ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: This paper gives the results of a grid study, a turbulence model study, and a Reynolds number effect study for transonic flows over a high-speed aircraft using the thin-layer, upwind, Navier-Stokes CFL3D code. The four turbulence models evaluated are the algebraic Baldwin-Lomax model with the Degani-Schiff modifications, the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, and Menter's two-equation Shear-Stress-Transport (SST) model. The flow conditions, which correspond to tests performed in the NASA Langley National Transonic Facility (NTF), are a Mach number of 0.90 and a Reynolds number of 30 million based on chord for a range of angle-of-attacks (1 degree to 10 degrees). For the Reynolds number effect study, Reynolds numbers of 10 and 80 million based on chord were also evaluated. Computed forces and surface pressures compare reasonably well with the experimental data for all four of the turbulence models. The Baldwin-Lomax model with the Degani-Schiff modifications and the one-equation Baldwin-Barth model show the best agreement with experiment overall. The Reynolds number effects are evaluated using the Baldwin-Lomax with the Degani-Schiff modifications and the Baldwin-Barth turbulence models. Five angles-of-attack were evaluated for the Reynolds number effect study at three different Reynolds numbers. More work is needed to determine the ability of CFL3D to accurately predict Reynolds number effects.
    Keywords: Aerodynamics
    Type: First NASA/Industry High-Speed Research Configuration Aerodynamics Workshop; Part 3; 1185-1214; NASA/CP-1999-209690/PT3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The NASA High Speed Research (HSR) Program is intended to establish a technology base enabling industry development of an economically viable and environmentally acceptable second generation high speed civil transport (HSCT). The HSR program consists of work directed towards several broad technology areas, one of which is aerodynamic performance. The objective of the Configuration Aerodynamics task of the Aerodynamic Performance technology area is the development of aerodynamic drag reduction, stability and control, and propulsion airframe integration technologies required to support the HSCT development process. Towards this goal, computational and empirical based aerodynamic design tools are being developed, evaluated, and validated through ground based experimental testing. In addition, methods for ground to flight scaling are being developed and refined. Successful development of validated design and scaling methodologies will result in improved economy of operation for an HSCT and reduce uncertainty in full-scale flight predictions throughout the development process.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 539-569; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The primary objectives of this study were to expand the data base showing the effects of LE radius distribution and corresponding sensitivity to Rn at subsonic and transonic conditions, and to assess the predictive capability of CFD for these effects. Several key elements led to the initiation of this project: 1) the necessity of meeting multipoint design requirements to enable a viable HSCT, 2) the demonstration that blunt supersonic leading-edges can be associated with performance gain at supersonic speeds , and 3) limited data. A test of a modified Reference H model with the TCA planform and 2 LE radius distributions was performed in the NTF, in addition to Navier-Stokes analysis for an additional 3 LE radius distributions. Results indicate that there is a tremendous potential to improve high-lift performance through the use of a blunt LE across the span given an integrated, fully optimized design, and that low Rn data alone is probably not sufficient to demonstrate the benefit.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 588-611; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: The primary objectives of this study were to expand the data base showing the effects of LE radius distribution and corresponding . sensitivity to Rn at subsonic and transonic conditions, and to assess the predictive capability of CFD for these effects. Several key elements led to the initiation of this project: 1) the necessity of meeting multipoint design requirements to enable a viable HSCT, 2) the demonstration that blunt supersonic leading-edges can be associated with performance gain at supersonic speeds , and 3) limited data. A test of a modified Reference H model with the TCA planform and 2 LE radius distributions was performed in the NTF, in addition to Navier-Stokes analysis for an additional 3 LE radius distributions. Results indicate that there is a tremendous potential to improve high-lift performance through the use of a blunt LE across the span given an integrated, fully optimized design, and that low Rn data alone is probably not sufficient to demonstrate the benefit.
    Keywords: Aerodynamics
    Type: 1997 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 588-610; NASA/CP-1999-209691/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: The NASA High Speed Research (HSR) Program is intended to establish a technology base enabling industry development of an economically viable and environmentally acceptable second generation high speed civil transport (HSCT). The objective of the Configuration Aerodynamics task of the program is the development of aerodynamic drag reduction, stability and control, and propulsion airframe integration technologies required to support the HSCT development process. Aerodynamic design tools are being developed, evaluated, and validated through ground based experimental testing. In addition, methods for ground to flight scaling are being developed and refined.
    Keywords: Aerodynamics
    Type: 1998 NASA High-Speed Research Program Aerodynamic Performance Workshop; Volume 1; Part 1; 147-169; NASA/CP-1999-209692/VOL1/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A computational investigation was performed to study the flow over a supercritical airfoil model. Solutions were obtained for steady-state transonic flow conditions using a thin-layer Navier-Stokes flow solver. The results from this computational study were compared with time-averaged experimental data obtained over a wide Reynolds number range at transonic speeds in the Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons were made at a nominal Mach number of 0.72 and at Reynolds numbers ranging from 6 x 10(exp 6) to 35 x 10(exp 6).
    Keywords: AERODYNAMICS
    Type: NASA-TM-4601 , L-17330 , NAS 1.15:4601
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.
    Keywords: Research and Support Facilities (Air); Aerodynamics; Fluid Mechanics and Thermodynamics
    Type: NF1676L-21894 , CEAS Air and Space Conference: Challenges in European Aerospace; Sep 07, 2015 - Sep 11, 2015; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: An experimental investigation of the NASA Common Research Model was conducted in the NASA Langley National Transonic Facility and NASA Ames 11-foot Transonic Wind Tunnel Facility for use in the Drag Prediction Workshop. As data from the experimental investigations was collected, a large difference in moment values was seen between the experiment and computational data from the 4th Drag Prediction Workshop. This difference led to a computational assessment to investigate model support system interference effects on the Common Research Model. The results from this investigation showed that the addition of the support system to the computational cases did increase the pitching moment so that it more closely matched the experimental results, but there was still a large discrepancy in pitching moment. This large discrepancy led to an investigation into the shape of the as-built model, which in turn led to a change in the computational grids and re-running of all the previous support system cases. The results of these cases are the focus of this paper.
    Keywords: Aerodynamics
    Type: NF1676L-13865 , 30th AIAA Applied Aerodynamics Meeting; Jun 25, 2012 - Jun 28, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: An experimental aerodynamic investigation of the DLR (German Aerospace Center) F6 generic transport configuration has been conducted in the NASA NTF (National Transonic Facility) for CFD validation within the framework of the AIAA Drag Prediction Workshop. Force and moment, surface pressure, model deformation, and surface flow visualization data have been obtained at Reynolds numbers of both 3 million and 5 million. Flow-through nacelles and a side-of-body fairing were also investigated on this wing-body configuration. Reynolds number effects on trailing edge separation have been assessed, and the effectiveness of the side-of-body fairing in eliminating a known region of separated flow has been determined. Data obtained at a Reynolds number of 3 million are presented together for comparison with data from a previous wind tunnel investigation in the ONERA S2MA facility. New surface flow visualization capabilities have also been successfully explored and demonstrated in the NTF for the high pressure and moderately low temperature conditions required in this investigation. Images detailing wing surface flow characteristics are presented.
    Keywords: Aerodynamics
    Type: 26th AIAA Applied Aerodynamics Conference; Aug 18, 2008 - Aug 21, 2008; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-10
    Description: Four turbulence models are described and evaluated for transonic flows over the High-Speed Research/industry baseline configuration known as Reference H by using the thin-layer, upwind, Navier-Stokes solver known as CFL3D. The turbulence models studied are the equilibrium model of Baldwin-Lomax (B-L) with the Degani-Schiff (D-S) modifications, the one-equation Baldwin-Barth (B-B) model, the one-equation Spalart-Allmaras (S-A) model, and Menter's two-equation Shear Stress Transport (SST) model. The flow conditions, which correspond to tests performed in the National Transonic Facility (NTF) at Langley Research Center, are a Mach number of 0.90 and a Reynolds number of 30 x 10 (exp. 6) based on mean aerodynamic chord for angles of attack of 1 deg., 5 deg., and 10 deg. The effects of grid topology and the representation of the actual wind tunnel model geometry are also investigated. Computed forces and surface pressures compare reasonably well with the experimental data for all four turbulence models.
    Keywords: Aerodynamics
    Type: NASA/TP-1999-209540 , NAS 1.60:209540 , L-17597
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...