second derivative of crosswind can deflect the vortex pair upwards, with the sign of the second derivative determining which of the two vortices rises to a higher altitude. Linear shear, on the other hand, caused no change in the descent speed of the vortices; thus having no effect on the orientation of the vortices. Observed and model data from an actual case are presented in support of the conclusion regarding the influence of shear on rising vortices.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 93-108; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2004-12-03
    Description: Crow instability can develop in most atmospheric turbulence levels, however, the ring vortices may not form in extremely strong turbulence cases due to strong dissipation of the vortices. It appears that strong turbulence tends to accelerate the occurrences of Crow instability. The wavelength of the most unstable mode is estimated to be about 5b(sub 0), which is less than the theoretical value of 8.6b(sub 0) (Crow, 1970) and may be due to limited domain size and highly nonlinear turbulent flow characteristics. Three-dimensional turbulence can decay wake vortices more rapidly. Axial velocity may be developed by vertical distortion of a vortex pair due to Crow instability or large turbulent eddy motion. More experiments with various non-dimensional turbulence levels are necessary to get useful statistics of wake vortex behavior due to turbulence. Need to investigate larger turbulence length scale effects by enlarging domain size or using grid nesting.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 131-144; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2004-12-03
    Description: The vortices produced by an aircraft in flight are a complex phenomena created from a 'sheet of vorticity' leaving the trailing edge of the aircraft surfaces. This sheet tends to roll-up into two counter-rotating vortices. After a few spans downstream of the aircraft, the roll-up process is complete and the vortex pair may be characterized in a simple manner for modeling purposes. Our research will focus on what happens to these post roll-up vortices in the vicinity of an airport terminal. As the aircraft wake vortices descend, they are transported by the air mass which they are embedded and are decayed by both internal and external processes. In the vicinity of the airport, these external influences are usually due to planetary boundary layer (PBL) turbulence. Using large-eddy simulation (LES), one may simulate a variety of PBL conditions. In the LES method, turbulence is generated in the PBL as a response to surface heat flux, horizontal pressure gradient, wind shear, and/or stratification, and may produce convective or unstably stratified, neutral, or stably stratified PBL's. Each of these PBL types can occur during a typical diurnal cycle of the PBL. Thus it is important to be able to characterize these conditions with the LES method. Once this turbulent environment has been generated, a vortex pair will be introduced and the interactions are observed. The objective is to be able to quantify the PBL turbulence vortex interaction and be able to draw some conclusions of vortex behavior from the various scale interactions. This research is ongoing, and we will focus on what has been accomplished to date and the future direction of this research. We will discuss the model being used, show results that validate its use in the PBL, and present a nested-grid method proposed to analyze the entire PBL and vortex pair simultaneously.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 109-130; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The purpose of the modelling effort at NASA Langley, including goals, is outlined in this presentation. Included, is a description of the numerical model that is used for the NASA wake vortex modeling effort and the approach that is taken in order to achieve the stated goals. Also shown are: 1) a demonstration of using the model in a fog environment; 2) preliminary results from a 3-D simulation in a nonturbulent and thermally-stable environment with comparison to a comparable 2-D simulation of the same event; and 3) several validation cases from the Idaho-Falls and Memphis field studies where results from the 2-D version of the model are compared with Lidar and tower data.
    Keywords: Aerodynamics
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 75-92; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The model is a replica of a modified MAX-103 kit aircraft that our Parks College of St. Louis University Student Design Group built and modified from a tail wheel to a tricycle configuration. A model was tested in the Parks College low-speed wind tunnel. I hope to initiate flight-testing upon my second return to. St. Louis. The combined data using wind tunnel, water tunnel, RC, flight-testing and analytical results will be very valuable for assessing the correlation between the different methods of analyses, since at present it is almost impossible to accurately predict flight characteristics from anything but in-situ tests. Unfortunately, political/financial reasons dictated using a generic wing rather than a specific model in the NASA-DFRC water tunnel.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2004-12-03
    Description: A hybrid boundary element finite volume method for unsteady transonic flow computation has been developed. In this method, the unsteady Euler equations in a moving frame of reference are solved in a small embedded domain (inner domain) around the airfoil using an implicit finite volume scheme. The unsteady full-potential equation, written in the same frame of reference and in the form of the Poisson equation. is solved in the outer domain using the integral equation boundary element method to provide the boundary conditions for the inner Euler domain. The solution procedure is a time-accurate stepping procedure, where the outer boundary conditions for the inner domain are updated using the integral equation -- boundary element solution over the outer domain. The method is applied to unsteady transonic flows around the NACA0012 airfoil undergoing pitching oscillation and ramp motion. The results are compared with those of an implicit Euler equation solver, which is used throughout a large computational domain, and experimental data.
    Keywords: Aerodynamics
    Type: Aeroelastic, CFD, and Dynamic Computation and Optimization for Buffet and Flutter Applications; NASA-CR-200634
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2004-12-03
    Description: In the design of an airframe, the effect of changing the geometry on resulting computations is necessary for design optimization. The geometry is defined in terms of a series of design variables, including design variables to define the wing planform, tail, canard, pylon, and nacelle. Design optimization in this research is based on how these design variable affect the potential flow. The potential flow is computed as a function of the geometry and location of a series of panels describing the airframe, which are in turn a function of the design variables. Multipole accelerated panel methods improve the computational complexity of the problem and thus are an attractive approach. To utilize the methods in design optimization, it was necessary to define the appropriate sensitivity derivatives. The overhead incurred from finding the sensitivity derivatives in conjunction with the original computation should be small. This research developed the background for multipole-accelerated panel methods and the framework for finding sensitivity derivatives in the methods. Potential flow panel codes are commonly used for powered-lift aerodynamic predictions for three dimensional geometries. Given an airframe which has been discretized into a series of panels to define the airframe geometry, potential is computed as a function of the influence of all panels on all other panels. This is a computationally intensive problem for which efficient solutions are desired to improve the computational time and to allow greater resolution by use of more panels. One such solution is the use of hierarchical multipole methods which entail approximations of the effects of far-field terms. Hierarchical multipole methods have become prevalent in molecular dynamics and gravitational physics, and have been introduced into the fields of capacitance calculations, computational fluid dynamics, and electromagnetics. The methods utilize multipole expansions to describe the effect of bodies (i.e. particles, astrophysical bodies, panels, etc.) within a sphere on points distant from the sphere, where the influence diminishes as a function of distance. The expansions are exact with infinite series, however, for practical computations, the series are truncated and accuracy is selected based on the number of terms retained in the expansions. A hierarchical tree structure groups bodies together based on proximity to allow definition of multipole expansions for each group. The multipole expansions are then used to compute the effect of the bodies in a group on distant bodies.
    Keywords: Aerodynamics
    Type: The 1995 NASA-ODU American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program; 90; NASA-CR-198210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2004-12-03
    Description: To summarize the significant highlights in this report: (1) Data quality, determined by multiple repeat runs performed on the TCA baseline configuration, and long-term repeatability, determined by comparing baseline Reference H data from this test to a previous test, have been shown to be good. (2) The longitudinal stability of the TCA is more non-linear than for the Reference H, and while it is similar at normal lift values, the TCA has considerably more pitch-up at higher lift. (3) Longitudinal control effectiveness of the TCA is similar to the Reference H and the ratio of elevator effectiveness to horizontal tail effectiveness is approximately 0.3. (4) The directional stability of the TCA is improved relative to Reference H at higher angles-of attack. The chine is effective for improving directional stability.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 612-668; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2004-12-03
    Description: The NASA-industry team has sponsored several studies in the last two years to address the installed nozzle boattail drag issues. Some early studies suggested that nozzle boattail drag could be as much as 25 to 40 percent of the subsonic cruise. As part of this study tests have been conducted at NASA-Langley to determine the uninstalled drag characteristics of a proposed nozzle. The overall objective was to determine the effects of nozzle external flap curvature and sidewall boattail variations. This test would also provide data for validating CFD predictions of nozzle boattail drag.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 669-706; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2004-12-03
    Description: AIRPLANE (Jameson/Baker) is a steady inviscid unstructured Euler flow solver. It has been validated on many HSR geometries. It is implemented as MESHPLANE, an unstructured mesh generator, and FLOPLANE, an iterative flow solver. The surface description from an Intergraph CAD system goes into MESHPLANE as collections of polygonal curves to generate the 3D mesh. The flow solver uses a multistage time stepping scheme with residual averaging to approach steady state, but R is not time accurate. The flow solver was ported from Cray to IBM SP2 by Wu-Sun Cheng (IBM); it could only be run on 4 CPUs at a time because of memory limitations. Meshes for the four cases had about 655,000 points in the flow field, about 3.9 million tetrahedra, about 77,500 points on the surface. The flow solver took about 23 wall seconds per iteration when using 4 CPUs. It took about eight and a half wall hours to run 1,300 iterations at a time (the queue limit is 10 hours). A revised version of FLOPLANE (Thomas) was used on up to 64 CPUs to finish up some calculations at the end. We had to turn on more communication when using more processors to eliminate noise that was contaminating the flow field; this added about 50% to the elapsed wall time per iteration when using 64 CPUs. This study involved computing lift and drag for a wing/body/nacelle configuration at Mach 0.9 and 4 degrees pitch. Four cases were considered, corresponding to four nacelle mass flow conditions.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance; Volume 1; Part 2; 1605-1648; NASA/CP-1999-209691/VOL1/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2004-12-03
    Description: The primary objectives of this study were to expand the data base showing the effects of LE radius distribution and corresponding . sensitivity to Rn at subsonic and transonic conditions, and to assess the predictive capability of CFD for these effects. Several key elements led to the initiation of this project: 1) the necessity of meeting multipoint design requirements to enable a viable HSCT, 2) the demonstration that blunt supersonic leading-edges can be associated with performance gain at supersonic speeds , and 3) limited data. A test of a modified Reference H model with the TCA planform and 2 LE radius distributions was performed in the NTF, in addition to Navier-Stokes analysis for an additional 3 LE radius distributions. Results indicate that there is a tremendous potential to improve high-lift performance through the use of a blunt LE across the span given an integrated, fully optimized design, and that low Rn data alone is probably not sufficient to demonstrate the benefit.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 588-610; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2004-12-03
    Description: In cooperation with personnel from the Boeing ANP Laboratory and NASA Langley, a performance test was conducted using the Reference-H 1.675% model ("NASA Modular Model") without nacelles at the NASA Langley 16-Ft Transonic Tunnel. The main objective of the test was to determine the drag reduction achievable with leading-edge and trailing-edge flaps deflected along the outboard wing span at transonic Mach numbers (M = 0.9 to 1.2) for purpose of preliminary design and for comparison with computational predictions. The obtained drag data with flap deflections for Mach numbers of 1.07 to 1.20 are unique for the Reference H wing. Four leading-edge and two trailing-edge flap deflection angles were tested at a mean-wing chord-Reynolds number of about 5.7 million. An outboard-wing leading-edge flap deflection of 81 provides a 4.5 percent drag reduction at M = 1.2 A = 0.2), and much larger values at lower Mach numbers with larger flap deflections. The present results for the baseline (no flaps deflected) compare reasonably well with previous Boeing and NASA Ref-H tunnel tests, including high-Reynolds number NTF results. Viscous CFD simulations using the OVERFLOW thin-layer N.S. method properly predict the observed trend in drag reduction at M = 1.2 as function of leading-edge flap deflection. Modified linear theory properly predicts the flap effects on drag at subsonic conditions (Aero2S code), and properly predicts the absolute drag for the 40 and 80 leading-edge deflection at M = 1.2 (A389 code).
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1109-1141; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2004-12-03
    Description: Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a proposed high speed civil transport configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at Mach 2.4 for a range of angles-of-attack and sideslip. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex shock wave structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics are shown to correlate very well with the measured data across the examined range of angles-of-attack and sideslip. The results from the present effort have been documented into a NASA Controlled-Distribution report which is being presently reviewed for publication.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 287-308; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2004-12-03
    Description: The objectives of the Cycle 2 Nonlinear Design Optimization Anlaytical Cross Checks are to: 1) Understand the variability in the predicted performance levels of the nonlinear designs arising from the use of different inviscid (full potential/Euler) and viscous (Navier-Stokes) analysis methods; and 2) Provide the information required to allow the performance levels of all three designs to be validated using the data from the NCV (nonlinear Cruise Validation) model test.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 45-73; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2004-12-03
    Description: During the last cycle of concept design and wind-tunnel testing, the goal of the low-boom- shaped HSCT concepts (the B-935, the LB-16, and the LB- 1 8) was to meet mission requirements and generate shaped, ground-level pressure signatures with nose shock strengths of 1.0 psf or less. The wind-tunnel tests of these concepts produced results that were partially successful and encouraging although not fully up to expectations. In spite of this, however, these conceptual designs were overly optimistic and not acceptable because: the wing planforms had excessive area; the wing structural aspect ratio was too high; one concept had aft-fuselage rather than under-the-wing engines; and the gross takeoff weights were unrealistically low because of engines that were early, high-tech versions of later, revised, more-realistic engines. The need for reducing the ground-level overpressure shock strengths still existed; a need to be met within more restrictive guidelines of mission performance and gross takeoff weight limitations. Therefore, it was decided that the next conceptual design cycle would focus on decreased nose shock strengths, "boom softening," in the signatures of the Boeing and the McDonnell Douglas baseline concepts rather than low-boom concepts with shaped-signature designs. Overly-optimistic results were not the only problem with these low-sonic-boom concepts. Papers given at the 1994 Sonic-Boom Workshop had demonstrated that the problem of successful nacelle integration on HSCT concepts had only been partially solved. Wind-tunnel pressure signature data, from the HSCT-11B (a.k.a. the LB-18) wind-tunnel model, showed that the Langley HSCT design and analysis method had been successful in reducing the nacelle-volume disturbances in the flow field. This was due.to the engine nacelles mounted behind the wing trailing-edge on the aft fuselage so that no nacelle-wing interference-lift flow-field disturbances were generated. While acceptable from a sonic-boom research point of view, this concept was unacceptable from several practical and structural considerations. Preliminary wind-tunnel pressure signature data from the LB-16 wind-tunnel model, which had the engine nacelles mounted under the wings (the usual location), indicated that the application of the Langley nacelle-integration method had been only partially successful in the reduction of the nacelle-volume with nacelle-wing interference-lift pressure disturbances. So, "boom softening" had to also address the task of successful integration of the engine nacelles, with the engines in the required under-the-wing location. Unless this problem was solved, low-sonic-boom and low-drag modifications to the wing planform, the airfoil shape, and the fuselage longitudinal area distribution could be nullified if the nacelle disturbances added increments to the nose-shock strengths that were removed through component tailoring. In this paper, an arrow-wing boom-softened HSC7 concept which incorporated modifications to a baseline McDonnell Douglas concept is discussed. The analysis of the concept's characteristics will include estimates of weight, center of gravity, takeoff field length, mission range, and predictions of its ground-level sonic-boom pressure signature. Additional modifications which enhanced the softened-boom performance of this concept are also described as well as estimates of the performance penalties induced by these modifications.
    Keywords: Aerodynamics
    Type: 1995 NASA High-Speed Research Program Sonic Boom Workshop; Volume 2; 121-136; NASA/CP-1999-209520/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2004-12-03
    Description: A 1:300 scale wind-tunnel model of a conceptual High-Speed Civil Transport (HSCT) designed to generate a shaped, low-boom pressure signature on the ground was tested to obtain sonic-boom pressure signatures in the Langley Research Center Unitary Plan Wind Tunnel at a Mach number of 1.8 and a separation distance of about two body lengths or four wing-spans from the model. Two sets of engine nacelles representing two levels of engine technology were used on the model to determine the effects of increased nacelle volume. Pressure signatures were measured for (model lift)/(design lift) ratios of 0.5, 0.63, 0.75, and 1.0 so that the effect of lift on the pressure signature could be determined. The results of these tests were analyzed and used to discuss the agreement between experimental data and design expectations.
    Keywords: Aerodynamics
    Type: High-Speed Research: 1994 Sonic Boom Workshop. Configuration, Design, Analysis and Testing; 59-71; NASA/CP-1999-209699
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2004-12-03
    Description: The NASA High Speed Research (HSR) Program is intended to establish a technology base enabling industry development of an economically viable and environmentally acceptable second generation high speed civil transport (HSCT). The objective of the Configuration Aerodynamics task of the program is the development of aerodynamic drag reduction, stability and control, and propulsion airframe integration technologies required to support the HSCT development process. Aerodynamic design tools are being developed, evaluated, and validated through ground based experimental testing. In addition, methods for ground to flight scaling are being developed and refined.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 147-169; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2004-12-03
    Description: This paper reports on the model, test, and results from the Langley Supersonic Aftbody Closure wind tunnel test. This project is an experimental evaluation of the 1.5% Technology Concept Aircraft (TCA) aftbody closure model (Model 23) in the Langley Unitary Plan Wind Tunnel. The baseline TCA design is the result of a multidisciplinary, multipoint optimization process and was developed using linear design and analysis methods, supplemented with Euler and Navier-Stokes numerical methods. After a thorough design review, it was decided to use an upswept blade attached to the forebody as the mounting system. Structural concerns dictated that a wingtip support system would not be feasible. Only the aftbody part of the model is metric. The metric break was chosen to be at the fuselage station where prior aft-sting supported models had been truncated. Model 23 is thus a modified version of Model 20. The wing strongback, flap parts, and nacelles from Model 20 were used, whereas new aftbodies, a common forebody, and some new tails were fabricated. In summary, significant differences in longitudinal and direction stability and control characteristics between the ABF and ABB aftbody geometries were measured. Correcting the experimental data obtained for the TCA configuration with the flared aftbody to the representative of the baseline TCA closed aftbody will result in a significant reduction in longitudinal stability, a moderate reduction in stabilizer effectiveness and directional stability, and a moderate to significant reduction in rudder effectiveness. These reductions in the stability and control effectiveness levels of the baseline TCA closed aftbody are attributed to the reduction in carry-over area.
    Keywords: Aerodynamics
    Type: 1999 NASA High-Speed Research Performance Workshop; Volume 1; Part 2; 1365-1472; NASA/CP-1999-209704/VOL1/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: There were two objectives for this test. First, was to assess the reasons why there is approximately 1.5 drag counts (cts) discrepancy between measured and computed drag improvement of the Non-linear Cruise Validation (NCV) over the Technology Concept Airplane (TCA) wing body (WB) configurations. The Navier-Stokes (N-S) pre-test predictions from Boeing Commercial Airplane Group (BCAG) show 4.5 drag cts of improvement for NCV over TCA at a lift coefficient (CL) of 0. I at Mach 2.4. The pre-test predictions from Boeing Phantom Works - Long Beach, BPW-LB, show 3.75 drag cts of improvement. BCAG used OVERFLOW and BPW-LB used CFL3D. The first test entry to validate the improvement was held at the NASA Langley Research Center (LARC) UPV;T, test number 1687. The experimental results showed that the drag improvement was only 2.6 cts, not accounting for laminar run and trip drag. This is approximately 1.5 cts less than predicted computationally. In addition to the low Reynolds Number (RN) test, there was a high RN test in the Boeing Supersonic Wind Tunnel (BSWT) of NCV and TCA. BSV@T test 647 showed that the drag improvement of NCV over TCA was also 2.6 cts, but this did account for laminar run and trip drag. Every effort needed to be done to assess if the improvement measured in LaRC UPWT and BSWT was correct. The second objective, once the first objective was met, was to assess the performance increment of NCV over TCA accounting for the associated laminar run and trip drag corrections in LaRC UPWT. We know that the configurations tested have laminar flow on portions of the wing and have trip drag due to the mechanisms used to force the flow to go from laminar to turbulent aft of the transition location.
    Keywords: Aerodynamics
    Type: 1999 NASA High-Speed Research Performance Workshop; Volume 1; Part 2; 1197-1288; NASA/CP-1999-209704/VOL1/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2004-12-03
    Description: An improved laminar run and trip drag correction methodology for supersonic cruise performance testing was derived. This method required more careful analysis of the flow visualization images which revealed delayed transition particularly on the inboard upper surface, even for the largest trip disks. In addition, a new code was developed to estimate the laminar run correction. Once the data were corrected for laminar run, the correct approach to the analysis of the trip drag became evident. Although the data originally appeared confusing, the corrected data are consistent with previous results. Furthermore, the modified approach, which was described in this presentation, extends prior historical work by taking into account the delayed transition caused by the blunt leading edges.
    Keywords: Aerodynamics
    Type: 1999 NASA High-Speed Research Performance Workshop; Volume 1; Part 2; 1163-1196; NASA/CP-1999-209704/VOL1/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2004-12-03
    Description: The turbulent, incompressible reattaching flow over a rearward-facing step has been studied by many researchers over the years. One of the principal quantities determined in these experiments has been the distance from the step to the point (or region) where the separated shear layer reattaches to the surface (x(r)). The values for x(r)/h, where h is the step height, have covered a wider range than can reasonably be attributed to experimental technique or inaccuracy. Often the reason for a largely different value of x(r)/h can be attributed to an incompletely developed turbulent layer, or a transitional or laminar boundary layer. However, for the majority of experiments where the boundary layer is believed to be fully developed and turbulent, x(r)/h still varies several step heights; generally, 5 1/2 approximately 〈 x(r)/h approximately 〈 7 1/2. This observed variation has usually been attributed to such variables as l/h (step length to height, h/delta (step height to initial boundary-layer thickness), R(e)(theta)), or the experimental technique for determining reattachment location. However, there are so many different combinations of variables in the previous experiments that it was not possible to sort out the effects of particular conditions on the location of reattachment. In the present experiment velocity profiles have been measured in and around the region of separated flow. Results show a large influence of adverse pressure gradient on the reattaching flow over a rearward-facing step that has not been reported previously. Further, the many previous experiments for fully developed, turbulent flow in parallel-walled channels have shown a range of reattachment location that has not been explained by differences in initial flow conditions. Although these initial flow conditions might contribute to the observed variation of reattachment location, it appears that the pressure gradient effect can explain most of that variation.
    Keywords: Aerodynamics
    Type: AIAA Journal; Volume 18; No. 3; 343-344
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2004-12-03
    Description: Gradient-based optimization requires accurate derivatives of the objective function and constraints. These gradients may have previously been obtained by manual differentiation of analysis codes, symbolic manipulators, finite-difference approximations, or existing automatic differentiation (AD) tools such as ADIFOR (Automatic Differentiation in FORTRAN). Each of these methods has certain deficiencies, particularly when applied to complex, coupled analyses with many design variables. Recently, a new AD tool called ADJIFOR (Automatic Adjoint Generation in FORTRAN), based upon ADIFOR, was developed and demonstrated. Whereas ADIFOR implements forward-mode (direct) differentiation throughout an analysis program to obtain exact derivatives via the chain rule of calculus, ADJIFOR implements the reverse-mode counterpart of the chain rule to obtain exact adjoint form derivatives from FORTRAN code. Automatically-generated adjoint versions of the widely-used CFL3D computational fluid dynamics (CFD) code and an algebraic wing grid generation code were obtained with just a few hours processing time using the ADJIFOR tool. The codes were verified for accuracy and were shown to compute the exact gradient of the wing lift-to-drag ratio, with respect to any number of shape parameters, in about the time required for 7 to 20 function evaluations. The codes have now been executed on various computers with typical memory and disk space for problems with up to 129 x 65 x 33 grid points, and for hundreds to thousands of independent variables. These adjoint codes are now used in a gradient-based aerodynamic shape optimization problem for a swept, tapered wing. For each design iteration, the optimization package constructs an approximate, linear optimization problem, based upon the current objective function, constraints, and gradient values. The optimizer subroutines are called within a design loop employing the approximate linear problem until an optimum shape is found, the design loop limit is reached, or no further design improvement is possible due to active design variable bounds and/or constraints. The resulting shape parameters are then used by the grid generation code to define a new wing surface and computational grid. The lift-to-drag ratio and its gradient are computed for the new design by the automatically-generated adjoint codes. Several optimization iterations may be required to find an optimum wing shape. Results from two sample cases will be discussed. The reader should note that this work primarily represents a demonstration of use of automatically- generated adjoint code within an aerodynamic shape optimization. As such, little significance is placed upon the actual optimization results, relative to the method for obtaining the results.
    Keywords: Aerodynamics
    Type: HPCCP/CAS Workshop Proceedings 1998; 225-229; NASA/CP-1999-208757
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2004-12-03
    Description: In the early 1990's, Glezer and his co-workers at Georgia Tech made a startling discovery. They found that forcing at frequencies too high to directly affect the production scales led to a dramatic alteration in the development of a turbulent shear layer. An experimental study of this phenomenon is presented in Wiltse and Glezer. They used piezoelectric actuators located near the jet exit plane to force the shear layers of a square low-speed jet. The actuators were driven at a high frequency in the Kolmogorov inertial subrange, much higher than the frequencies associated with the large-scale motion (where the turbulent energy is produced and located) but much lower than those associated with the Kolmogorov scale (where the turbulent energy is dissipated). Measurements of the shear-layer turbulence showed that direct excitation of small-scale motion by high-frequency forcing led to an increase in the turbulent dissipation of more than an order of magnitude in the initial region of the shear layer! The turbulent dissipation gradually decreased with downstream distance but remained above the corresponding level for the unforced flow at all locations examined. The high-frequency forcing increased the turbulent kinetic energy in the initial region near the actuators, but the kinetic energy decreased quite rapidly with downstream distance, dropping to levels that were a small fraction of the level for the unforced case. Perhaps most importantly from the present standpoint, the high-frequency forcing significantly decreased the energy in the large-scale motion, increasingly so with downstream distance. Wiltse and Glezer interpreted this behavior as an enhanced transfer of energy from the large scales to the small scales. The initial work by Wiltse and Glezer has expanded into other applications. To explore the potential of high-frequency forcing for active acoustic suppression, in 1998 the first author proposed a set of experiments involving an edge tone shear layer and an open cavity flow. This work was funded by the US Air Force Research Laboratory, and the experiments were developed and executed at Boeing by Raman and Kibens. These experiments involved high-frequency forcing applied to low-speed flows using wedge piezo actuators and powered resonance tubes. The system is simple, open loop, compact, potentially requires little power, and is easily integrated. Dramatic results, such as reductions of 20 dB in spectral peaks and 5-8 dB in overall levels across the entire acoustic spectrum, were obtained in some cases. Sample results are presented. Following this success in low-speed flows, an international cooperative program continuing this work involved transonic experiments in a mid-size facility in the United Kingdom. Similar reductions in noise level were obtained in these transonic experiments. Discussion of this work is given in Raman et at. and Stanek, Raman, Kibens, and Ross. Other experiments at Georgia Tech have shown significant potential of high-frequency forcing in controlling reaction rates in chemically reacting flows.
    Keywords: Aerodynamics
    Type: Annual Research Briefs - 2000: Center for Turbulence Research; 55-65
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Computations have been performed on the baseline Reference H wing/body configuration, as well as the Wing 704 configuration, an optimized wing and fuselage combination derived from Ref. H through automated optimization. The parabolized Navier-Stokes solver UPS was employed with viscous terms in two directions in an effort to understand the source and level of potential viscous/inviscid interactions. The paper briefly describes the UPS code and the grids used to obtain the solutions before the discussion of results. Results of these computations indicate that viscous/inviscid interaction can contribute increments to both the pressure- and friction-related drag. Computations were performed for wind tunnel conditions-1.675% scale models at a Reynolds number of 4 million per foot. Turbulent flow results were obtained using the Baldwin-Lomax algebraic turbulence model and were compared with laminar flow results. The laminar flow fields were used to obtain upper bounds on potential interaction effects.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Pt. 2; 335-353; NASA/CP-1999-209690/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2004-12-03
    Description: The NASA-industry team has sponsored several studies in the last two years to address the installed nozzle boattail drag issues. Some early studies suggested that nozzle boattail drag could be as much as 25 to 40 percent of the subsonic cruise. As part of this study tests have been conducted at NASA-Langley to determine the uninstalled drag characteristics of a proposed nozzle. The overall objective was to determine the effects of nozzle external flap curvature and sidewall boattail variations. This test would also provide data for validating CFD predictions of nozzle boattail drag.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 669-706; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2004-12-03
    Description: The objective of this milestone is to assess the propulsion/airframe integration characteristics of the Technology Concept Airplane and design variations through computational analysis and experimental subsonic through supersonic wind tunnel testing. The Milestone will generate a comprehensive CFD and wind tunnel data base of the baseline, and design variations. Emphasis will be placed on establishing the propulsion induced effects on the flight performance of the Technology Concept Airplane with all appropriate wind tunnel corrections.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance; Volume 1; Part 2; 1550-1604; NASA/CP-1999-209691/VOL1/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2004-12-03
    Description: The computational fluid dynamics (CFD) comparisons being presented are compared to each other and to wind tunnel (WT) data on the baseline TCA. Some of the CFD computations were done prior to the tests and others later. Only force data (CL vs CD) from CFD will be presented as part of this report. The WT data presented comes from the testing of the baseline TCA in the Langley Unitary Plan Wind Tunnel (UPWT), Test Section #2. There are 2 sets of wind tunnel data being presented: one from test 1671 of model 2a (flapped wing) and the other from test 1679 of model 2b (solid wing). Most of the plots show only one run from each of the WT tests per configuration. But many repeat runs were taken during the tests. The WT repeat runs showed an uncertainty in the drag of +/- 0.5 count. There were times when the uncertainty in drag was better, +/- 0.25 count. Test 1671 data was of forces and pressures measured from model 2a. The wing had cutouts for installing various leading and trailing edge flaps at lower Mach numbers. The internal duct of the nacelles are not designed and fabricated as defined in the outer mold lines (OML) iges file. The internal duct was fabricated such that a linear transition occurs from the inlet to exhaust. Whereas, the iges definition has a constant area internal duct that quickly transitions from the inlet to exhaust cross sectional shape. The nacelle internal duct was fabricated, the way described, to save time and money. The variation in the cross sectional area is less than 1% from the iges definition. The nacelles were also installed with and without fairings. Fairings are defined as the build up of the nacelles on the upper wing surface so that the nacelles poke through the upper surface as defined in the OML iges file. Test 1679 data was of forces measured from model 2a and 2b. The wing for model 2b was a solid wing. The nacelles were built the same way as for model 2a, except for the nacelle base pressure installation. The nacelles were only tested with the fairings for model 2a and 2b during test 1679.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance; Volume 1; Part 2; 1500-1549; NASA/CP-1999-209691/VOL1/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2004-12-03
    Description: Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the CPU time limit available on the Cray machines. A typical optimization run using finite difference gradients can use only 30 to 40 design variables and one optimization iteration within the 8 hour queue limit for the chosen grid size and convergence level. The efficiency afforded by the adjoint method allowed for 50-120 design variables and 5-10 optimization iterations in the 8 hour queue. Geometric perturbations to the wing and fuselage were made using the Hicks/Henne (HH) shape functions. The HH functions were distributed uniformly along the chords of the wing defining sections and lofted linearly. During single-surface design, constraints on thickness and volume at selected wing stations were imposed. Both fuselage camber and cross-sectional area distributions were permitted to change during design. The major disadvantage to the use of these functions is the inherent surface waviness produced by repeated use of such functions. Many smoothing operations were required following optimization runs to produce a configuration with reasonable smoothness. Wagner functions were also used on the wing sections but were never used on the fuselage. The Wagner functions are a family of increasingly oscillatory functions that have also been used extensively in airfoil design. The leading and trailing edge regions of the wing were designed by use of polynomial and monomial functions respectively. Twist was attempted but was abandoned because of little performance improvement available from changing the baseline twist.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 2; 1257-1347; NASA/CP-1999-209691/VOL1/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2004-12-03
    Description: The TetrUSS (Tetrahedral Unstructured Software System), developed at NASA LaRC, enables one to take a vehicle from its surface definition to its analyzed solution. The important parts are the shape definition, accomplished in GRIDTOOL; the initial front and volume grid generation in VGRID; the flow solver USM3D, and the various ways used to post-process the computational results.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aeodynamic Performance Workshop; Volume 2; 2471-2507; NASA/CP-1999-209692/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2004-12-03
    Description: The objective of this study is to calibrate a Navier-Stokes code for the TCA (30/10) baseline configuration (partial span leading edge flaps were deflected at 30 degs. and all the trailing edge flaps were deflected at 10 degs). The computational results for several angles of attack are compared with experimental force, moments, and surface pressures. The code used in this study is CFL3D; mesh sequencing and multi-grid were used to full advantage to accelerate convergence. A multi-grid approach was used similar to that used for the Reference H configuration allowing point-to-point matching across all the trailingedge block interfaces. From past experiences with the Reference H (ie, good force, moment, and pressure comparisons were obtained), it was assumed that the mounting system would produce small effects; hence, it was not initially modeled. However, comparisons of lower surface pressures indicated the post mount significantly influenced the lower surface pressures, so the post geometry was inserted into the existing grid using Chimera (overset grids).
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aeodynamic Performance Workshop; Volume 2; 2691-2733; NASA/CP-1999-209692/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2004-12-03
    Description: The objective of the present study was to address the questions of: 1) how reliably or consistently the Navier-Stokes methods and processes used by the various organizations can predict integrated skin friction drag, and 2) how well the methods can predict trends within a family of optimized configurations. As a first step, all available skin friction drag predictions were accumulated to obtain a mean and standard deviation for the TCA (Technology Concept Airplane) baseline and each of the optimized configurations. It is observed that the optimization process has had little effect on the predicted skin friction drags. The variation in the mean that is observed is dwarfed by the standard deviations. In order to understand the reasons for the relatively large spreads in the computed results, a number of auxiliary computations have been performed using the UPS and OVERFLOW codes in an effort to identify and quantity potential sources of the variations.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 333-353; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2004-12-03
    Description: The paper presents the recent progress made towards developing an efficient and user-friendly parallel environment for routine analysis of large CFD problems. The coarse-grain parallel version of the CFL3D Euler/Navier-Stokes analysis code, CFL3Dhp, has been ported onto most available parallel platforms. The CFL3Dhp solution accuracy on these parallel platforms has been verified with the CFL3D sequential analyses. User-friendly pre- and post-processing tools that enable a seamless transfer from sequential to parallel processing have been written. Static load balancing tool for CFL3Dhp analysis has also been implemented for achieving good parallel efficiency. For large problems, load balancing efficiency as high as 95% can be achieved even when large number of processors are used. Linear scalability of the CFL3Dhp code with increasing number of processors has also been shown using a large installed transonic nozzle boattail analysis. To highlight the fast turn-around time of parallel processing, the TCA full configuration in sideslip Navier-Stokes drag polar at supersonic cruise has been obtained in a day. CFL3Dhp is currently being used as a production analysis tool.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 171-203; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2004-12-03
    Description: This paper presents an Unstructured Navier-Stokes Analysis of Full TCA (Technology Concept Airplane) Configuration. The topics include: 1) Motivation; 2) Milestone and approach; 3) Overview of the unstructured-grid system; 4) Results on full TCA W/B/N/D/E configuration; 5) Concluding remarks; and 6) Future directions.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 309-327; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2004-12-03
    Description: Automatic Grid Generation Wish List Geometry handling, including CAD clean up and mesh generation, remains a major bottleneck in the application of CFD methods. There is a pressing need for greater automation in several aspects of the geometry preparation in order to reduce set up time and eliminate user intervention as much as possible. Starting from the CAD representation of a configuration, there may be holes or overlapping surfaces which require an intensive effort to establish cleanly abutting surface patches, and collections of many patches may need to be combined for more efficient use of the geometrical representation. Obtaining an accurate and suitable body conforming grid with an adequate distribution of points throughout the flow-field, for the flow conditions of interest, is often the most time consuming task for complex CFD applications. There is a need for a clean unambiguous definition of the CAD geometry. Ideally this would be carried out automatically by smart CAD clean up software. One could also define a standard piece-wise smooth surface representation suitable for use by computational methods and then create software to translate between the various CAD descriptions and the standard representation. Surface meshing remains a time consuming, user intensive procedure. There is a need for automated surface meshing, requiring only minimal user intervention to define the overall density of mesh points. The surface mesher should produce well shaped elements (triangles or quadrilaterals) whose size is determined initially according to the surface curvature with a minimum size for flat pieces, and later refined by the user in other regions if necessary. Present techniques for volume meshing all require some degree of user intervention. There is a need for fully automated and reliable volume mesh generation. In addition, it should be possible to create both surface and volume meshes that meet guaranteed measures of mesh quality (e.g. minimum and maximum angle, stretching ratios, etc.).
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 75-145; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2004-12-03
    Description: Conventional CFD methods and grids do not yield adequate resolution of the complex shock flow pattern generated by a real aircraft geometry. As a result, a unique grid topology and supersonic flow solver was developed at Northrop Grumman based on the characteristic behavior of supersonic wave patterns emanating from the aircraft. Using this approach, it was possible to compute flow fields with adequate resolution several body lengths below the aircraft. In this region, three-dimensional effects are diminished and conventional two-dimensional modified linear theory (MLT) can be applied to estimate ground pressure signatures or sonic booms. To accommodate real aircraft geometries and alleviate the burdensome grid generation task, an implicit marching multi-block, multi-grid finite-volume Euler code was developed as the basis for the sonic boom prediction methodology. The Thomas two-dimensional extrapolation method is built into the Euler code so that ground signatures can be obtained quickly and efficiently with minimum computational effort suitable to the aircraft design environment. The loudness levels of these signatures can then be determined using a NASA generated noise code. Since the Euler code is a three-dimensional flow field solver, the complete circumferential region below the aircraft is computed. The extrapolation of all this field data from a cylinder of constant radius leads to the definition of the entire boom corridor occurring directly below and off to the side of the aircraft's flight path yielding an estimate for the entire noise "annoyance" corridor in miles as well as its magnitude. An automated multidisciplinary sonic boom design optimization software system was developed during the latter part of HSR Phase 1. Using this system, it was found that sonic boom signatures could be reduced through optimization of a variety of geometric aircraft parameters. This system uses a gradient based nonlinear optimizer as the driver in conjunction with a computationally efficient Euler CFD solver (NIIM3DSB) for computing the three-dimensional near-field characteristics of the aircraft. The intent of the design system is to identify and optimize geometric design variables that have a beneficial impact on the ground sonic boom. The system uses a simple wave drag data format to specify the aircraft geometry. The geometry is internally enhanced and analytic methods are used to generate marching grids suitable for the multi-block Euler solver. The Thomas extrapolation method is integrated into this system, and hence, the aircraft's centerline ground sonic boom signature is also automatically computed for a specified cruise altitude and yields the parameters necessary to evaluate the design function. The entire design system has been automated since the gradient based optimization software requires many flow analyses in order to obtain the required sensitivity derivatives for each design variable in order to converge on an optimal solution. Hence, once the problem is defined which includes defining the objective function and geometric and aerodynamic constraints, the system will automatically regenerate the perturbed geometry, the necessary grids, the Euler solution, and finally the ground sonic boom signature at the request of the optimizer.
    Keywords: Aerodynamics
    Type: 1995 NASA High-Speed Research Program Sonic Boom Workshop; Volume 2; 138-160; NASA/CP-1999-209520/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2004-12-03
    Description: A team was formed to tackle the sonic boom softening issues of the current Boeing HSCT design. The team consisted of personnel from NASA Ames, NASA Langley, and Boeing company. The work described in this paper was done when the first author was at NASA Ames Research Center. This paper presents the sonic boom softening work on two Boeing High Speed Civil Transport (HSCT) baseline configurations, Reference-H and Boeing-1122. This presentation can be divided into two parts: parametric studies and sonic boom minimization by CFD optimization routines.
    Keywords: Aerodynamics
    Type: 1995 NASA High-Speed Research Program Sonic Boom Workshop; Volume 2; 73-94; NASA/CP-1999-209520/VOL2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2004-12-03
    Description: The objectives of this research are: 1) To determine the effect of geometric variations near the inboard leading-edge flap on high-lift and stability and control performance data; 2) To determine Re effects on TCA (Technology Concept Aircraft) high-lift configuration for optimum high-lift and stability and control performance at takeoff, climbout, approach and landing conditions; and 3) To obtain flow-visualization data on upper surface of wing for CFD validations. This paper is presented in viewgraph form.
    Keywords: Aerodynamics
    Type: 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 2; Part 1; 1-56; NASA/CP/1999-209704/VOL2/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2004-12-03
    Description: A wind-tunnel research program has been under-taken by the NASA to study the aerodynamic characteristics of T-tail aircraft at high angles of attack. The program was designed to show the effects on longitudinal stability and control of several configuration variables. The results to date do not allow the formulation of general design rules, but the effects of several configuration variables have been noted to have a prime influence on the post-stall characteristics. An increase in tail size, changes in the location of fuselage-mounted engine nacelles, and reduced fuselage-forebody lift were all found to have a beneficial effect on static longitudinal stability at high angles of attack.
    Keywords: Aerodynamics
    Type: NASA Conference on Aircraft Operating Problems: A Compilation of the Papers Presented; 113-121
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2004-12-03
    Description: The purpose of this paper is to present results of a system analysis and operational evaluation of a captive airfoil balloon system. The system was used operationally in support of an Aeropalynologic Survey Project at NASA Wallops Island, Virginia, during the summer of 1966.
    Keywords: Aerodynamics
    Type: Proceedings: AFCRL Tethered Balloon Workshop, 1967; 145-162; AFCRL-68-0097
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2004-12-03
    Description: This presentation describes the advances being made with the Aerodynamic Shape Optimization (ASO) and high-fidelity Multidisciplinary Optimization (MDO) software used in the High Speed Research Program at NASA Ames Research Center. The description starts with the motivation for continued ASO/MDO development. Objectives of the current work are then presented. A list of ingredients deemed necessary for a flexible design environment is discussed, and the HSR requirement for different geometries at different design points is explained. Multiple design disciplines within a high-fidelity design environment are demonstrated. Finally, progress so far is summarized and planned future work is outlined.
    Keywords: Aerodynamics
    Type: 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 801-864; NASA/CP-1999-209704/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2004-12-03
    Description: This report considers the effect of canard and horizontal tail vertical position on the aerodynamic characteristics of the PTC configuration without nacelles and diverters. This analysis is followed by three optimization studies using canard and tail incidence as design variables in the first problem followed by an optimization run with canard and tail incidence and wing camber design variables and finally an optimization run with canard incidence and wing camber. The first problem was run at fixed lift while the other two problems were run at fixed angle of attack. The final investigation reported here will show data from a component buildup study using the PTC configuration. This final study will show the aerodynamic interference between the canard, wing and horizontal tail.
    Keywords: Aerodynamics
    Type: 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 747-800; NASA/CP-1999-209704/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This paper presents results of three minor studies into the behavior of the OVERFLOW with respect to the prediction of skin friction drag on wing bodies at cruise Mach number and wind tunnel Reynolds number. The studies include a preliminary assessment of the behavior of the two new 2-equation turbulence models introduced with the latest version of OVERFLOW (v. 1.8f), an investigation into potential improvements in the matrix dissipation scheme currently implemented in OVERFLOW, and an analysis of the observed sensitivity of the code's skin friction predictions to grid stretching at solid surface boundaries.
    Keywords: Aerodynamics
    Type: 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 401-416; NASA/CP-1999-209704/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2004-12-03
    Description: The computational results of the optimized complete configurations, including nacelles and diverters, are presented in terms of drag count improvement compared with the TCA baseline configuration at Mach 2.4, C(sub L)=0.1. The three candidate designs are designated by the organization from which they were derived. ARC represents the Ames Research Center 1-03 design, BCAG represents the Boeing Commercial Aircraft Group's design from Seattle, and BLB represents the design from Boeing Long Beach. All CFD methods are in unanimous agreement that the Ames 1-03 configuration has the largest performance improvement, followed closely by the BCAG configuration, with a much smaller improvement attained by Boeing Long Beach. The Ames design was obtained using the single-block wing/body code SYN87-SB with its "pseudo" nacelle option-an elaborate technique for incorporating nacelle/diverter effects into the design optimization process. This technique uses AIRPLANE surface pressure coefficient data with and without the nacelles/diverters. Further details of this method are described. It is reasonable to expect that further improvements could be achieved by including the "real" nacelles directly into the optimization process by use of the newly-developed multiblock optimization code, SYN107-MB, which can handle full configurations.
    Keywords: Aerodynamics
    Type: 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 685-746; NASA/CP-1999-209704/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2004-12-03
    Description: The aim of this work is to demonstrate a simple technique which accounts for aeroelastic deformations experienced by HSR wind-tunnel models within CFD computations. With improved correlations, CFD can become a more effective tool for augmenting the post-test understanding of experimental data. The present technique involves the loose coupling of a low-level structural representation within the ELAPS code, to an unstructured Navier-Stokes flow solver, USM3Dns. The ELAPS model is initially calibrated against bending characteristics of the wind-tunnel model. The strength of this method is that, with a single point calibration of a simple structural representation, the static aeroelastic effects can be accounted for in CFD calculations across a range of test conditions. No prior knowledge of the model deformation during the wind-on test is required. This approach has been successfully applied to the high aspect-ratio planforms of subsonic transports. The current challenge is to adapt the procedure to low aspect-ratio planforms typical of HSR configurations.
    Keywords: Aerodynamics
    Type: 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 621-640; NASA/CP-1999-209704/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2004-12-03
    Description: This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.
    Keywords: Aerodynamics
    Type: 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 21-65; NASA/CP-1999-209704/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2004-12-03
    Description: LaRC conducted a code validation study for the OVERFLOW code to ascertain its accuracy for boattail drag prediction. The OVERFLOW results compared favorably with the LaRC 16-ft. Transonic Wind Tunnel (TWT) data, and prior CFD solutions from PAB3D and CFL3D. The ultimate goal is to investigate the installation drag of the nacelle boattails with powered nozzles at transonic mach numbers. The OVERFLOW solver was chosen because of its ability to accept volume overlapping structured grid for very complex airframe configurations. Structured grid components for representing the transonic nozzle boattail can be added to the BCAG grid for a TCA airframe with 2D bifurcated inlet and flow through nacelle without alteration. The focus of this research was to determine the suitability of the OVERFLOW solver for accomplishing this ultimate goal. This presentation will first introduce the transonic nozzle boattail wind-tunnel model geometry, followed by an examination of aerodynamic features based on the current OVERFLOW solutions and the solutions obtained previously using PAB3D, comparisons of Cp on the flap surface between the OVERFLOW solutions, wind tunnel data, and solutions from other CFD codes, an assessment of boattail drag count prediction, and a work plan for FY99.
    Keywords: Aerodynamics
    Type: 1999 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 1-20; NASA/CP-1999-209704/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2004-12-03
    Description: A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares and mixed estimation methods. At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.
    Keywords: Aerodynamics
    Type: System Identification for Integrated Aircraft Development and Flight Testing; 18-1 - 18-20; RTO-MP-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2004-12-03
    Description: Large-eddy simulation (LES) has matured to the point where application to complex flows is described. The extension to higher Reynolds numbers leads to an impractical number of grid points with existing structured-grid methods. Furthermore, most real world flows are rather difficult to represent geometrically with structured grids. Unstructured-grid methods offer a release from both of these constraints. However, just as it took many years for structured-grid methods to be well understood and reliable tools for LES, unstructured-grid methods must be carefully studied before we can expect them to attain their full potential.
    Keywords: Aerodynamics
    Type: Annual Research Briefs-1996; 225-232; NASA-TM-112358
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2004-12-03
    Description: The concept studied during the summer NASA/ASEE Fellowship provides a means of lowering drag and a means for directional control of supersonic and hypersonic vehicles. Low drag and efficient directional control are essential for the success of aircraft, atmospheric entry vehicles, missiles, and other vehicles in supersonic and hypersonic flight. Drag reduction can result in increased vehicle range, increased speed, improved fuel efficiency, increased lift/drag ratio, and increased climb rate. For high supersonic and hypersonic vehicles heat transfer considerations dictate the design of the nose and leading edge. The heat transfer to such vehicles is most severe at stagnation points which occur on the leading edges and nose of the vehicle. Theoretical formulations, experimental data, and semi-empirical formulas all agree in the fact that stagnation point heat transfer is inversely proportional to the square root of the nose or leading edge radius. Thus, the noses and leading edges of supersonic and hypersonic vehicles are typically blunted so that the heat transfer and structural loads will be manageable. However, much of the wave drag experienced by these vehicles is due to nose blunting.
    Keywords: Aerodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2004-12-03
    Description: NASA researchers have designed a system to predict aircraft wake turbulence on final approach, so airliners can be spaced more safely and efficiently. This technology, known as the Aircraft VOrtex Spacing System (AVOSS), demonstrates an integration of technologies that provides weather-dependent dynamic aircraft spacing for wake avoidance in a real-time relevant environment. AVOSS was successfully demonstrated at Dallas Fort-Worth Airport in July 2000. The demonstration represented the culmination of 6 years of field-testing, data collection, and development.
    Keywords: Aerodynamics
    Type: Virtual Airspace Modeling and Simulation (VAMS) Project First Technical Interchange Meeting; 214-221; NASA/CP-2002-211845
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...