ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (150)
  • Springer Nature
  • Copernicus
  • American Association for the Advancement of Science (AAAS)
  • American Chemical Society (ACS)
Collection
Source
  • 1
    Publication Date: 2024-04-04
    Description: Perturbations in stratospheric aerosol due to explosive volcanic eruptions are a primary contributor to natural climate variability. Observations of stratospheric aerosol are available for the past decades, and information from ice cores has been used to derive estimates of stratospheric sulfur injections and aerosol optical depth over the Holocene (approximately 10 000 BP to present) and into the last glacial period, extending back to 60 000 BP. Tephra records of past volcanism, compared to ice cores, are less complete but extend much further into the past. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present here an ensemble reconstruction of volcanic stratospheric sulfur injection (VSSI) over the last 140 000 years that is based primarily on terrestrial and marine tephra records. VSSI values are computed as a simple function of eruption magnitude based on VSSI estimates from ice cores and satellite observations for identified eruptions. To correct for the incompleteness of the tephra record, we include stochastically generated synthetic eruptions assuming a constant background eruption frequency from the ice core Holocene record. While the reconstruction often differs from ice core estimates for specific eruptions due to uncertainties in the data used and reconstruction method, it shows good agreement with an ice-core-based VSSI reconstruction in terms of millennial-scale cumulative VSSI variations over the Holocene. The PalVol reconstruction provides a new basis to test the contributions of forced vs. unforced natural variability to the spectrum of climate and the mechanisms leading to abrupt transitions in the palaeoclimate record with low- to high-complexity climate models. The PalVol volcanic forcing reconstruction is available at https://doi.org/10.26050/WDCC/PalVolv1 (Toohey and Schindlbeck-Belo, 2023).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface-to-bottom ocean biogeochemical bottle data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of seawater samples. GLODAPv2.2022 is an update of the previous version, GLODAPv2.2021 (Lauvset et al., 2021). The major changes are as follows: data from 96 new cruises were added, data coverage was extended until 2021, and for the first time we performed secondary quality control on all sulphur hexafluoride (SF6) data. In addition, a number of changes were made to data included in GLODAPv2.2021. These changes affect specifically the SF6 data, which are now subjected to secondary quality control, and carbon data measured onboard the RV Knorr in the Indian Ocean in 1994–1995 which are now adjusted using CRM measurements made at the time. GLODAPv2.2022 includes measurements from almost 1.4 million water samples from the global oceans collected on 1085 cruises. The data for the now 13 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, CCl4, and SF6) have undergone extensive quality control with a focus on systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but converted to World Ocean Circulation Experiment (WOCE) exchange format and (ii) as a merged data product with adjustments applied to minimize bias. For the present annual update, adjustments for the 96 new cruises were derived by comparing those data with the data from the 989 quality controlled cruises in the GLODAPv2.2021 data product using crossover analysis. SF6 data from all cruises were evaluated by comparison with CFC-12 data measured on the same cruises. For nutrients and ocean carbon dioxide (CO2) chemistry comparisons to estimates based on empirical algorithms provided additional context for adjustment decisions. The adjustments that we applied are intended to remove potential biases from errors related to measurement, calibration, and data handling practices without removing known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate, 4 μmol kg-1 in dissolved inorganic carbon, 4 μmol kg-1 in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete CO2 fugacity (fCO2), were not subjected to bias comparison or adjustments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Geological archives record multiple reversals of Earth’s magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion [41 to 42 thousand years ago (ka)]. We use ancient New Zealand kauri trees (Agathis australis) to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion. We precisely characterize the geomagnetic reversal and perform global chemistry-climate modeling and detailed radiocarbon dating of paleoenvironmental records to investigate impacts. We find that geomagnetic field minima ~42 ka, in combination with Grand Solar Minima, caused substantial changes in atmospheric ozone concentration and circulation, driving synchronous global climate shifts that caused major environmental changes, extinction events, and transformations in the archaeological record.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: During the last ice age, the Northern Hemisphere experienced a series of abrupt millennial-scale climatic changes linked to variations in the strength of the Atlantic Meridional Overturning Circulation and sea-ice extent. However, our understanding of their impacts on decadal-scale climate variability in central Europe has been limited by the lack of high-resolution continental archives. Here, we present a near annual-resolution climate proxy record of central European temperature reconstructed from the Eifel maar lakes of Holzmaar and Auel in Germany, spanning the past 60,000 years. The lake sediments reveal a series of previously undocumented multidecadal climate cycles of around 20 to 150 years that persisted through the last glacial cycle. The periodicity of these cycles suggests that they are related to the Atlantic multidecadal climate oscillations found in the instrumental record and in other climate archives during the Holocene. Our record shows that multidecadal variability in central Europe was strong during all warm interstadials, but was substantially muted during all cold stadial periods. We suggest that this decrease in multidecadal variability was the result of the atmospheric circulation changes associated with the weakening of the Atlantic Meridional Overturning Circulation and the expansion of North Atlantic sea-ice cover during the coldest parts of the last ice age.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer Nature
    In:  In: Encyclopedia of Solid Earth Geophysics. , ed. by Gupta, H. Encyclopedia of Earth Sciences Series . Springer Nature, Cham, Switzerland, , 11 pp. ISBN 978-3-030-10475-7
    Publication Date: 2021-02-10
    Description: The Trans-European Suture Zone (TESZ) is the transition zone from the Precambrian East European Craton in the north and east to the younger Phanerozoic mobile belts to the south and west. It is the most prominent lithospheric tectonic feature of Europe. The term Trans-European Suture Zone was only adapted around year 2000 during the Pan-European EUROPROBE program of the European Science Foundation. Until then, parts of the zone were termed Teisseyre-Tornquist Zone, Sorgenfrei-Tornquist Zone, Trans-European Fault, and Tornquist Fan.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-01-08
    Description: The last extended time period when climate may have been warmer than today was during the Last Interglacial (LIG; ca. 129 to 120 thousand years ago). However, a global view of LIG precipitation is lacking. Here, seven new LIG climate models are compared to the first global database of proxies for LIG precipitation. In this way, models are assessed in their ability to capture important hydroclimatic processes during a different climate. The models can reproduce the proxy-based positive precipitation anomalies from the preindustrial period over much of the boreal continents. Over the Southern Hemisphere, proxy-model agreement is partial. In models, LIG boreal monsoons have 42% wider area than in the preindustrial and produce 55% more precipitation and 50% more extreme precipitation. Austral monsoons are weaker. The mechanisms behind these changes are consistent with stronger summer radiative forcing over boreal high latitudes and with the associated higher temperatures during the LIG.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science Advances, 5 (4). eaav7337.
    Publication Date: 2021-01-08
    Description: Variations in Earth’s orbit pace the glacial-interglacial cycles of the Quaternary, but the mechanisms that transform regional and seasonal variations in solar insolation into glacial-interglacial cycles are still elusive. Here, we present transient simulations of coevolution of climate, ice sheets, and carbon cycle over the past 3 million years. We show that a gradual lowering of atmospheric CO2 and regolith removal are essential to reproduce the evolution of climate variability over the Quaternary. The long-term CO2 decrease leads to the initiation of Northern Hemisphere glaciation and an increase in the amplitude of glacial-interglacial variations, while the combined effect of CO2 decline and regolith removal controls the timing of the transition from a 41,000- to 100,000-year world. Our results suggest that the current CO2 concentration is unprecedented over the past 3 million years and that global temperature never exceeded the preindustrial value by more than 2°C during the Quaternary.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-08
    Description: Heinrich events are among the dominant modes of glacial climate variability. During these events, massive iceberg armadas were released by the Laurentide Ice Sheet, sailed across the Atlantic, and caused large-scale climate changes. We study these events in a fully coupled complex ice sheet–climate model with synchronous coupling between ice sheets and oceans. The ice discharges occur as internal variability of the model with a recurrence period of 5kyr, an event duration of 1–1.5kyr, and a peak discharge rate of about 50mSv, roughly consistent with reconstructions. The climate response shows a two-stage behavior, with freshwater release effects dominating the surge phase and ice-sheet elevation effects dominating in the post-surge phase. As a direct response to the freshwater discharge during the surge phase, the deepwater formation in the North Atlantic decreases and the North Atlantic deepwater cell weakens by 3.5Sv. With the reduced oceanic heat transport, the surface temperatures across the North Atlantic decrease, and the associated reduction in evaporation causes a drying in Europe. The ice discharge lowers the surface elevation in the Hudson Bay area and thus leads to increased precipitation and accelerated ice sheet regrowth in the post-surge phase. Furthermore, the jet stream widens to the north and becomes more zonal. This contributes to a weakening of the subpolar gyre, and a continued cooling over Europe even after the ice discharge. This two-stage behavior can explain previously contradicting model results and understandings of Heinrich Events.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: To provide an observational basis for the Intergovernmental Panel on Climate Change projections of a slowing Atlantic meridional overturning circulation (MOC) in the 21st century, the Overturning in the Subpolar North Atlantic Program (OSNAP) observing system was launched in the summer of 2014. The first 21-month record reveals a highly variable overturning circulation responsible for the majority of the heat and freshwater transport across the OSNAP line. In a departure from the prevailing view that changes in deep water formation in the Labrador Sea dominate MOC variability, these results suggest that the conversion of warm, salty, shallow Atlantic waters into colder, fresher, deep waters that move southward in the Irminger and Iceland basins is largely responsible for overturning and its variability in the subpolar basin.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-01-31
    Description: We quantify the oceanic sink for anthropogenic carbon dioxide (CO 2 ) over the period 1994 to 2007 by using observations from the global repeat hydrography program and contrasting them to observations from the 1990s. Using a linear regression–based method, we find a global increase in the anthropogenic CO 2 inventory of 34 ± 4 petagrams of carbon (Pg C) between 1994 and 2007. This is equivalent to an average uptake rate of 2.6 ± 0.3 Pg C year −1 and represents 31 ± 4% of the global anthropogenic CO 2 emissions over this period. Although this global ocean sink estimate is consistent with the expectation of the ocean uptake having increased in proportion to the rise in atmospheric CO 2 , substantial regional differences in storage rate are found, likely owing to climate variability–driven changes in ocean circulation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-02-08
    Description: As plastic waste pollutes the oceans and fish stocks decline, unseen below the surface another problem grows: deoxygenation. Breitburg et al. review the evidence for the downward trajectory of oxygen levels in increasing areas of the open ocean and coastal waters. Rising nutrient loads coupled with climate change—each resulting from human activities—are changing ocean biogeochemistry and increasing oxygen consumption. This results in destabilization of sediments and fundamental shifts in the availability of key nutrients. In the short term, some compensatory effects may result in improvements in local fisheries, such as in cases where stocks are squeezed between the surface and elevated oxygen minimum zones. In the longer term, these conditions are unsustainable and may result in ecosystem collapses, which ultimately will cause societal and economic harm.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-02-08
    Description: Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 362 (6421). pp. 1403-1407.
    Publication Date: 2021-02-08
    Description: Marine protected areas (MPAs) are increasingly used as a primary tool to conserve biodiversity. This is particularly relevant in heavily exploited fisheries hot spots such as Europe, where MPAs now cover 29% of territorial waters, with unknown effects on fishing pressure and conservation outcomes. We investigated industrial trawl fishing and sensitive indicator species in and around 727 MPAs designated by the European Union. We found that 59% of MPAs are commercially trawled, and average trawling intensity across MPAs is at least 1.4-fold higher as compared with nonprotected areas. Abundance of sensitive species (sharks, rays, and skates) decreased by 69% in heavily trawled areas. The widespread industrial exploitation of MPAs undermines global biodiversity conservation targets, elevating recent concerns about growing human pressures on protected areas worldwide.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-01-02
    Description: Microplastics (MPs, 〈5 mm) have been reported as emerging environmental contaminants, but reliable data are still lacking. We compared the two most promising techniques for MP analysis, namely, Raman and Fourier transform infrared (FTIR) spectroscopy, by analyzing MPs extracted from North Sea surface waters. Microplastics 〉500 μm were visually sorted and manually analyzed by μ-Raman and attenuated total reflection (ATR)-FTIR spectroscopy. Microplastics ≤500 μm were concentrated on gold-coated filters and analyzed by automated single-particle exploration coupled to μ-Raman (ASPEx-μ-Raman) and FTIR imaging (reflection mode). The number of identified MPs 〉500 μm was slightly higher for μ-Raman (+23%) than ATR-FTIR analysis. Concerning MPs ≤500 μm, ASPEx-μ-Raman quantified two-times higher MP numbers but required a four-times higher analysis time compared to FTIR imaging. Because ASPEx-μ-Raman revealed far higher MP concentrations (38–2621 particles m–3) compared to the results of previous water studies (0–559 particles m–3), the environmental concentration of MPs ≤500 μm may have been underestimated until now. This may be attributed to the exceptional increase in concentration with decreasing MP size found in this work. Our results demonstrate the need for further research to enable time-efficient routine application of ASPEx-μ-Raman for reliable MP counting down to 1 μm.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-01-08
    Description: The cage occupancy plays a crucial role in the thermodynamic stability of clathrate hydrates and is an important quantity for understanding the CO2–CH4 replacement phenomenon. In this work, the occupancy isotherms of pure CH4, pure CO2, and their mixture in sI and sII hydrates are studied by GCMC + MD simulations. The adsorption of CH4 and CO2 + CH4 in the sI and sII hydrates can be categorized as the one-site Langmuir type. The calculated occupancy ratio θL/θS and the abundance ratio of CO2 to CH4 vary with the temperature and pressure, which provide the prerequisite information for the prediction of CH4 recovery yield at different conditions in the CO2–CH4 gas exchange process. The phase equilibria of clathrate hydrates of pure gases and mixtures are explored and the corresponding heat of dissociation and hydration numbers are determined. The current investigation provides new perspectives to understand the mechanism behind the gas adsorption behavior of clathrate hydrates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-09-12
    Description: In this study, we propose a statistical method to validate sea-level reconstructions using geological records known as sea-level indicators (SLIs). SLIs are often the only available data to retrace late-glacial relative sea level (RSL). Determining the RSL from SLI height is not straight forward, the elevation at which an SLI was found usually does not represent the past RSL. In contrast, it has to be related to past RSL by investigating sample’s type, habitat and deposition conditions. For instance, water distribution at which a specific specimen is found today can be related to the indicator's depositional height range. Furthermore, the precision of dating varies between geological samples, and, in case of radiocarbon dating, the age has to be calibrated using a non-linear calibration curve. To avoid an a-priori assumption like normal-distributed uncertainties, we define likelihood functions which take into account the indicative meaning’s available error information and calibration statistics represented by joint probabilities. For this conceptional study, we restrict ourselves to one type of indicators, shallow-water shells, which are usually considered as low-grade samples giving only a lower limit of former sea level, as the depth range in which they live spreads over several tens of meters, and does not follow a normal distribution. The presented method is aimed to serve as a strategy for glacial isostatic adjustment reconstructions, in this case for the German Paleo-Climate Modelling Initiative PalMod (https://www.palmod.de/en) and by extending it to other SLI types.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 361 (6408). eaau1371.
    Publication Date: 2018-10-15
    Description: Hoffmann et al. (Reports, 23 February 2018, p. 912) report the discovery of parietal art older than 64,800 years and attributed to Neanderthals, at least 25 millennia before the oldest parietal art ever found. Instead, critical evaluation of their geochronological data seems to provide stronger support for an age of 47,000 years, which is much more consistent with the archaeological background in hand.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Copernicus
    In:  Climate of the Past Discussions . pp. 1-51.
    Publication Date: 2018-09-05
    Description: Dynamic vegetation models simulate global vegetation in terms of fractional coverages of a few plant functional types (PFTs). Although these models often share the same concept, they differ with respect to the number and kind of PFTs, complicating the comparability of simulated vegetation distributions. Pollen-based reconstructions are initially only available in form of time-series of individual taxa that are not distinguished in the models. Thus, to evaluate simulated vegetation distributions, the modelling results and pollen-based reconstructions have to be converted into a comparable format. The classical approach is the method of biomisation, but hitherto, PFT-based biomisation methods were only available for individual models. We introduce and evaluate a simple, universally applicable technique to harmonize PFT-distributions by assigning them into nine mega-biomes that follow the definitions commonly used for vegetation reconstructions. The method works well for all state-of the art dynamic vegetation models, independent of the spatial resolution or the complexity of the models. Large biome belts (such as tropical forest) are well represented, but regionally confined biomes (warm-mixed forest, Savanna) are only partly captured. Overall, the PFT-based biomisation is able to keep up with the conventional biomisation approach of forcing biome models (here: BIOME1) with the background climate states. The new method has, however, the advantage that it allows a more direct comparison and evaluation of the vegetation distributions simulated by Earth System Models. Thereby, the new method provides a powerful tool for the evaluation of Earth System Models in general.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-09-14
    Description: We have developed a new module to calculate soil organic carbon (SOC) accumulation in perennially frozen ground in the land surface model JSBACH. Running this offline version of MPI-ESM we have modelled permafrost carbon accumulation and release from the Last Glacial Maximum (LGM) to the Pre-industrial (PI). Our simulated near-surface PI permafrost extent of 16.9Miokm2 is close to observational evidence. Glacial boundary conditions, especially ice sheet coverage, result in profoundly different spatial patterns of glacial permafrost extent. Deglacial warming leads to large-scale changes in soil temperatures, manifested in permafrost disappearance in southerly regions, and permafrost aggregation in formerly glaciated grid cells. In contrast to the large spatial shift in simulated permafrost occurrence, we infer an only moderate increase of total LGM permafrost area (18.3Miokm2) – together with pronounced changes in the depth of seasonal thaw. Reconstructions suggest a larger spread of glacial permafrost towards more southerly regions, but with a highly uncertain extent of non-continuous permafrost. Compared to a control simulation without describing the transport of SOC into perennially frozen ground, the implementation of our newly developed module for simulating permafrost SOC accumulation leads to a doubling of simulated LGM permafrost SOC storage (amounting to a total of ~150PgC). Despite LGM temperatures favouring a larger permafrost extent, simulated cold glacial temperatures – together with low precipitation and low CO2 levels – limit vegetation productivity and therefore prevent a larger glacial SOC build-up in our model. Changes in physical and biogeochemical boundary conditions during deglacial warming lead to an increase in mineral SOC storage towards the Holocene (168PgC at PI), which is below observational estimates (575PgC in continuous and discontinuous permafrost). Additional model experiments clarified the sensitivity of simulated SOC storage to model parameters, affecting long-term soil carbon respiration rates and simulated active layer depths. Rather than a steady increase in carbon release from the LGM to PI as a consequence of deglacial permafrost degradation, our results suggest alternating phases of soil carbon accumulation and loss as an effect of dynamic changes in permafrost extent, active layer depths, soil litter input, and heterotrophic respiration.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Copernicus
    In:  Climate of the Past Discussions . pp. 1-31.
    Publication Date: 2018-09-14
    Description: Climate reconstructions based on proxy records recovered from marine sediments, such as alkenone records or geochemical parameters measured on foraminifera, play an important role in our understanding of the climate system. They provide information about the state of the ocean ranging back hundreds to millions of years and form the backbone of paleo-oceanography. However, there are many sources of uncertainty associated with the signal recovered from sediment archived proxies. These include seasonal or depth habitat biases in the recorded signal, a frequency dependent reduction in the amplitude of the recorded signal due to bioturbation of the sediment, aliasing of high frequency climate variation onto a nominally annual, decadal or centennial resolution signal, and additional sample processing and measurement error introduced when the proxy signal is recovered. Here we present a forward model for sediment archived proxies that jointly models the above processes, so that the magnitude of their separate and combined effects can be investigated. Applications include the interpretation and analysis of uncertainty in existing proxy records, parameter sensitivity analysis to optimize future studies, and the generation of pseudo-proxy records that can be used to test reconstruction methods. We provide examples, such as the simulation of individual foraminifera records, that demonstrate the usefulness of the forward model for paleoclimate studies. The model is implemented as a user-friendly R package, sedproxy, the use of which we hope will contribute to a better understanding of both the limitations and potential of marine sediment proxies to inform about past climate.
    Type: Article , NonPeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-02-10
    Description: Microbial communities often exhibit incredible taxonomic diversity, raising questions regarding the mechanisms enabling species coexistence and the role of this diversity in community functioning. On the one hand, many coexisting but taxonomically distinct microorganisms can encode the same energy-yielding metabolic functions, and this functional redundancy contrasts with the expectation that species should occupy distinct metabolic niches. On the other hand, the identity of taxa encoding each function can vary substantially across space or time with little effect on the function, and this taxonomic variability is frequently thought to result from ecological drift between equivalent organisms. Here, we synthesize the powerful paradigm emerging from these two patterns, connecting the roles of function, functional redundancy and taxonomy in microbial systems. We conclude that both patterns are unlikely to be the result of ecological drift, but are inevitable emergent properties of open microbial systems resulting mainly from biotic interactions and environmental and spatial processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-11-01
    Description: The Argentine margin contains important sedimentological, paleontological and chemical records of regional and local tectonic evolution, sea level, climate evolution and ocean circulation since the opening of the South Atlantic in the Late Jurassic–Early Cretaceous as well as the present-day results of post-depositional chemical and biological alteration. Despite its important location, which underlies the exchange of southern- and northern-sourced water masses, the Argentine margin has not been investigated in detail using scientific drilling techniques, perhaps because the margin has the reputation of being erosional. However, a number of papers published since 2009 have reported new high-resolution and/or multichannel seismic surveys, often combined with multi-beam bathymetric data, which show the common occurrence of layered sediments and prominent sediment drifts on the Argentine and adjacent Uruguayan margins. There has also been significant progress in studying the climatic records in surficial and near-surface sediments recovered in sediment cores from the Argentine margin. Encouraged by these recent results, our 3.5-day IODP (International Ocean Discovery Program) workshop in Buenos Aires (8–11 September 2015) focused on opportunities for scientific drilling on the Atlantic margin of Argentina, which lies beneath a key portion of the global ocean conveyor belt of thermohaline circulation. Significant opportunities exist to study the tectonic evolution, paleoceanography and stratigraphy, sedimentology, and biosphere and geochemistry of this margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  Industrial & Engineering Chemistry Research, 56 (44). pp. 12755-12762.
    Publication Date: 2020-02-06
    Description: The discharges from industrial processes constitute the main source of copper contamination in aqueous ecosystems. In this study we investigated the capacity of different types of biochar (derived from chicken manure, eucalyptus, corncob, olive mill and pine sawdust) to remove copper from aqueous solution in a continuous-flow system. The flow rate of the system strongly influenced the amount of copper retained. The adsorption to the corncob biochar varied from 5.51 to 3.48 mg Cu g-1 as the flux decreased from 13 to 2.5 mL min-1. The physicochemical characteristics of biochar determine the copper retention capacity and the underlying immobilization mechanisms. Biochars with high inorganic contents retain the largest amounts of copper and may be suitable for using in water treatment systems to remove heavy metals. The copper retention capacity of the biochars ranged between ~1.3 and 26 mg g-1 and varied in the following order: chicken manure 〉 olive mill 〉〉 corncob 〉 eucalyptus 〉 sawdust pine.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-06-25
    Description: Recognition that evolution operates on the same timescale as ecological processes has motivated growing interest in eco-evolutionary dynamics. Nonetheless, generating sufficient data to test predictions about eco-evolutionary dynamics has proved challenging, particularly in natural contexts. Here we argue that genomic data can be integrated into the study of eco-evolutionary dynamics in ways that deepen our understanding of the interplay between ecology and evolution. Specifically, we outline five major questions in the study of eco-evolutionary dynamics for which genomic data may provide answers. Although genomic data alone will not be sufficient to resolve these challenges, integrating genomic data can provide a more mechanistic understanding of the causes of phenotypic change, help elucidate the mechanisms driving eco-evolutionary dynamics, and lead to more accurate evolutionary predictions of eco-evolutionary dynamics in nature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-06-25
    Description: Although nearly all 2 °C scenarios use negative CO2 emission technologies, only relatively small investments are being made in them, and concerns are being raised regarding their large-scale use. If no explicit policy decisions are taken soon, however, their use will simply be forced on us to meet the Paris climate targets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-10-23
    Description: The current generation of marine biogeochemical modules in Earth system models (ESMs) considers mainly the effect of marine biota on the carbon cycle. We propose to also implement other biologically driven mechanisms in ESMs so that more climate-relevant feedbacks are captured. We classify these mechanisms in three categories according to their functional role in the Earth system: (1) "biogeochemical pumps", which affect the carbon cycling; (2) "biological gas and particle shuttles", which affect the atmospheric composition; and (3) "biogeophysical mechanisms", which affect the thermal, optical, and mechanical properties of the ocean. To resolve mechanisms from all three classes, we find it sufficient to include five functional groups: bulk phyto- and zooplankton, calcifiers, and coastal gas and surface mat producers. We strongly suggest to account for a larger mechanism diversity in ESMs in the future to improve the quality of climate projections.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-02-06
    Description: Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Springer Nature
    In:  Nature Ecology & Evolution, 1 (Article number: 0116).
    Publication Date: 2020-06-25
    Description: Marine microscopic plastic (microplastic) debris is a modern societal issue, illustrating the challenge of balancing the convenience of plastic in daily life with the prospect of causing ecological harm by careless disposal. Here we develop the concept of microplastic as a complex, dynamic mixture of polymers and additives, to which organic material and contaminants can successively bind to form an ‘ecocorona’, increasing the density and surface charge of particles and changing their bioavailability and toxicity. Chronic exposure to microplastic is rarely lethal, but can adversely affect individual animals, reducing feeding and depleting energy stores, with knock-on effects for fecundity and growth. We explore the extent to which ecological processes could be impacted, including altered behaviours, bioturbation and impacts on carbon flux to the deep ocean. We discuss how microplastic compares with other anthropogenic pollutants in terms of ecological risk, and consider the role of science and society in tackling this global issue in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Springer Nature
    In:  Nature Reviews Cancer, 17 (9). pp. 528-542.
    Publication Date: 2020-06-24
    Description: Autophagy is a mechanism by which cellular material is delivered to lysosomes for degradation, leading to the basal turnover of cell components and providing energy and macromolecular precursors. Autophagy has opposing, context-dependent roles in cancer, and interventions to both stimulate and inhibit autophagy have been proposed as cancer therapies. This has led to the therapeutic targeting of autophagy in cancer to be sometimes viewed as controversial. In this Review, we suggest a way forwards for the effective targeting of autophagy by understanding the context-dependent roles of autophagy and by capitalizing on modern approaches to clinical trial design.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-02-06
    Description: Arctic sea-ice loss is a leading indicator of climate change and can be attributed, in large part, to atmospheric forcing. Here, we show that recent ice reductions, weakening of the halocline, and shoaling of intermediate-depth Atlantic Water layer in the eastern Eurasian Basin have increased winter ventilation in the ocean interior, making this region structurally similar to that of the western Eurasian Basin. The associated enhanced release of oceanic heat has reduced winter sea-ice formation at a rate now comparable to losses from atmospheric thermodynamic forcing, thus explaining the recent reduction in sea-ice cover in the eastern Eurasian Basin. This encroaching “atlantification” of the Eurasian Basin represents an essential step toward a new Arctic climate state, with a substantially greater role for Atlantic inflows.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  Environmental Science & Technolog, 51 (23). pp. 13733-13739.
    Publication Date: 2020-02-06
    Description: The majority of methane produced in many anoxic sediments is released via ebullition. These bubbles are subject to dissolution as they rise, and dissolution rates are strongly influenced by bubble size. Current understanding of natural methane bubble size distributions is limited by the difficulty in measuring bubble sizes over wide spatial or temporal scales. Our custom optical bubble size sensors recorded bubble sizes and release timing at 8 locations in Upper Mystic Lake, MA continuously for 3 months. Bubble size distributions were spatially heterogeneous even over relatively small areas experiencing similar flux, suggesting that localized sediment conditions are important to controlling bubble size. There was no change in bubble size distributions over the 3 month sampling period, but mean bubble size was positively correlated with daily ebullition flux. Bubble data was used to verify the performance of a widely used bubble dissolution model, and the model was then used to estimate that bubble dissolution accounts for approximately 10% of methane accumulated in the hypolimnion during summer stratification, and at most 15% of the diffusive air–water–methane flux from the epilimnion.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-07-11
    Description: Phytoplankton photosynthesis is a critical flux in the carbon cycle, accounting for approximately 40% of the carbon dioxide fixed globally on an annual basis and fuelling the productivity of aquatic food webs. However, rapid evolutionary responses of phytoplankton to warming remain largely unexplored, particularly outside the laboratory, where multiple selection pressures can modify adaptation to environmental change. Here, we use a decade-long experiment in outdoor mesocosms to investigate mechanisms of adaptation to warming (+4 °C above ambient temperature) in the green alga Chlamydomonas reinhardtii, in naturally assembled communities. Isolates from warmed mesocosms had higher optimal growth temperatures than their counterparts from ambient treatments. Consequently, warm-adapted isolates were stronger competitors at elevated temperature and experienced a decline in competitive fitness in ambient conditions, indicating adaptation to local thermal regimes. Higher competitive fitness in the warmed isolates was linked to greater photosynthetic capacity and reduced susceptibility to photoinhibition. These findings suggest that adaptive responses to warming in phytoplankton could help to mitigate projected declines in aquatic net primary production by increasing rates of cellular net photosynthesis.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-06-24
    Description: Nitrogen fixation — the reduction of dinitrogen (N2) gas to biologically available nitrogen (N) — is an important source of N for terrestrial and aquatic ecosystems. In terrestrial environments, N2-fixing symbioses involve multicellular plants, but in the marine environment these symbioses occur with unicellular planktonic algae. An unusual symbiosis between an uncultivated unicellular cyanobacterium (UCYN-A) and a haptophyte picoplankton alga was recently discovered in oligotrophic oceans. UCYN-A has a highly reduced genome, and exchanges fixed N for fixed carbon with its host. This symbiosis bears some resemblance to symbioses found in freshwater ecosystems. UCYN-A shares many core genes with the 'spheroid bodies' of Epithemia turgida and the endosymbionts of the amoeba Paulinella chromatophora. UCYN-A is widely distributed, and has diversified into a number of sublineages that could be ecotypes. Many questions remain regarding the physical and genetic mechanisms of the association, but UCYN-A is an intriguing model for contemplating the evolution of N2-fixing organelles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 354 (6310). pp. 287-288.
    Publication Date: 2019-03-05
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-12-13
    Description: Members of the archaeal phylum Bathyarchaeota are widespread and abundant in the energy-deficient marine subsurface sediments. However, their life strategies have remained largely elusive. Here, we provide genetic evidence that some lineages of Bathyarchaeota are acetogens, being capable of homoacetogenesis, a metabolism so far restricted to the domain Bacteria. Metabolic reconstruction based on genomic bins assembled from the metagenome of deep-sea subsurface sediments shows that the metabolism of some lineages of Bathyarchaeota is similar to that of bona fide bacterial homoacetogens, by having pathways for acetogenesis and for the fermentative utilization of a variety of organic substrates. Heterologous expression and activity assay of the acetate kinase gene ack from Bathyarchaeota, demonstrate further the capability of these Bathyarchaeota to grow as acetogens. The presence and expression of bathyarchaeotal genes indicative of active acetogenesis was also confirmed in Peru Margin subsurface sediments where Bathyarchaeota are abundant. The analyses reveal that this ubiquitous and abundant subsurface archaeal group has adopted a versatile life strategy to make a living under energy-limiting conditions. These findings further expand the metabolic potential of Archaea and argue for a revision of the role of Archaea in the carbon cycle of marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-09-04
    Description: Changes in the formation of dense water in the Arctic Ocean and Nordic Seas [the “Arctic Mediterranean” (AM)] probably contributed to the altered climate of the last glacial period. We examined past changes in AM circulation by reconstructing radiocarbon ventilation ages of the deep Nordic Seas over the past 30,000 years. Our results show that the glacial deep AM was extremely poorly ventilated (ventilation ages of up to 10,000 years). Subsequent episodic overflow of aged water into the mid-depth North Atlantic occurred during deglaciation. Proxy data also suggest that the deep glacial AM was ~2° to 3°C warmer than modern temperatures; deglacial mixing of the deep AM with the upper ocean thus potentially contributed to the melting of sea ice, icebergs, and terminal ice-sheet margins.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 349 (6243). pp. 24-27.
    Publication Date: 2016-09-08
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-03-05
    Description: The profound influence of marine plankton on the global carbon cycle has been recognized for decades, particularly for photosynthetic microbes that form the base of ocean food chains. However, a comprehensive model of the carbon cycle is challenged by unicellular eukaryotes (protists) having evolved complex behavioral strategies and organismal interactions that extend far beyond photosynthetic lifestyles. As is also true for multicellular eukaryotes, these strategies and their associated physiological changes are difficult to deduce from genome sequences or gene repertoires - a problem compounded by numerous unknown function proteins. Here, we explore protistan trophic modes in marine food webs and broader biogeochemical influences. We also evaluate approaches that could resolve their activities, link them to biotic and abiotic factors, and integrate them into an ecosystems biology framework. © 2015, American Association for the Advancement of Science. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  Environmental Science & Technology, 49 (22). pp. 13121-13129.
    Publication Date: 2019-10-24
    Description: Laboratory sediment incubations and continuous ebullition monitoring over an annual cycle in the temperate Saar River, Germany confirm that impounded river zones can produce and emit methane at high rates (7 to 30 (g CH4 m–3 d–1) at 25 °C and 270 to 700 (g CH4 m–2 yr–1), respectively). Summer methane ebullition (ME) peaks were a factor of 4 to 10 times the winter minima, and sediment methane formation was dominated by the upper sediment (depths of 0.14 to 0.2 m). The key driver of the seasonal ME dynamics was temperature. An empirical model relating methane formation to temperature and sediment depth, derived from the laboratory incubations, reproduced the measured daily ebullition from winter to midsummer, although late summer and autumn simulated ME exceeded the observed ME. A possible explanation for this was substrate limitation. We recommend measurements of methanogenically available carbon sources to identify substrate limitation and help characterize variation in methane formation with depth and from site to site.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  Industrial & Engineering Chemistry Research, 53 (17). pp. 6998-7007.
    Publication Date: 2018-01-03
    Description: Structure I methane hydrates are formed in situ from water-in-mineral oil emulsions in a high pressure rheometer cell. Viscosity is measured as hydrates form, grow, change under flow, and dissociate. Experiments are performed at varying water volume fraction in the original emulsion (0–0.40), temperature (0–6 °C), and initial pressure of methane (750–1500 psig). Hydrate slurries exhibit a sharp increase in viscosity upon hydrate formation, followed by complex behavior dictated by factors including continued hydrate formation, shear alignment, methane depletion/dissolution, aggregate formation, and capillary bridging. Hydrate slurries possess a yield stress and are shear-thinning fluids, which are described by the Cross model. Hydrate slurry viscosity and yield stress increased with increasing water volume fraction. As driving force for hydrate formation decreases (increasing temperature, decreasing pressure), hydrate slurry viscosity increases, suggesting that slower hydrate formation leads to larger and more porous aggregates. In total, addition of water to a methane saturated oil can cause more than a fifty-fold increase in viscosity if hydrates form.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-09-23
    Description: In his In Depth News story “Warming may not swamp islands” (1 August, p. 496), C. Pala argues that “coral reefs supporting sandy atoll islands will grow and rise in tandem with the sea,” based largely on studies that showed stable Pacific-island area over recent decades (1–4). He suggests that recent land losses are driven mostly by bad choices and that islanders are being affected “for the same reason as millions of people on the continents: because they live too close to shore.” We disagree with these conclusions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 346 (6214). pp. 1227-1231.
    Publication Date: 2016-09-09
    Description: Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-09-09
    Description: The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-09-09
    Description: Large coseismic slip was thought to be unlikely to occur on the shallow portions of plate-boundary thrusts, but the 11 March 2011 Tohoku-Oki earthquake [moment magnitude (Mw) = 9.0] produced huge displacements of ~50 meters near the Japan Trench with a resultant devastating tsunami. To investigate the mechanisms of the very large fault movements, we conducted high-velocity (1.3 meters per second) friction experiments on samples retrieved from the plate-boundary thrust associated with the earthquake. The results show a small stress drop with very low peak and steady-state shear stress. The very low shear stress can be attributed to the abundance of weak clay (smectite) and thermal pressurization effects, which can facilitate fault slip. This behavior provides an explanation for the huge shallow slip that occurred during the earthquake.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-03-12
    Description: Sediment-covered basalt on the flanks of mid-ocean ridges constitutes most of Earth’s oceanic crust, but the composition and metabolic function of its microbial ecosystem are largely unknown. By drilling into 3.5-million-year-old subseafloor basalt, we demonstrated the presence of methane- and sulfur-cycling microbes on the eastern flank of the Juan de Fuca Ridge. Depth horizons with functional genes indicative of methane-cycling and sulfate-reducing microorganisms are enriched in solid-phase sulfur and total organic carbon, host d13C- and d34S-isotopic values with a biological imprint, and show clear signs of microbial activity when incubated in the laboratory. Downcore changes in carbon and sulfur cycling show discrete geochemical intervals with chemoautotrophic d13C signatures locally attenuated by heterotrophic metabolism.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-09-23
    Description: The 2011 moment magnitude 9.0 Tohoku-Oki earthquake produced a maximum coseismic slip of more than 50 meters near the Japan trench, which could result in a completely reduced stress state in the region. We tested this hypothesis by determining the in situ stress state of the frontal prism from boreholes drilled by the Integrated Ocean Drilling Program approximately 1 year after the earthquake and by inferring the pre-earthquake stress state. On the basis of the horizontal stress orientations and magnitudes estimated from borehole breakouts and the increase in coseismic displacement during propagation of the rupture to the trench axis, in situ horizontal stress decreased during the earthquake. The stress change suggests an active slip of the frontal plate interface, which is consistent with coseismic fault weakening and a nearly total stress drop.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-09-09
    Description: The frictional resistance on a fault during slip controls earthquake dynamics. Friction dissipates heat during an earthquake; therefore, the fault temperature after an earthquake provides insight into the level of friction. The Japan Trench Fast Drilling Project (Integrated Ocean Drilling Program Expedition 343 and 343T) installed a borehole temperature observatory 16 months after the March 2011 moment magnitude 9.0 Tohoku-Oki earthquake across the fault where slip was ~50 meters near the trench. After 9 months of operation, the complete sensor string was recovered. A 0.31°C temperature anomaly at the plate boundary fault corresponds to 27 megajoules per square meter of dissipated energy during the earthquake. The resulting apparent friction coefficient of 0.08 is considerably smaller than static values for most rocks.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-09-04
    Description: In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-07-29
    Description: Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-02-20
    Description: Innate immunity is the front line of self-defense against microbial infection. After searching for natural substances that regulate innate immunity using an ex vivo Drosophila culture system, we identified a novel dimeric chromanone, gonytolide A, as an innate immune promoter from the fungus Gonytrichum sp. along with gonytolides B and C. Gonytolide A also increased TNF-α-stimulated production of IL-8 in human umbilical vein endothelial cells.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2012-11-14
    Description: Earthquake history shows that the Sunda subduction zone of the Indonesian margin produces great earthquakes offshore Sumatra, whereas earthquakes of comparable magnitude are lacking offshore Java and the Lesser Sunda islands. Morphological structures from multibeam bathymetric data across the forearc relate with the extent of the seismogenic zone (SZ). Off Java and the Lesser Sunda islands the Indo-Australian plate subducts almost normal underneath the oceanic plate of the Indonesian archipelago. Landward of the trench, the outer wedge of the slope break is ~50 km uniformly wide with uniform bathymetric gradients. The slope of the outer wedge is locally cut by one/two steeper ridges of ~5 km extent. The sharp slope break corresponds to the updip limit of the SZ, which is also associated with the seawardmost part of the outer arc high. Landward of the slope break we find narrow, uniform outer arc ridges. The landward termination of these ridges coincides with the downdip limit of the SZ. The intersection of the shallow upper plate mantle with the subduction thrust fault marks the downdip limit of the SZ beneath the forearc. Off Sumatra the Indo-Australian plate subducts obliquely underneath the continental part of the Indonesian Sunda margin. Landward of the trench, the outer wedge varies, being mostly ~70 km wide, in some areas narrowing to 50 km width. The lower slope bathymetric gradients are steep. The outer wedge slope is made up of several steeper ridges of ~5 km extent. The slope break is only locally sharp, and corresponds to the updip limit of the SZ. The outer arc ridges off Sumatra are, in comparison with the forearc structures off Java and the Lesser Sunda islands, wider and partly elevated above sea level forming the Mentawai forearc islands. The downdip limit of the SZ coincides with the intersection of a deeper upper plate mantle with the subduction thrust fault beneath the forearc. Sunda Strait marks a transition zone between the Sumatra and Java margins. Seafloor morphology enables the identification of the seismogenic zone (SZ) across the entire Sunda margin. The SZ is uniformly wide for the Sumatra margin and narrows off Sunda Strait. Sunda Strait is the transition between the Sumatra margin and the uniformly narrow extent of the SZ of the Java/Lesser Sunda margin. Comparing the Java and Lesser Sunda islands with the Sumatra margin we find the differences along the Sunda margin, especially the wider extent of the SZ off Sumatra, producing larger earthquakes, to result from the combination of various causes: The sediment income on the oceanic incoming plate and the subduction direction; we attribute a major role to the continental/oceanic upper plate nature of Sumatra/Java influencing the composition and deformation style along the forearc and subduction fault. Off Sumatra the SZ is up to more than twice as wide as off Java/Lesser Sunda islands, enlarging the unstable regime off Sumatra and thus the risk of sudden stress release in a great earthquake.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-09-23
    Description: The Arctic is responding more rapidly to global warming than most other areas on our planet. Northward-flowing Atlantic Water is the major means of heat advection toward the Arctic and strongly affects the sea ice distribution. Records of its natural variability are critical for the understanding of feedback mechanisms and the future of the Arctic climate system, but continuous historical records reach back only ~150 years. Here, we present a multidecadal-scale record of ocean temperature variations during the past 2000 years, derived from marine sediments off Western Svalbard (79°N). We find that early–21st-century temperatures of Atlantic Water entering the Arctic Ocean are unprecedented over the past 2000 years and are presumably linked to the Arctic amplification of global warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 407 .
    Publication Date: 2012-07-06
    Description: EGU2011-407 The spatial and temporal distribution of sea ice in the subpolar North Atlantic is mainly controlled by the advection of warm Atlantic Water via the Norwegian and West Spitsbergen Current in eastern Fram Strait. Simultaneously, polar water and sea ice from the Arctic Ocean is transported southward by the East Greenland Current. Hence, variations in the strength of this oceanic circulation regime may either stimulate or reduce the sea ice extent. Based on organic geochemical studies of a high-resolution sediment core from eastern Fram Strait we provide new evidence for the highly variable character of the sea ice conditions in this area. The combination of the sea ice proxy IP25 (Belt et al., 2007) with phytoplankton derived biomarkers (e.g. brassicasterol, dinosterol; Volkman 2006) enables a reliable reconstruction of sea surface and sea ice conditions, respectively (Müller et al., 2009; 2010). By means of these biomarkers, we trace gradually increasing sea ice occurrences from the Mid to the Late Holocene – consistent with the neoglacial cooling trend. Throughout the past ca. 3,000 years (BP) we observe a significant short-term variability in the biomarker records, which points to rapid advances and retreats of the sea ice cover at the continental margin of West Spitsbergen. The co-occurrence of IP25 and phytoplankton markers, however, suggests that the primary productivity benefits from these sea ice surges. As such, higher amounts of open-water phytoplankton biomarkers together with peak abundances of IP25 indicate recurring periods of enhanced ice-edge phytoplankton blooms at the core site. To what extent a seesawing of temperate Atlantic Water may account for these sea ice fluctuations requires further investigation. Concurrent variations in Siberian river discharge (Stein et al., 2004) or Norwegian glacier extents (Nesje et al., 2001), however, strengthen that these fluctuations may be assigned to variations in the North Atlantic/Arctic Oscillation (NAO/AO) and (hence) a weakened/accelerated Atlantic Water input and Arctic sea ice export.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2012-07-06
    Description: The upwelling area in the eastern equatorial Pacific off Peru is one of the most pronounced oxygen minimum zones (OMZs) of the modern ocean. Modeling scenarios predict an expansion of the OMZs in the course of global change in the coming decades. As a consequence, the Peruvian continental margin represents a key locality for studies on biogeochemical dynamics in the future ocean. We present pore water and sediment data for redox-sensitive metals (Fe, Mn, V, Mo, and U) that have been collected along a transect across the Peruvian margin at 11°S. The results are used to evaluate the behavior of trace metals in a wide range of biogeochemical and hydrodynamic settings. In the core of the OMZ, where permanently anoxic conditions prevail, redox sensitive metals exhibit diagenetic behaviors largely consistent with previous studies. Vanadium and Mo are released from Fe oxihydroxides and subsequently recycled through diffusion across the benthic boundary or trapped through formation of authigenic V phases and sequestration of Mo by authigenic pyrite. Some U is delivered through diffusion across the benthic boundary, reduction and precipitation of UO2 and incorporation into phosphorites. The utmost part of the buried U, however, is delivered in particulate form, most likely as bioauthigenic U which cannot be recycled in the suboxic waters overlying the anoxic sediments. In contrast to sediments in the core of the OMZ, sediments on the shelf experience frequent oxygenation episodes related to the passage of internal waves and the regular recurrence of El Niño events. These oxygenation episodes lead to the re-oxidation and remobilization of authigenic U and V. In contrast to that, the authigenic accumulation of Mo is favored by the occasional occurrence of slightly oxidizing conditions. This is most likely due to enhanced formation of sulfur intermediates necessary for pyrite formation and the increased stability of pyrite, the major Mo sink, under oxidizing conditions, compared to authigenic V and U phases. Redox oscillations in the Peruvian OMZ thus lead to a discrimination of U against Mo, a mechanism that should be considered in the interpretation of U/Mo systematics in paleo redox studies. Overall our results provide valuable constraints on how trace metal inventories of marginal sediments may respond to expanding shelf anoxia and to short term perturbations of sediment redox conditions.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-02-28
    Description: EGU2011-12780 A temporary passive seismic network of 31 broad-band stations was deployed in the region around Talca and Constitución between 35°S to 36°S latitude and 71°W to 72.5°W longitude. The network was operated between March and October 2008. Thus, we recorded data prior the magnitude Mw=8.8 earthquake of 27 February 2010 at a latitude of the major slip and surface uplift. The experiment was conducted to address fundamental questions on deformation processes, crustal and mantle structures, and fluid flow. We present results of a teleseismic P receiver function study that covers the coastal region and reaches to the Andes. The aim is to determine the structure and thickness of the continental crust and constrain the state of hydration of the mantle wedge. The P-wave receiver function technique requires large teleseismic earthquakes from different distances and backazimuths. A few percent of the incident P-wave energy from a teleseismic event will be converted into S-wave (Ps) at significant and relatively sharp discontinuities beneath the station. A small converted S phase is produced that arrives at the station within the P wave coda directly after the direct P-wave. The converted Ps phase and their crustal multiples contain information about crustal properties, such as Moho depth and the crustal vp/vs ratio. We use teleseismic events with magnitudes mb 〉 5.5 at epicentral distances between 30° and 95° to examine P-to-S converted seismic phases. Our preliminary results provide new information about the thickness of the continental crust beneath the coastal region in Central Chile. At most of the stations we observed significant energy from P to S converted waves between 4 and 5 s after the direct P-wave within a positive phase interpreted as the Moho, occurring at 35 to 40 km. The great Maule earthquake of 27 February 2010 nucleated up-dip of the continental Moho. The rupture of this earthquake seems to have propagated down-dip of the Moho. The Moho reflection show a positive polarity, indicating that the mantle is either dry or only moderately hydrated. We observed converted energy from an intracrustal boundary at around 2 s that disappears near the coast. Further, positive polarity peaks occur that are possibly caused by the down going plate.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-09-23
    Description: EGU2011-8738 At present, the Arctic is responding faster to global warming than most other areas on earth, as indicated by rising air temperatures, melting glaciers and ice sheets and a decline of the sea ice cover. As part of the meridional overturning circulation which connects all ocean basins and influences global climate, northward flowing Atlantic Water is the major means of heat and salt advection towards the Arctic where it strongly affects the sea ice distribution. Records of its natural variability are critical for the understanding of feedback mechanisms and the future of the Arctic climate system, but continuous historical records reach back only ca. 150 years. To reconstruct the history of temperature variations in the Fram Strait Branch of the Atlantic Current we analyzed a marine sediment core from the western Svalbard margin. In multidecadal resolution the Atlantic Water temperature record derived from planktic foraminifer associations and Mg/Ca measurements shows variations corresponding to the well-known climatic periods of the last millennium (Medieval Climate Anomaly, Little Ice Age, Modern/Industrial Period). We find that prior to the beginning of atmospheric CO2 rise at ca. 1850 A.D. average summer temperatures in the uppermost Atlantic Water entering the Arctic Ocean were in the range of 3-4.5°C. Within the 20th century, however, temperatures rose by ca. 2°C and eventually reached the modern level of ca. 6°C. Such values are unprecedented in the 1000 years before and are presumably linked to the Arctic Amplification of global warming. Taking into account the ongoing rise of global temperatures, further warming of inflowing Atlantic Water is expected to have a profound influence on sea ice and air temperatures in the Arctic.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    Copernicus
    In:  [Poster] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria .
    Publication Date: 2012-07-06
    Description: EGU2011-1847-3 Lake Van is a lake by volume of 607 km3 and a maximum depth of 450 meters in a tectonically active zone in eastern Anatolia, Turkey. In summer 2010, Lake Van was the target of a deep drilling campaign (PaleoVan) in the frame of ICDP (International Continental Scientific Drilling Program). Two sites were drilled based on reflection seismic data collected during a seismic campaign in 2004. Here we present a first joint interpretation of the seismic and drilling data. Interpretation of seismic reflection data from lake reveals three physiographic provinces: a lacustrine shelf, a lacustrine slope, and a deep, relatively flat lake basin. The most prominent features of the lacustrine shelf and slope are prograding deltaic sequences, numerous unconformities, submerged channels, as well as closely spaced U- and/or V-shaped depressions, reflecting the variable lake level history of Lake Van. The seismic units of the shelf are dominantly composed of low-to-good continuity, variable amplitude reflections interpreted as fluvial deposits. The lake consists of three prominent basins (Tatvan, Deveboynu, and Northern Basins), separated by basement highs or ridges (Ahlat Ridge). The seismic units corresponding to these basins mainly consist of low to very high amplitude, well-stratified reflection patterns. Chaotic reflections are seen in parts of these basins. The Deveboynu Basin consists mainly of chaotic reflections. The Tatvan and Northern Basins are characterized by an alternating succession of well-stratified and chaotic reflecting layers. The chaotic seismic facies are interpreted as slump and slide deposits, which are probably the result of quick lake level fluctuations and/or earthquakes. The moderateto high amplitude, well-stratified facies seen in the deep parts of the basins away from the terrigenous sediment sources are interpreted as lacustrine deposits and tephra layers. The total sediment thickness in the deep parts of the lake is over 400 m. Prominent clinoforms indicate the initial flooding of Lake Van about 500 ka ago. The acoustic basement and the sediments lying on top of the basement in the southern part of the lake are disrupted by various intrusions and extrusions suggesting active volcanism. Synthetic seismograms calculated based on core logging, wire-line logging and check shot data will allow the correlation between seismic and drill data. This approach will allow extrapolating the stratigraphy from the wells to 3D-space by using the seismic data.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-12-23
    Description: EGU2011-4235 The Arctic is undergoing rapid environmental and economic transformations. Recent climate warming, which is simplifying access to oil and gas resources, enabling trans Arctic shipping, and shifting the distribution of harvestable resources, has brought the Arctic Ocean to the top of national and international political agendas. Scientific knowledge of the present status of the Arctic Ocean and the process-based understanding of the mechanics of change are urgently needed to make useful predictions of future conditions throughout the Arctic region. These are required to plan for the consequences of climate change. A step towards improving our capacity to predict future Arctic change was undertaken with the Second International Conference on Arctic Research Planning (ICARP II) meetings in 2005 and 2006, which brought together scientists, policymakers, research managers, Arctic residents, and other stakeholders interested in the future of the Arctic region. The Arctic in Rapid Transition (ART) Initiative developed out of the synthesis of the several resulting ICARP II science plans specific to the marine environment. This process started in October 2008 and has been driven by early career scientists. The ART Initiative is an integrative, international, multi-disciplinary, long-term pan-Arctic network to study changes and feedbacks with respect to physical characteristics and biogeochemical cycles in the Arctic Ocean in a state of rapid transition and its impact on the biological production. The first ART workshop was held in Fairbanks, Alaska, in November 2009 with 58 participants from 9 countries. Workshop discussions and reports were used to develop a science plan that integrates, updates, and develops priorities for Arctic Marine Science over the next decade. The science plan was accepted and approved by the International Arctic Science Committee (IASC) Marine Group, the former Arctic Ocean Science Board. The second ART workshop was held in Winnipeg, Canada, in October 2010 with 20 participants from 7 countries to develop the implementation plan. Our focus within the ART Initiative will be to bridge gaps in knowledge not only across disciplinary boundaries (e.g., biology, geochemistry, geology, meteorology, physical oceanography), but also across geographic (e.g., international boundaries, shelves, margins, and the central Arctic Ocean) and temporal boundaries (e.g., alaeo/geologic records, current process observations, and future modeling studies). This approach of the ART Initiative will provide a means to better understand and predict change, particularly the consequences for biological productivity, and ultimate responses in the Arctic Ocean system. More information about the ART Initiative can be found at http://aosb.arcticportal.org/art.html.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Springer Nature
    In:  Nature Reviews Clinical Oncology, 8 (11). pp. 677-688.
    Publication Date: 2020-06-24
    Description: Cell-based therapies, such as adoptive immunotherapy and stem-cell therapy, have received considerable attention as novel therapeutics in oncological research and clinical practice. The development of effective therapeutic strategies using tumor-targeted cells requires the ability to determine in vivo the location, distribution, and long-term viability of the therapeutic cell populations as well as their biological fate with respect to cell activation and differentiation. In conjunction with various noninvasive imaging modalities, cell-labeling methods, such as exogenous labeling or transfection with a reporter gene, allow visualization of labeled cells in vivo in real time, as well as monitoring and quantifying cell accumulation and function. Such cell-tracking methods also have an important role in basic cancer research, where they serve to elucidate novel biological mechanisms. In this Review, we describe the basic principles of cell-tracking methods, explain various approaches to cell tracking, and highlight recent examples for the application of such methods in animals and humans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Copernicus
    In:  [Poster] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria .
    Publication Date: 2012-07-06
    Description: EGU2011-13199 Images of crustal construction provide a key to understand the interplay of magmatism and tectonism while oceanic crust is build up. Bathymetric data show that the crustal construction is highly variable. Areas that are dominated by magmatic processes are adjacent to areas that are highly tectonised and where mantle rocks were found. The Mid-Atlantic Ridge at 22°N shows this high variability along the ridge axis, within the TAMMAR segment, and from segment to segment. However, this strong variability occurs also off-axis, spreading parallel, representing different times in the same area of the ridge. A fracture zone, with limited magma supply, has been replaced by a segment centre with a high magmatic budget. Roughly 4.5 million years ago, the growing magmatic active TAMMAR segment, propagated into the fracture zone, started the migration of the ridge offset to the south, and stopped the formation of core complexes. We present data from seismic refraction and wide-angle reflection profiles that surveyed the crustal structure across the ridge crest of the TAMMAR segment. These yield the crustal structure at the segment centre as a function of melt supply. The results suggest that crust is ~8 km thick near the ridge and decreases in thickness with offset to the ridge axis. Seismic layer 3 shows profound changes in thickness and becomes rapidly one kilometre thicker approx. 5 million years ago. This correlates with gravimetric data and the observed “Bull’s eye” anomaly in that region. Our observations support a temporal change from thick lithosphere with oceanic core complex formation to thin lithosphere with focussed mantle upwelling and segment growing. The formation of ‘thick-crust’ volcanic centre seems to have coincided with the onset of propagation 4.5 million years ago.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 6081 .
    Publication Date: 2012-07-06
    Description: EGU2011-6081 Natural stable isotopes are a powerful tool in marine sciences to investigate biological processes, such as present and past nutrient utilization. In this study we present the first dissolved silicon isotope data in the upwelling area off Peru, where one of the world’s largest Oxygen Minimum Zones (OMZ) is located. Silicon is the most important component required for phytoplankton (diatom) growth, which dominates primary productivity in this region. Stable Si isotopes are fractionated during diatom growth in that the lighter Si isotopes are preferentially incorporated into diatoms with a fractionation factor of -1.1 promille. The Si isotope composition of dissolved silicic acid of the corresponding surface waters is therefore left isotopically heavier. The Si isotope composition, 30Si/28Si, is expressed as δ30Si values, which stand forh deviations from a given standard (NBS28). Investigation of the dissolved seawater Si isotope composition thus provides a measure for the utilization and, combined with information on the Si isotope composition of the water masses upwelling off Peru, it is a measure for the supply pathways of Si to the coastal upwelling centres. Surface waters on the shelf off Peru are mainly fed by the Equatorial Undercurrent, which mainly consists of waters originating from the western and Central Pacific and which has a characteristic δ30Si of +1.5 promille. In areas and during phases of intense upwelling the fractionation of Si isotopes was observed to be weaker due to upwelling-driven supply of less fractionated Si (δ30Si = 1.7 promille, from water depths of around 100-150 m, whereas under weak upwelling conditions fractionation is higher (δ30Si ~3 promille due to a more complete utilization of the available dissolved silicate. The distribution of dissolved δ30Si correlates strongly with particulate biogenic silicate (opal) concentrations in that highest opal concentrations in the surface waters show the lowest δ30Si values thus strongest upwelling intensity. The most extreme δ30Si values in surface waters (δ30Si = 4.5 promille are observed offshore where silicic acid concentrations are nearly zero. Furthermore we compare the δ30Si data with the dissolved nitrogen isotope distribution, which in addition to nitrate utilization is mainly influenced by denitrification and annamox processes in the OMZ. Combined silicon and nitrogen isotope compositions can thus help to disentangle different fractionation processes within the nitrogen cycle.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Copernicus
    In:  [Poster] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 2455 .
    Publication Date: 2012-07-06
    Description: EGU2011-2455 The current interglacial has gone through a variety of warmer and colder periods. Consistent with the decreasing solar insolation during the Holocene, warmest conditions have occurred particularly within its earliest phase. We studied high-resolution sediment sequences from the Western Svalbard margin covering the last ca 10,000 years in order to reconstruct the variations of Atlantic Water advection to the Arctic, the sea ice extent, and the structure of the water column on the Westspitsbergen continental margin. The Fram Strait, often referred to as the Arctic Gateway, is the only deep-water passage for Atlantic-derived water masses to enter the Arctic Ocean. Northward advection of relatively warm and saline Atlantic Water masses keeps the eastern part of the Fram Strait ice-free all year. It therefore plays a crucial role for the heat budget of the Arctic. A multiproxy data set including geochemical, micropaleontological, and sedimentological parameters was established with centennial to multidecadal time resolution. Records of foraminiferal oxygen and carbon isotopes, planktic foraminifer assemblages, and the amount of ice rafted debris clearly reveal distinct variations between climatically warmer and colder intervals throughout this period. Planktic foraminifer assemblages reveal warmest conditions for the early Holocene period (ca 10-8 ka). A second warming pulse is detected between 5 and 6 ka. In the second half of the Holocene, increased IRD contents are indicative of a significant cooling trend. Despite of the decreasing solar insolation planktic foraminiferal assemblages suggest a return of slightly strengthened Atlantic Water advection around 3 to 2 ka and a strong warming event in the present, anthropogenically influenced period.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-09-08
    Description: Kessler et al. (Reports, 21 January 2011, p. 312) reported that methane released from the 2010 Deepwater Horizon blowout, approximately 40% of the total hydrocarbon discharge, was consumed quantitatively by methanotrophic bacteria in Gulf of Mexico deep waters over a 4-month period. We find the evidence explicitly linking observed oxygen anomalies to methane consumption ambiguous and extension of these observations to hydrate-derived methane climate forcing premature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 3514 .
    Publication Date: 2012-07-06
    Description: We determined the isotopic composition of neodymium (Nd) and lead (Pb) of past seawater to reconstruct water mass exchange and erosional input between the Arctic Ocean and the Norwegian-Greenland Seas over the past 5 Ma. For this purpose, sediments of ODP site 911 (leg 151) located at 900 m water depth on the Yermak Plateau in the Fram Strait were used. The paleo-seawater variability of Nd and Pb isotopes was extracted from the sea water-derived metal oxide coatings on the sediment particles following the leaching method of Gutjahr et al. (2007). All radiogenic isotope data were acquired by Multi-Collector (MC) ICP-MS. The site 911 stratigraphy of Knies et al. (2009) was applied. Surface sediment Sr and Nd isotope data, as well as downcore Sr isotope data obtained on the same leaches are close to seawater and confirm the seawater origin of the Nd and Pb isotope signatures. The deep water Nd isotope time series extracted from site 911 was in general more radiogenic ("Nd = -7.5 to -10) than present day deep water ("Nd = -9.8 to -11.8) in the area of the Fram Strait (Andersson et al., 2008) and does not show a systematic trend with time. In contrast, the radiogenic isotope composition of Pb evolved from 206Pb/204Pb ratios around 18.7 to more radiogenic values around 19.2 between 2 Ma and today. The data indicate that mixing of water masses from the Arctic Ocean and the Norwegian-Greenland Seas has controlled the Nd isotope signatures of deep waters on the Yermak Plateau over the past 5 Ma. Prior to 1.7 Ma the Nd isotope signatures on the Yermak Plateau were less radiogenic than waters from the same depth in the central Arctic Ocean (Haley et al., 2008) pointing to a greater influence from the Norwegian-Greenland Seas. After 1.7 Ma the central Arctic and Yermak Plateau data have varied around similar values indicating water mass mixing overall similar to today. In contrast, the Pb isotope composition of deep waters in the Fram Strait appears to have been dominated by weathering inputs from glacially weathering old continental landmasses, such as Greenland or parts of Svalbard since 2 Ma. A similar control over the Pb isotope evolution of seawater since the onset of Northern Hemisphere Glaciation was recorded by ferromanganese crusts that grew from North Atlantic DeepWater in the western North Atlantic. References: Gutjahr, M., Frank, M., Stirling, C.H., Klemm, V., van de Flierdt, T. and Halliday, A.N. (2007): Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments.- Chemical Geology 242, 351-370 Haley B. A., M. Frank, R.F. Spielhagen and A. Eisenhauer (2008): Influence of brine formation on Arctic Ocean circulation over the past 15 million years. Nature Geoscience 1, 68–72 Andersson, P.S., Porcelli, D., Frank, M., Björk, G., Dahlqvist, R. and Gustafsson, Ö. (2008): Neodymium isotopes in seawater from the Barents Sea and Fram Strait Arctic- Atlantic gateways.- Geochim. Cosmochim. Acta 72, 2854-2867 Knies, J., J. Matthiessen, C. Vogt, J.S. Laberg, B.O. Hjelstuen, M.Smelror, E. Larsen, K. Andreassen, T. Eidvin and T.O. Vorren (2009): The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: a new model based on revised chronostratigraphy - Quaternary Science Reviews 28, 9-10, 812-829
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-10-06
    Description: A threat of irreversible damage should prompt action to mitigate climate change, according to the United Nations Framework Convention on Climate Change, which serves as a basis for international climate policy. CO2-induced climate change is known to be largely irreversible on timescales of many centuries1, as simulated global mean temperature remains approximately constant for such periods following a complete cessation of carbon dioxide emissions while thermosteric sea level continues to rise1,2,3,4,5,6. Here we use simulations with the Canadian Earth System Model to show that ongoing regional changes in temperature and precipitation are significant, following a complete cessation of carbon dioxide emissions in 2100, despite almost constant global mean temperatures. Moreover, our projections show warming at intermediate depths in the Southern Ocean that is many times larger by the year 3000 than that realized in 2100. We suggest that a warming of the intermediate-depth ocean around Antarctica at the scale simulated for the year 3000 could lead to the collapse of the West Antarctic Ice Sheet, which would be associated with a rise in sea level of several metres2,7,8.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2023-11-08
    Description: EGU2011-12864 The Woodlark Basin east of Papua New Guinea represents one of the few places on Earth where a spreading axis propagates into continental crust. This special tectonic setting allows insights into the evolution of magma composition as continental extension and break-up changes to the formation of ocean crust. We report here geochemical results on samples collected in 2009 from the four segments closest to the continental breakup, from segment 1 which abuts the detachment fault responsible for continental extension on Moresby Seamount in the West, to segment 4, representing mature oceanic crust in the East. A total of 208 glass samples have been analyzed for their major (EMPA) and trace element (LA-ICPMS) compositions. The data show strong E-W variations. Samples ranging from tholeiitic basalt and basaltic andesite to andesite and rhyolite are found on Segment 1. They have generally high alkali values and a wide range of trace element contents and ratios. Segments 2 to 4 magmas in contrast only comprise tholeiitic basalt with lower alkali contents and a more restricted range of trace element chemistry. The geochemical differences between the segments cannot be attributed to differentiation processes alone, and different sources are required. High Ba/La, (La/Sm)N, Rb/Sr, and Th/La on Segment 1 suggest a derivation from an enriched mantle source, while low Nd/Pb and Nb/U suggest that some of the enrichment may also reflect the influence of continental crust during magma genesis. Whether this continental signature is present in the form of recycled material in the mantle or as rafted continental blocks in the axial region is at present unclear. In contrast to rocks from segment 1, trace element compositions of volcanic glasses from segments 2 to 4 show a stronger MORB signature, presumably reflecting more mature spreading in this part of the basin. The influence of continental material appears to be minimal, suggesting that uncontaminated asthenosphere quickly flows into the rift and/or that continental blocks are not retained in the axial region for long time periods following the rifting-spreading transition.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts .
    Publication Date: 2019-09-23
    Description: EGU2010-13373 The frequency of volcanic activity varies on a wide rangeof spatial and temporal scales, from 〈1 yr. periodicities in single volcanic systems to periodicities of 106 yrs. in global volcanism. The causes of these periodicities are poorly understood although the long-term global variations are likely linked to plate-tectonic processes. Here we present evidence for temporal changes in eruption frequencies at an intermediate time scale (104 yrs.) using the Pleistocene to recent records of widespread tephras of sub-Plinian to Plinian, and occasionally co-ignimbrite origin, along the Pacific Ring of Fire, which accounts for about half of the global length of 44,000 km of active subduction. Eruptions at arc volcanoes tend to be highly explosive and the well-preserved tephra records from the ocean floor can be assumed to be representative of how eruption frequencies varied with time. Volcanic activity along the Pacific Ring of Fire evolved through alternating phases of high and low frequency; although there is modulation by local and regional geologic conditions, these variations have a statistically significant periodicity of 43 ka that overlaps with the temporal variation in the obliquity of the Earth’s rotation axis, an orbital parameter that also exerts a strong control on global climate changes. This may suggest that the frequency of volcanic activity is controlled by effects of global climate changes. However, the strongest physical effects of climate change occur at 100 ka periods which are not seen in the volcanic record. We therefore propose that the frequency of volcanic activity is directly influenced by minute changes in the tidal forces induced by the varying obliquity resulting in long-period gravitational disturbances acting on the upper mantle.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts .
    Publication Date: 2012-07-06
    Description: EGU2010-10518 Seafloor compliance is the transfer function between pressure and vertical displacement at the seafloor Infragravity waves in the oceanic layer have long periods in the range of 30 – 500 s and obey a simple frequencywavenumber relation. Seafloor compliance from infragravity waves can be analyzed with single station recordings to determinate sub-seafloor shear wave velocities. Previous studies in the Pacific Ocean have demonstrated that reliable near-surface shear wave profiles can be derived from infragravity wave compliance. However, these studies indicate that, beside the water depth the compliance measurements are limited by instrument sensitivity, calibration uncertainties and possibly other effects. In this work seafloor compliance and infragravity waves are observed at two different locations in the Atlantic Ocean: the Logatchev hydrothermal field at the Mid Atlantic Ridge and the Azores (Sao Miguel Island). The data was acquired with the broadband ocean compliance station developed at the University of Hamburg as well as ocean station from the German instrument pool for amphibian seismology (DEPAS) equipped with broadband seismometers and pressure sensors. Vertical velocity and pressure data were used to calculate power spectral densities and normalized compliance along two profiles (one in each location). Power spectral densities show a dominant peak at low frequencies (0.01-0.035Hz) limited by the expected cut-off frequency, which is dependent on the water depth at each station. The peak has been interpreted as a strong infragravity wave with values between 10-14 and 10-11 (m/s2)2/Hz and 104 and 106 (Pa2)2/Hz for acceleration and pressure respectively. The results show compliance values between 10-10 and 10-8 1/Pa and its estimations take into account the coherence between seismic and pressure signals in order to confirm that the seismic signals in the infragravity waves are caused by pressure sources. Shear wave velocity models, with depth resolution from 200 to 2500 m for the deep water stations, were derived from compliance. Preliminary results indicate shear wave velocity increasing from 200 to 3500 m/s.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts .
    Publication Date: 2012-07-06
    Description: EGU2010-9841 Active mud volcanoes, where changing salinities of pore fluids, large temperature gradients and occurrences of free gas are frequently observed, should potentially exhibit significant variability in their internal resistivity structure. This is due to the fact that the bulk resistivity is mainly determined by the porosity of sediments and the electrical resistivity of the pore filling contained therein. The resistivity variations may be derived from controlled source electromagnetic (CSEM) measurements. CSEM systems consist of an electric dipole transmitter producing a time varying source field and electric dipole receivers, which measure the earth´s response to this signal. For a RWE Dea funded investigation of fluid and gas leakages at the North Alex Mud Volcano (NAMV) - a comparatively small target with an area of about 1km2 - we have developed a new high resolution CSEM system. The system consists of several autonomous electric dipole receivers and a lightweight electric dipole transmitter, which can be mounted on a small remotely operated underwater vehicle (ROV). The use of a ROV allows for a precise placement of the transmitter, which is a necessary prerequisite for the investigation of such a small target. Furthermore, electromagnetic signals may be transmitted from different directions with respect to the stationary receivers, allowing for a 3D-style tomographic experiment. In this experiment, ten receivers were deployed over the surface of NAMV at a total of 16 receiver locations. During three successful dives with a Cherokee ROV (Ghent University, Belgium), the transmitter was deployed at a total of 80 locations. Here we present first quantitative results consisting of apparent resistivity estimations from the CSEM time domain data for each transmitter-receiver pair. The apparent resistivity map shows that the NAMV indeed has a heterogeneous resistivity structure with apparent resistivities varying by at least a factor of two: low apparent resistivities (~ 0.8Ωm) are found towards the center of the MV, whereas higher apparent resistivities (~ 1.6Ωm) prevail away from the center. In a second step, we interpret the time-domain data based on 1D inversions. Good data fits can be achieved by models containing 2-3 layers. Generally, the models indicate low resistivities at the surface, which can be associated with penetrating salt water and/or high temperatures. Toward greater depths, increasing resistivities presumably are due to a combination of compaction of sediments (i.e. reduced pore space), an increased presence of fresh water and possible occurrences of free gas. For some 1D models, the increase in resistivity exceeds a factor of 10 or more and layer interfaces are indicated down to depths of up to 70m. The derived resistivity variations observed at the NAMV will be interpreted in conjunction with temperature (Feseker, this session), fluid flow (Brückmann et al., this session) and seismic data (Bialas et al., this session) acquired. Temperature variations measured in the upper few meters are related to fluid flow, where high temperatures are indicative of upwelling fluids of low salinity and low temperature of either a downward flow of saline fluids or no flow activity. This type of surface measurement constitutes an integrative fluid flow gauge, which we can resolve vertically with our resistivity models. Seismic data yield a background structure to our resistivity model. New analysis of seismic data shows that seismic activity may also be linked to fluid flow activity, which we aim to match with resistivity variations and oscillations, which were observed in the electric and magnetic fields (Lefeldt et al., this session).
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts ; EGU2010-5184 .
    Publication Date: 2012-07-06
    Description: Recently Hathorne et al. (2009) documented large intratest trace element (TE) variations in planktonic foraminifera from a single sediment trap sample that could not be explained by variations in water column properties. The laser ablation ICP-MS depth profiles of trace elements through the test walls revealed strong positive correlations between Li, Mg, Mn and Ba resulting from the mixing of a lower TE outer calcite with a higher TE inner calcite. In contrast Sr/Ca ratios remained relatively constant throughout the test wall. These intratest TE variations likely result from biomineralization processes and therefore should be explained by any valid biomineralization model. However, changes in calcite precipitation rate, crystal structure, or the chemical composition of the internal calcification reservoir could not, by themselves, fully account for the pattern of cation intratest variability. Here I expand on this work and investigate if a model of coral biomineralization by Sinclair and Risk (2006) can be adapted to explain the pattern of intratest TE variability in foraminifera. It is clear that the low Mg calcite secreting foraminifera must reduce the Mg/Ca ratio of the calcifying solution by at least a factor of 10 (e.g. Hathorne et al., 2009) and it has been suggested this is achieved by active removal of Mg from the calcification reservoir, although the actual mechanisms remain debatable (e.g. Bentov and Erez, 2006). However, a recent study of the calcification of a low Mg calcite species in the laboratory found a large shortcoming in the amount of Ca potentially provided by seawater transported to the site of calcification in vacuoles compared to a conservative estimate of the amount required to form the new calcite wall (de Nooijer et al., 2009a). This suggests active Ca transport to the site of calcification is required to provide sufficient Ca. If Ca specific, this Ca addition would effectively dilute the TE content (including Mg) of the calcification reservoir to varying degrees and potentially cause the positive TE correlations seen across the test wall. Sinclair and Risk (2006) used this dilution model to successfully explain some TE correlations in coral skeletons. This model can be effectively adapted to foraminifera as it accounts for recent observations of foraminiferal calcification including the transport of seawater by liquid endocytosis to the calcification site and an elevated pH at the site of calcification (Bentov et al., 2009; de Nooijer et al., 2009a, 2009b). This model therefore provides a powerful tool with which to integrate constraints from experimental observation with those from micro-analytical measurements to improve the accuracy, precision and scale of the palaepalaeoceanographic application of foraminiferal geochemistry. Bentov and Erez (2006) Geochem. Geophys. Gepsyst. 7, Q01P08. Bentov et al. (2009) PNAS 106, 21500. de Nooijer et al. (2009a) Biogeosciences 6, 2669. de Nooijer et al. (2009b) PNAS 106, 15374. Hathorne et al. (2009) Paleoceanography 24, PA4204. Sinclair and Risk (2006) Geochim. Cosmochim. Acta 70, 3855.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Copernicus
    In:  [Poster] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria . Geophysical Research Abstracts ; /EGU2010-12153 .
    Publication Date: 2012-07-06
    Description: We present Mg/Ca analyses performed via a Flow Through sequential dissolution device connected to an ICP-OES on the planktonic foraminifer Globorotalia inflata. The aim of the study is to explore the possibility to reconstruct the thermal gradient in the water column by separating non-crusted and crusted calcite phases in the tests of G. inflata using the difference between their Mg/Ca ratios as a measure of the thermal gradient. An important assumption is that the non-crusted part of the tests is calcified in shallow, warmer water than the crusted part. For analyses a range of different preparation steps were used to determine the ideal way of separating the phases. Foraminifer tests were (not) cleaned, (not) crushed, and (not) pulverized before online analysis with the FT device. To analyze samples with a FT device the foraminifer tests are placed on a filter with a mesh of 0.45 μm preventing clay minerals to wash through. A sequential dissolution protocol first rinses the samples with buffered Seralpur water before QD HNO3 is added in small steps to create a ramp of increasing acid strength. As acid is kept constant at each concentration for several minutes, dissolution of a specific calcite phase can take place. Initial results show that it is most effective to slightly crush the tests without applying standard cleaning procedures, but rather analyze them without cleaning. Samples were selected from the South Atlantic (core tops and specific downcore samples) and the Mediteterranean (plankton tows). All samples were chosen based on previous work on them to provide comparison with routinely analysed Mg/Ca ratios. The South Atlantic samples have been analyzed extensively as bulk samples separated in difference size fractions and crusted vs. non-crusted (Groeneveld and Chiessi). The Mediterranean samples were not only analyzed as bulk samples but also by Laser Ablation ICP-MS (von Raden et al.). Results show that bulk analyses are reliably reproduced by the FT method, especially for samples which are dominated by crusted calcite. Samples which were uncrusted often gave much higher Mg/Ca ratios than the bulk analyses. These higher Mg/Ca ratios mainly occur in the plankton tow samples and were also identified with Laser Ablation ICP-MS. A possible reason for this could be the presence of a high Mg amorphous calcite layer on the outside of foraminifer tests which have not completed their calcification yet as was recently also pointed out in several other studies. Identification of the crusted and uncrusted phases, and therewith a thermal gradient, seems to give the expected differences but a more rigorous statistical treatment is needed to pinpoint singular dissolution phases.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2012-07-06
    Description: EGU2010-2934 The exploration of the arctic seas require an integrated approach applying different infrastructures. In Fall 2009 German and Russian scientists performed a geo marine cruise off Kamchatka and in the western Bering Sea within the frame of the KALMAR-Project. Two main research subjects formed the scientific backbone of the cruise: The first objective focuses on the geodynamic and volcanological magmatic development of the Kuril-Kamchatka island arc system and the Kamchatka Aleutean Islands Triple-Junction. Very little is known about the composition of the mantle and the oceanic crust as well as of the seamounts including their ages. The best studied site is the Volcanologist’s Massif located between the Bering- and the Alpha Fracture Zone (Tsvetkov 1990, Volynets et al. 1992, Yogodzinsky et al. 1994), which structurally belongs to the Komandorsky Basin. The oldest rocks of the Volcanologist´s Massif show very similar trace element and isotope signatures like those rocks cropping out in the volcanoes on Kamchatka in the prolongation of the Alpha Fracture Zone (Portnyagin et al. 2005a), indicating similar conditions of magma formation. The top of the Volcanologist´s Massif is characterized by the young (〈 0.5 Ma) and hydrothermally active Piip volcano, which consists of special magnesium rich andesites ("Piip type"). Another hot site was the Meiji-Seamount which is the northernmost Seamount of the hotspot spur of the Hawaii-Emperor-Seamount chain, having an age of probably 〉 85 Ma. The only existing basement rocks from this seamount were gained during DSDP Leg 19. These are basalts with MORB like trace element and isotope signatures (Keller et al. 2000, Regelous et al. 2003). These data indicate that the Hawaii-Hotspot was at a MOR in Cretaceous time and that large volumes of depleted mantle material played a´role during the magma formation. The second objective focuses on paleo-oceanographic investigations concentrating on the sediments along the eastern continental slope of Kamchatka, in the Komandorsky Basin, and on the Shirshov Ridge in order to explore paleoclimate archives to better understand the subpolar water mass transfer and the oceanographic and climatic development in the subarctic NW-Pacific. Comparisons of Late Pleistocene and Holocene temperature changes within the near surface water masses between the NW-Pacific and the N-Atlantic resulted in a new hypothesis, the "Atlantic-Pacific seesaw" (Kiefer et al. 2001, Kim et al. 2004, Kiefer and Kienast, 2005). This Atlantic-Pacific pattern of opposite temperature variations dominates the last 60ka on millennial timescales. Modelling results of Saenko et al. (2004) support the hypothesis of the "Atlantic-Pacific seesaw" and they postulate a mechanistic connection between the two regions driven by salinity variations, which couples both regions through the thermohaline circulation. A different model relates the Holocene Atlantic-Pacific dipole to the atmospheric tele-connection between the Arctic Oscillation/N-Atlantic Oscillation and the Pacific N-American Oscillation (Kim et al. 2004). http://kalmar.ifm-geomar.de
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 327 (5969). pp. 1078-1079.
    Publication Date: 2016-09-08
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Springer Nature
    In:  Nature, 465 (7297). pp. 469-472.
    Publication Date: 2021-08-26
    Description: The exquisite preservation of soft-bodied animals in Burgess Shale-type deposits provides important clues into the early evolution of body plans that emerged during the Cambrian explosion1. Until now, such deposits have remained silent regarding the early evolution of extant molluscan lineages—in particular the cephalopods. Nautiloids, traditionally considered basal within the cephalopods, are generally depicted as evolving from a creeping Cambrian ancestor whose dorsal shell afforded protection and buoyancy2. Although nautiloid-like shells occur from the Late Cambrian onwards, the fossil record provides little constraint on this model, or indeed on the early evolution of cephalopods. Here, we reinterpret the problematic Middle Cambrian animal Nectocaris pteryx3,4 as a primitive (that is, stem-group), non-mineralized cephalopod, based on new material from the Burgess Shale. Together with Nectocaris, the problematic Lower Cambrian taxa Petalilium5 and (probably) Vetustovermis6,7 form a distinctive clade, Nectocarididae, characterized by an open axial cavity with paired gills, wide lateral fins, a single pair of long, prehensile tentacles, a pair of non-faceted eyes on short stalks, and a large, flexible anterior funnel. This clade extends the cephalopods’ fossil record2 by over 30 million years, and indicates that primitive cephalopods lacked a mineralized shell, were hyperbenthic, and were presumably carnivorous. The presence of a funnel suggests that jet propulsion evolved in cephalopods before the acquisition of a shell. The explosive diversification of mineralized cephalopods in the Ordovician may have an understated Cambrian ‘fuse’.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 325 (5944). pp. 1114-1118.
    Publication Date: 2017-10-24
    Description: One of the mysteries regarding Earth’s climate system response to variations in solar output is how the relatively small fluctuations of the 11-year solar cycle can produce the magnitude of the observed climate signals in the tropical Pacific associated with such solar variability. Two mechanisms, the top-down stratospheric response of ozone to fluctuations of shortwave solar forcing and the bottom-up coupled ocean-atmosphere surface response, are included in versions of three global climate models, with either mechanism acting alone or both acting together. We show that the two mechanisms act together to enhance the climatological off-equatorial tropical precipitation maxima in the Pacific, lower the eastern equatorial Pacific sea surface temperatures during peaks in the 11-year solar cycle, and reduce low-latitude clouds to amplify the solar forcing at the surface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-09-23
    Description: The oceans are a major sink for atmospheric carbon dioxide (CO2). Historically, observations have been too sparse to allow accurate tracking of changes in rates of CO2 uptake over ocean basins, so little is known about how these vary. Here, we show observations indicating substantial variability in the CO2 uptake by the North Atlantic on time scales of a few years. Further, we use measurements from a coordinated network of instrumented commercial ships to define the annual flux into the North Atlantic, for the year 2005, to a precision of about 10%. This approach offers the prospect of accurately monitoring the changing ocean CO2 sink for those ocean basins that are well covered by shipping routes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-09-23
    Description: Picoeukaryotes are a taxonomically diverse group of organism less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90 of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 323 (5912). pp. 343-344.
    Publication Date: 2021-08-20
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-09-23
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 320 . pp. 655-658.
    Publication Date: 2019-09-24
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-09-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 316 (5833). pp. 1854-1855.
    Publication Date: 2020-10-21
    Description: Sponges (phylum Porifera) are among the most ancient of the multicellular animals, or Metazoa, with a fossil record dating back at least 580 million years (1). Found both in marine and freshwater environments, they filter-feed by pumping water through their bodies, which can contain a remarkable number of microbial symbionts. Sponges lack many of the characteristics typical of animals, but recent genomic studies—including the report by Jackson et al. on page 1893 of this issue (2)—have shown that they possess many major metazoan gene families. Sponges are thus invaluable systems for studying the evolution of metazoans and their interactions with microorganisms. Furthermore, their highly stable skeletons are of interest to materials scientists. Biomineralization is an important feature of metazoan life. Animals including vertebrates, insects, mollusks, and sponges use minerals [such as calcium carbonate, iron, and silica] to form skeletal structures such as bones, seashells, and coral reefs (3). Biocalcification arose among many metazoan lineages during the “Cambrian explosion,” between 530 and 520 million years ago, when the ancestors of today's animals first appeared in the fossil record. Did these lineages share the same gene(s) for biocalcification, or did multiple independent evolutionary events give rise to the ability to biocalcify? Recent studies, including that by Jackson et al., are beginning to provide an answer to this question. Jackson et al. use the Indo- Pacific sponge Astrosclera willeyana to show that the last common ancestor of the metazoans possessed a precursor to the α-carbonic anhydrases. This gene family is used by animals today in a range of processes including ion transport, pH regulation, and biomineralization (4). By integrating molecular techniques ranging from protein sequencing to gene expression, the authors identified a group of closely related α-carbonic anhydrase sequences in A. willeyana. These sequences are similar to those recovered from a whole-genome project on another sponge, Amphimedon queenslandica (5). Together, the sponge α-carbonic anhydrases form a sister group to those of all other metazoans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-09-08
    Description: The Atlantic meridional overturning circulation (MOC), which provides one-quarter of the global meridional heat transport, is composed of a number of separate flow components. How changes in the strength of each of those components may affect that of the others has been unclear because of a lack of adequate data. We continuously observed the MOC at 26.5°N for 1 year using end-point measurements of density, bottom pressure, and ocean currents; cable measurements across the Straits of Florida; and wind stress. The different transport components largely compensate for each other, thus confirming the validity of our monitoring approach. The MOC varied over the period of observation by ±5.7 × 106 cubic meters per second, with density-inferred and wind-driven transports contributing equally to it. We find evidence for depth-independent compensation for the wind-driven surface flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-01-09
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-09-08
    Description: The vigor of Atlantic meridional overturning circulation (MOC) is thought to be vulnerable to global warming, but its short-term temporal variability is unknown so changes inferred from sparse observations on the decadal time scale of recent climate change are uncertain. We combine continuous measurements of the MOC (beginning in 2004) using the purposefully designed transatlantic Rapid Climate Change array of moored instruments deployed along 26.5°N, with time series of Gulf Stream transport and surface-layer Ekman transport to quantify its intra-annual variability. The year-long average overturning is 18.7 ± 5.6 sverdrups (Sv) (range: 4.0 to 34.9 Sv, where 1 Sv = a flow of ocean water of 106 cubic meters per second).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    Copernicus
    In:  Scientific Drilling, 5 . pp. 63-66.
    Publication Date: 2016-08-03
    Description: In March 2007 the sea floor drill rig MeBo (short for “Meeresboden-Bohrgerät”, ‘sea floor drill rig’ in German) returned from a 17-day scientific cruise with the new German research vessel Maria S. Merian. Four sites between 350 m and 1700 m water depth were sampled at the continental slope off Morocco by push coring and rotary drilling. Up to 41.5-m-long sediment cores were recovered from Miocene, Pliocene, and Pleistocene marls. MeBo bridges the gap between conventional sampling methods from standard multipurpose research vessels (gravity corer, piston corer, dredges) and drill ships. Most bigger research vessels will be able to support deployment of the MeBo. Since the drill system can be easily transported within 20-ft containers, worldwide operation from vessels of opportunity is possible. With the MeBo a new system is available for marine geosciences that allows the recovery of high quality samples from soft sediments and hard rock from the deep sea without relying on the services of expensive drilling vessels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-03-06
    Description: Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2°C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2023-11-08
    Description: A detailed reconstruction of West African monsoon hydrology over the past 155,000 years suggests a close linkage to northern high-latitude climate oscillations. Ba/Ca ratio and oxygen isotope composition of planktonic foraminifera in a marine sediment core from the Gulf of Guinea, in the eastern equatorial Atlantic (EEA), reveal centennial-scale variations of riverine freshwater input that are synchronous with northern high-latitude stadials and interstadials of the penultimate interglacial and the last deglaciation. EEA Mg/Ca-based sea surface temperatures (SSTs) were decoupled from northern high-latitude millennial-scale fluctuation and primarily responded to changes in atmospheric greenhouse gases and low-latitude solar insolation. The onset of enhanced monsoon precipitation lags behind the changes in EEA SSTs by up to 7000 years during glacial-interglacial transitions. This study demonstrates that the stadial-interstadial and deglacial climate instability of the northern high latitudes exerts dominant control on the West African monsoon dynamics through an atmospheric linkage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-09-23
    Description: Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to advance the understanding of the formation and evolution of crust formed at mid-ocean ridges, but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic crust from melt lenses so far penetrated by Hole 1256D.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2016-01-01
    Description: By amplifying the melanocortin type 1 receptor from the woolly mammoth, we can report the complete nucleotide sequence of a nuclear-encoded gene from an extinct species. We found two alleles and show that one allele produces a functional protein whereas the other one encodes a protein with strongly reduced activity. This finding suggests that mammoths may have been polymorphic in coat color, with both dark- and light-haired individuals co-occurring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 312 (5777). pp. 1146-1148.
    Publication Date: 2016-06-15
    Description: Draining of a huge lake into the Northern Atlantic may have triggered a cold period ~12,900 years ago. The route taken by the flood waters remains unknown.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2012-07-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 309 (5739). pp. 1365-1369.
    Publication Date: 2019-09-23
    Description: The open oceans comprise most of the biosphere, yet patterns and trends of species diversity there are enigmatic. Here, we derive worldwide patterns of tuna and billfish diversity over the past 50 years, revealing distinct subtropical "hotspots" that appeared to hold generally for other predators and zooplankton. Diversity was positively correlated with thermal fronts and dissolved oxygen and a nonlinear function of temperature (~25°C optimum). Diversity declined between 10 and 50% in all oceans, a trend that coincided with increased fishing pressure, superimposed on strong El Niño–Southern Oscillation–driven variability across the Pacific. We conclude that predator diversity shows a predictable yet eroding pattern signaling ecosystem-wide changes linked to climate and fishing.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2016-09-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2021-09-07
    Description: The deep ocean is home to a group of broad-collared hemichordates—the so-called ‘lophenteropneusts’—that have been photographed gliding on the sea floor1,2,3,4,5,6,7,8 but have not previously been collected. It has been claimed that these worms have collar tentacles and blend morphological features of the two main hemichordate body plans, namely the tentacle-less enteropneusts and the tentacle-bearing pterobranchs. Consequently, lophenteropneusts have been invoked as missing links to suggest that the former evolved into the latter5. The most significant aspect of the lophenteropneust hypothesis is its prediction that the fundamental body plan within a basal phylum of deuterostomes was enteropneust-like. The assumption of such an ancestral state influences ideas about the evolution of the vertebrates from the invertebrates9,10,11,12,13,14. Here we report on the first collected specimen of a broad-collared, deep-sea enteropneust and describe it as a new family, genus and species. The collar, although disproportionately broad, lacks tentacles. In addition, we find no evidence of tentacles in the available deep-sea photographs (published and unpublished) of broad-collared enteropneusts, including those formerly designated as lophenteropneusts. Thus, the lophenteropneust hypothesis was based on misinterpretation of deep-sea photographs of low quality and should no longer be used to support the idea that the enteropneust body plan is basal within the phylum Hemichordata.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 307 (5717). p. 1927.
    Publication Date: 2021-09-07
    Description: Here we report bipedal movement with a hydrostatic skeleton. Two species of octopus walk on two alternating arms using a rolling gait and appear to use the remaining six arms for camouflage. Octopus marginatus resembles a coconut, and Octopus (Abdopus) aculeatus, a clump of floating algae. Using underwater video, we analyzed the kinematics of their strides. Each arm was on the sand for more than half of the stride, qualifying this behavior as a form of walking.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2016-09-09
    Description: Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 ± 19 petagrams of carbon. The oceanic sink accounts for ∼48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 ± 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 306 (5700). p. 1377.
    Publication Date: 2016-09-08
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 303 . pp. 210-213.
    Publication Date: 2014-12-02
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...