ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2004-12-03
    Description: The use of balloons/aerobots on Mars has been under consideration for many years. Concepts include deployment during entry into the atmosphere from a carrier spacecraft, deployment from a lander, use of super-pressurized systems for long duration flights, 'hot-air' systems, etc. Principal advantages include the ability to obtain high-resolution data of the surface because balloons provide a low-altitude platform which moves relatively slowly. Work conducted within the last few years has removed many of the technical difficulties encountered in deployment and operation of balloons/aerobots on Mars. The concept proposed here (a tethered balloon released from a lander) uses a relatively simple approach which would enable aspects of Martian balloons to be tested while providing useful and potentially unique science results. Tethered Micro-Balloons on Mars (TMBM) would be carried to Mars on board a future lander as a stand-alone experiment having a total mass of one to two kilograms. It would consist of a helium balloon of up to 50 cubic meters that is inflated after landing and initially tethered to the lander. Its primary instrumentation would be a camera that would be carried to an altitude of up to tens of meters above the surface. Imaging data would be transmitted to the lander for inclusion in the mission data stream. The tether would be released in stages allowing different resolutions and coverage. In addition during this staged release a lander camera system may observe the motion of the balloon at various heights above he lander. Under some scenarios upon completion of the primary phase of TMBM operations, the tether would be cut, allowing TMBM to drift away from the landing site, during which images would be taken along the ground.
    Keywords: Aerodynamics
    Type: Concepts and Approaches for Mars Exploration; Part 2; 285; LPI-Contrib-1062-Pt-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: Environments can be local, regional, or global. They can include one or more geological, morphological, climatological, and biological types. An environment also represents all the interactions that take place in the identified boundaries. Current planned missions to Mars in the Surveyor Program assume a good knowledge of the Martian environment that we do not have because it cannot be obtained only from orbit. There is a missing step between orbital data and the complex Surveyor missions to be landed that needs to be filled. The Ames/IRSPS Scout Mission Concept originally proposed in February 1999 filled this gap by landing a series of small (less than 10 kgs. each) scout missions. The Mars Environment Scout Mission Concept is being developed to explore the possibility of sending a series of small, simple, and inexpensive stations to the surface of Mars. The objective(s) would be to document either: (a) the environmental diversity of Mars, (b) a specific Martian environment, and/or (c) a region of interest. This type of mission will provide critical information about environments that is currently not available, and could also be used as precursors helping the design, preparation, and planning of more complex future missions to come.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 1; 52-53; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: A mission designed to collect and return samples from Mars will provide information regarding its composition, history, and evolution. At the same time, a sample return mission generates a technical challenge. Sophisticated, semi-autonomous, robotic spacecraft systems must be developed in order to carry out complex operations at the surface of a very distant planet. An interdisciplinary effort was conducted to consider how much a Mars mission can be realistically structured to maximize the planetary science return. The focus was to concentrate on a particular set of scientific objectives (exobiology), to determine the instrumentation and analyses required to search for biological signatures, and to evaluate what analyses and decision making can be effectively performed by the rover in order to minimize the overhead of constant communication between Mars and the Earth. Investigations were also begun in the area of machine vision to determine whether layered sedimentary structures can be recognized autonomously, and preliminary results are encouraging.
    Keywords: ASTRONAUTICS (GENERAL)
    Type: Lunar and Planetary Inst., Workshop on Mars Sample Return Science; p 145-146
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: For reasons defined elsewhere it is reasonable to search for biological signatures, both chemical and morphological, of extinct life on Mars. Life on Earth requries the presence of liquid water, therefore, it is important to explore sites on Mars where standing bodies of water may have once existed. Outcrops of layered deposits within the Valles Marineris appear to be ancient lake beds. Because the outcrops are well exposed, relatively shallow core samples would be very informative. The most important biological signature to detect would be organics, microfossils, or larger stromato-like structures, although the presence of cherts, carbonates, clays, and shales would be significant. In spite of the limitations of current robotics and pattern recognition, and the limitations of rover power, computation, Earth communication bandwidth, and time delays, a partial scenario was developed to implement such a scientific investigation. The rover instrumentation and the procedures and decisions and IR spectrometer are described in detail. Preliminary results from a collaborative effort are described, which indicate the rover will be able to autonomously detect stratification, and hence will ease the interpretation burden and lead to greater scientific productivity during the rover's lifetime.
    Keywords: SPACE BIOLOGY
    Type: Exobiology and Future Mars Missions; p 55
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-02
    Description: Long Day's Drive (LLD) will investigate the north polar layered deposits (PLD). The overarching science rationale for LDD is the belief that the PLD preserve within their stratigraphy an interpretable record of recent climate and geologic history for Mars. Our primary goal is to obtain data that can provide a basis for interpreting that record. In addition, we will test the hypothesis that the ice of the PLD contains organics at higher concentrations than the aeolian dust sampled at the two Viking sites. Finally, we seek to contribute to the understanding of Mars' total volatile inventory by detailed determination of the ice content of the PLD over the traverse.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Third International Conference on Mars Polar Science and Exploration; LPI-Contrib-1184
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...