ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (283)
  • 2010-2014  (283)
  • 1980-1984
  • 2010  (283)
Collection
Years
  • 2010-2014  (283)
  • 1980-1984
Year
  • 1
    Publication Date: 2018-06-11
    Description: Once the lunar lander has touched down on the moon problems can occur if the crew module is not level. To mitigate, compliant landing gear provide a solution that would allow the module to be leveled once it has landed on some ground slope. The work presented here uses compliant joints, or flexures, for each leg of the module and optimizes the mechanics of these flexures such that the module can be passively leveled over a range of landing slopes. Preliminary results suggest that for landing on a slope of up to 12 deg the effective slope of the module can be reduced to a maximum of 2.5 deg.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Proceedings of the 40th Aerospace Mechanisms Symposium; 327-334; NASA/CP-2010-216272
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: A prototype low-force rotary-percussive rock coring tool for use in acquiring samples for geological surveys in future planetary missions was developed. The coring tool could eventually enable a lightweight robotic system to operate from a relatively small (less than 200 kg) mobile or fixed platform to acquire and cache Mars or other planetary rock samples for eventual return to Earth for analysis. To gain insight needed to design an integrated coring tool, the coring ability of commercially available coring bits was evaluated for effectiveness of varying key parameters: weight-on-bit, rotation speed, percussive rate and force. Trade studies were performed for different methods of breaking a core at its base and for retaining the core in a sleeve to facilitate sample transfer. This led to a custom coring tool design which incorporated coring, core breakage, core retention, and core extraction functions. The coring tool was tested on several types of rock and demonstrated the overall feasibility of this approach for robotic rock sample acquisition.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Proceedings of the 40th Aerospace Mechanisms Symposium; 17-30; NASA/CP-2010-216272
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: Radar is a useful remote sensing tool for studying planetary geology because it is sensitive to the composition, structure, and roughness of the surface and can penetrate some materials to reveal buried terrain. The Arecibo Observatory radar system transmits a single sense of circular polarization, and both senses of circular polarization are received, which allows for the construction of the Stokes polarization vector. From the Stokes vector, daughter products such as the circular polarization ratio, the degree of linear polarization, and linear polarization angle are obtained. Recent polarimetric imaging using Arecibo has included Venus and the Moon. These observations can be compared to radar data for terrestrial surfaces to better understand surface physical properties and regional geologic evolution. For example, polarimetric radar studies of volcanic settings on Venus, the Moon and Earth display some similarities, but also illustrate a variety of different emplacement and erosion mechanisms. Polarimetric radar data provides important information about surface properties beyond what can be obtained from single-polarization radar. Future observations using polarimetric synthetic aperture radar will provide information on roughness, composition and stratigraphy that will support a broader interpretation of surface evolution.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; Volume 209; Issue 1; 40-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: During MESSENGER's third flyby of Mercury, a series of 2-3 minute long enhancements of the magnetic field in the planet's magnetotail were observed. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approximately 10 times less and the durations are 1 hr. These observations of extreme loading imply that the relative intensity of substorms at Mercury must be much larger than at Earth. The correspondence between the duration of tail enhancements and the calculated approximately 2 min Dungey cycle, which describes plasma circulation through Mercury's magnetosphere, suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles. Such signatures are puzzlingly absent from the MESSENGER flyby measurements.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Earth, Moon, and Planets; Volume 107; No. 1; 87-93
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: We present a novel method of constructing streamlines to derive wind speeds within jovian vortices and demonstrate its application to Oval BA for 2001 pre-reddened Cassini flyby data, 2007 post-reddened New Horizons flyby data, and 1998 Galileo data of precursor Oval DE. Our method, while automated, attempts to combine the advantages of both automated and manual cloud tracking methods. The southern maximum wind speed of Oval BA does not show significant changes between these data sets to within our measurement uncertainty. The northern maximum dries appear to have increased in strength during this time interval, tvhich likely correlates with the oval's return to a symmetric shape. We demonstrate how the use of closed streamlines can provide measurements of vorticity averaged over the encircled area with no a priori assumptions concerning oval shape. We find increased averaged interior vorticity between pre- and post-reddened Oval BA, with the precursor Oval DE occupying a middle value of vorticity between these two.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; Volume 210; Issue 1; 202-210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: Limb and nadir spectra acquired by Cassini/CIRS (Composite InfraRed Spectrometer) are analyzed in order to derive, for the first time, the meridional variations of diacetylene (C4H2) and methylacetylene (CH3C2H) mixing ratios in Saturn's stratosphere, from 5 hPa up to 0.05 hPa and 80 deg S to 45 deg N. We find that the C4H2 and CH3C2H meridional distributions mimic that of acetylene (C2H2), exhibiting small-scale variations that are not present in photochemical model predictions. The most striking feature of the meridional distribution of both molecules is an asymmetry between mid-southern and mid-northern latitudes. The mid-southern latitudes are found depleted in hydrocarbons relative to their northern counterparts. In contrast, photochemical models predict similar abundances at north and south mid-latitudes. We favor a dynamical explanation for this asymmetry, with upwelling in the south and downwelling in the north, the latter coinciding with the region undergoing ring shadowing. The depletion in hydrocarbons at mid-southern latitudes could also result from chemical reactions with oxygen-bearing molecules. Poleward of 60 deg S, at 0.1 and 0.05 hPa, we find that the CH3C2H and C4H2 abundances increase dramatically. This behavior is in sharp contradiction with photochemical model predictions, which exhibit a strong decrease towards the south pole. Several processes could explain our observations, such as subsidence, a large vertical eddy diffusion coefficient at high altitudes, auroral chemistry that enhances CH3C2H and C4H2 production, or shielding from photolysis by aerosols or molecules produced from auroral chemistry. However, problems remain with all these hypotheses, including the lack of similar behavior at lower altitudes. Our derived mean mixing ratios at 0.5 hPa of (2.4 +/- 0.3) 10(exp -10) for C4H2 and of (1.1 +/- 0.3) 10(exp -9) for CH3C2H are compatible with the analysis of global-average ISO observations performed by Moses et al. Finally, we provide values for the ratios [CH3C2H]/[C2H2] and [C4H2]/[C2H2] that can constrain the coupled chemistry of these hydrocarbons.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; Volume 209; 2; 682-695
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: To investigate the effect of parent body processes on the abundance, distribution, and enantiomeric composition of amino acids in carbonaceous chondrites, the water extracts from nine different powdered Cl, CM, and CR carbonaceous chondrites were analyzed for amino acids by ultrahigh performance liquid chromatography-fluorescence detection and time-of-flight mass spectrometry (UPLC-FD/ToF-MS). Four aqueously altered type 1 carbonaceous chondrites including Orgueil (C11), Meteorite Hills (MET) 01070 (CM1), Scott Glacier (SCO) 06043 (CM1), and Grosvenor Mountains (GRO) 95577 (CR1) were analyzed using this technique for the first time. Analyses of these meteorites revealed low levels of two- to five-carbon acyclic amino alkanoic acids with concentrations ranging from -1 to 2,700 parts-per-billion (ppb). The type 1 carbonaceous chondrites have a distinct distribution of the five-carbon (C5) amino acids with much higher relative abundances of the gamma- and delta-amino acids compared to the type 2 and type 3 carbonaceous chondrites, which are dominated by a-amino acids. Much higher amino acid abundances were found in the CM2 chondrites Murchison, Lonewolf Nunataks (LON) 94102, and Lewis Cliffs (LEW) 90500, the CR2 Elephant Moraine (EET) 92042, and the CR3 Queen Alexandra Range (QUE) 99177. For example, a-aminoisobutyric acid ((alpha-AIB) and isovaline were approximately 100 to 1000 times more abundant in the type 2 and 3 chondrites compared to the more aqueously altered type 1 chondrites. Most of the chiral amino acids identified in these meteorites were racemic, indicating an extraterrestrial abiotic origin. However, non-racemic isovaline was observed in the aqueously altered carbonaceous chondrites Murchison, Orgueil, SCO 06043, and GRO 95577 with L-isovaline excesses ranging from approximately 11 to 19%, whereas the most pristine, unaltered carbonaceous chondrites analyzed in this study had no detectable L-isovaline excesses. These results are consistent with the theory that aqueous alteration played an important role in amplification of small initial left handed isovaline excesses on the parent bodies.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-06
    Description: With NASA's commitment to the International Space Station (ISS) now all but certain for at least through the coming decade, serious consideration may be given to extended US in-space operations in the 2020s, when presumably the ISS will exceed its sell by date. Indeed, both ESA and Roscosmos, in addition to their unambiguous current commitment to ISS, have published early concept studies for extended post-ISS habitation (e.g., http://www.esa.int/esaHS/index.html, http://www.russianspaceweb.com/opsek.html and references therein). In the US, engineers and scientists have for a decade been working both within and outside NASA to assess one consistent candidate for long-term post-ISS habitation and operations, although interrupted by changing priorities for human space flight, Congressional direction, and constrained budgets. The evolving work of these groups is described here, which may have renewed relevance with the recent completion of a major review of the nation s human space flight program.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-27
    Description: In an earlier study. Hamilton (2000) mapped the behavior of the 9-12 micron reststrahlen structures with composition in a suite of primarily natural terrestrial pyroxenes. Here we examine the same set of reststrahlen features in the spectra of diogenites and eucrites and place them in the context of the terrestrial samples and of a suite of well-characterized synthetic pyroxenes. The results will be useful to the interpretation of mid-IR spectra of 4 Vesta and other basaltic asteroids.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 41st Lunar and Planetary Science Conference; 28 Feb. 5 Mar. 2010; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-19
    Description: Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. The Astromaterials Acquisition and Curation Office at the NASA Johnson Space Center (JSC) is responsible for curating NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials," JSC is charged with ". . . curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-22489 , The Importance of Solar System Sample Return Mission to the Future of Planetary Science; Mar 05, 2011 - Mar 06, 2011; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-19
    Description: A plasma wake a region of low density, high temperature plasma forms on the far side of the Moon when solar wind, magnetosheath, and magnetotail plasma flows past the Moon [Manka, 1973; Ogilvie et al., 1996; Farrell et al., 1998; Halekas et al., 2005]. Ion populations in these flows typically have much smaller thermal velocity than bulk speed and are therefore excluded from the plasma wake while the large thermal electron velocity allows the lighter negatively charged particles to stream ahead of the ions into the wake. Charge separation due to electrons streaming ahead of the ions into the wake from the wake boundary establishes an ambipolar electric field which impedes the motion of electron flow and accelerates ions into the wake [Ogilvie et al., 1996; Farrell et al., 1997]. We have conducted a theoretical study of acceleration (and deceleration) of charged particles in lunar plasma environments, which investigated the mechanisms responsible for allowing solar wind entry into the lunar wake, and for producing energetic particle distributions observed within the lunar wake. To this end, the investigation utilized a macroscale 3D hybrid particle-in-cell numerical model of the interaction of the Moon with external plasma environments to compute electric fields in the lunar environment for a variety of external plasma conditions and interplanetary magnetic field orientations. Ion dynamics were attained from the hybrid code while electron dynamics were determined by considering electron test particle trajectories through the fields established in the hybrid code. Results from the code will be presented to evaluate charging environments within the lunar wake.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M10-0658 , I Ith Spacecraft Charging Technology Conference; Sep 20, 2010 - Sep 24, 2010; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-19
    Description: Introduction: A pair of small pressurized rovers (Space Exploration Vehicles, or SEVs) is at the center of the Global Point-of-Departure architecture for future human planetary exploration. Simultaneous operation of multiple crewed surface assets should maximize productive crew time, minimize overhead, and preserve contingency return paths. Methods: A 14-day mission simulation was conducted in the Arizona desert as part of NASA?s 2010 Desert Research and Technology Studies (DRATS). The simulation involved two SEV concept vehicles performing geological exploration under varied operational modes affecting both the extent to which the SEVs must maintain real-time communications with mission control ("Continuous" vs. "Twice-a-Day") and their proximity to each other ("Lead-and-Follow" vs. "Divide-and-Conquer"). As part of a minimalist lunar architecture, no communications relay satellites were assumed. Two-person crews consisting of an astronaut and a field geologist operated each SEV, day and night, throughout the entire 14-day mission, only leaving via the suit ports to perform simulated extravehicular activities. Standard metrics enabled quantification of the habitability and usability of all aspects of the SEV concept vehicles throughout the mission, as well as comparison of the extent to which the operating modes affected crew productivity and performance. Practically significant differences in the relevant metrics were prospectively defined for the testing of all hypotheses. Results and Discussion: Data showed a significant 14% increase in available science time (AST) during Lead-and-Follow mode compared with Divide-and-Conquer, primarily because of the minimal overhead required to maintain communications during Lead-and-Follow. In Lead-and-Follow mode, there was a non-significant 2% increase in AST during Twice-a-Day vs. Continuous communications. Situational awareness of the other vehicle?s location, activities, and contingency return constraints were enhanced during Lead-and-Follow and Twice-a-Day communications modes due to line-of-sight and direct SEV-to-SEV communication. Preliminary analysis of Scientific Data Quality and Observation Quality metrics showed no significant differences between modes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-22258 , AIAA 41st International Conference on Environmental Systems; Jul 11, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-19
    Description: The collision between Iridium 33 and Cosmos 2251 in 2009 underlined the potential of an ongoing collision cascade effect (the Kessler Syndrome ) in the near-Earth orbital debris environment. A 2006 NASA analysis of the instability of the debris population in the low Earth orbit (LEO, the region below 2000 km altitude) shows that the environment has reached a point where the debris population will continue to increase in the next 200 years, even without any future launches. The increase is driven by fragments generated via collisions among existing objects in LEO. In reality, the situation will be worse than this prediction because satellite launches will continue and unexpected major breakups may continue to occur. Mitigation measures commonly adopted by the international space community (such as the 25-year rule) will help, but will be insufficient to stop the population growth. To better preserve the near-Earth space environment for future generations, active debris removal (ADR) should be considered. The idea of active debris removal is not new. However, due to the monumental technical, resource, operational, legal, and political challenges associated with removing objects from orbit, it has not yet been widely considered feasible. The recent major breakup events and the environment modeling efforts have certainly reignited the interest in using active debris removal to remediate the environment. This trend is further highlighted by the National Space Policy of the United States of America, released by the White House in June 2010, where the President explicitly directs NASA and the Department of Defense to pursue research and development of technology and techniques, to mitigate and remove on-orbit debris, reduce hazards, and increase understanding of the current and future debris environment. A 2009 modeling study by the NASA Orbital Debris Program Office has shown that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products. Analyses from the study indicate that the majority of those objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 10 inclination bands. To remove five of those objects per year in a cost-effective manner truly represents a grand challenge in engineering and technology development. An end-to-end debris removal operation includes, in general terms, launches orbit rendezvous, precision tracking, stabilization (of the tumbling motion), capture, and deorbit of the targets. An ADR system deigned to remove a single object is not very cost-effective. Therefore, the repeatability of the removal system is almost a requirement. Some of the technologies involved in the ADR process do exist, but the difficulty is to make them more cost effective. Other technologies, such as ways to stabilize a massive tumbling upper stage and the capture mechanisms, are new and will require major innovative research and development efforts. This paper summarizes an updated assessment of the environment, including what needs to be done to control the population growth, and outlines the major engineering and technology challenges to carry out active debris removal to preserve the environment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-21854 , 21st AAS/AIAA Space Flight Mechanics Meeting; Feb 13, 2011 - Feb 17, 2011; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-19
    Description: A study in late 2006 was sponsored by the Advanced Projects Office within NASA's Constellation Program to examine the feasibility of sending the Orion Crew Exploration Vehicle to a near-Earth object (NEO). The ideal mission profile would involve two or three astronauts on a 90 to 180 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. More recently U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for NEO exploration in order to follow U.S. space exploration policy. Prior to sending a human mission, a series of robotic spacecraft would be launched to reduce the risk to crew, and enhance the planning for the proximity and surface operations at the NEO. The human mission would ideally follow five or more years later. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other solar system destinations. Piloted missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. The main scientific advantage of sending piloted missions to NEOs would be the flexibility of the crew to perform tasks and to adapt to situations in real time. A crewed vehicle would be able to test several different sample collection techniques and target specific areas of interest via extra-vehicular activities (EVAs) more efficiently than robotic spacecraft. Such capabilities greatly enhance the scientific return from these missions to NEOs, destinations vital to understanding the evolution and thermal histories of primitive bodies during the formation of the early solar system. Data collected from these missions would help constrain the suite of materials possibly delivered to the early Earth, and would identify potential source regions from which NEOs originate. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-21708 , Centre for Planetary Science and Exploration meeting; Sep 30, 2010 - Oct 01, 2010; London, Ontario; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-19
    Description: During the Year of the Solar System spacecraft from NASA and our international partners will encounter two comets; orbit the asteroid Vesta, continue to explore Mars with rovers, and launch robotic explorers to the Moon and Mars. We have pieces of all these worlds in our laboratories, and their continued study provides incredibly valuable "ground truth" to complement space exploration missions. Extensive information about these unique materials, as well as actual lunar samples and meteorites, are available for display and education. The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. At the current time JSC curates six types of extraterrestrial samples: (1) Moon rocks and soils collected by the Apollo astronauts (2) Meteorites collected on US expeditions to Antarctica (including rocks from the Moon, Mars, and many asteroids including Vesta) (3) "Cosmic dust" (asteroid and comet particles) collected by high-altitude aircraft (4) Solar wind atoms collected by the Genesis spacecraft (5) Comet particles collected by the Stardust spacecraft (6) Interstellar dust particles collected by the Stardust spacecraft These rocks, soils, dust particles, and atoms continue to be studied intensively by scientists around the world. Descriptions of the samples, research results, thousands of photographs, and information on how to request research samples are on the JSC Curation website: http://curator.jsc.nasa.gov/ NASA provides a limited number of Moon rock samples for either short-term or long-term displays at museums, planetariums, expositions, and professional events that are open to the public. The JSC Public Affairs Office handles requests for such display samples. Requestors should apply in writing to Mr. Louis Parker, JSC Exhibits Manager. Mr. Parker will advise successful applicants regarding provisions for receipt, display, and return of the samples. All loans will be preceded by a signed loan agreement executed between NASA and the requestor's organization. Email address: louis.a.parker@nasa.gov Sets of twelve thin sections of Apollo lunar samples and sets of twelve thin sections of meteorites are available for short-term loan from JSC Curation. The thin sections are designed for use in college and university courses where petrographic microscopes are available for viewing. Requestors should contact the Ms. Mary Luckey, Education Sample Curator. Email address: mary.k.luckey@nasa.gov
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-21645 , American Geophysical Union Fall Meeting; Dec 13, 2010 - Dec 17, 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-19
    Description: Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 square km. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting laboratory analyses of surface samples collected from mud volcanoes in Azerbaijan, Taiwan and Japan. X-ray diffraction, visible / near infrared reflectance spectroscopy and Raman spectroscopy show that the samples are dominated by mixed-layer smectite clays, along with quartz, calcite and pyrite. Thin section analysis by optical and scanning electron microscopy confirms the mineral identifications. These samples also contain chemical and morphological biosignatures, including common microfossils, with evidence of partial replacement by pyrite. The bulk samples contain approximately 1 wt% total organic carbon and 0.4 mg / gm volatile hydrocarbons. The thousands of features in Acidalia Planitia cited as analogous to terrestrial mud volcanoes clearly represent an important element in the sedimentary record of Mars. Their location, in the distal depocenter for massive Hesperian-age floods, suggests that they contain fine-grained sediments from a large catchment area in the martian highlands. We have proposed these features as a new class of exploration target that can provide access to minimally-altered material from significant depth. By analogy to terrestrial mud volcanoes, these features may also be excellent sites for the sampling martian organics and subsurface microbial life, if such exist or ever existed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-21608 , American Geophysical Union Fall Meeting; Dec 13, 2010 - Dec 17, 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-19
    Description: The Lunar Mapping and Modeling Project (LMMP) is managing the development of a suite of lunar mapping and modeling tools and data products that support lunar exploration activities, including the planning, design, development, test, and operations associated with crewed and/or robotic operations on the lunar surface. In addition, LMMP should prove to be a convenient and useful tool for scientific analysis and for education and public outreach (E/PO) activities. LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Lunar Prospector, Clementine, Apollo, Lunar Orbiter, Kaguya, and Chandrayaan-1) as available and appropriate. LMMP will provide such products as image mosaics, DEMs, hazard assessment maps, temperature maps, lighting maps and models, gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and ensure the highest quality data products. A beta version of the LMMP software was released for limited distribution in December 2009, with the public release of version 1 expected in the Fall of 2010.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M10-0697 , M10-0981 , Lunar Science Forum/NASA Ames Research Cente; Jul 20, 2010 - Jul 22, 2010; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-19
    Description: The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the international space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Medical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materials. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scientific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technology, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-21120 , 38th Committee on Space Research Scientific Assembly (COSPAR 2010); Jul 18, 2010 - Jul 25, 2010; Bremen; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: Resource investigation in the lunar poles is of importance to the potential impact of in-situ resource utilization (ISRU). The RESOLVE project developed a payload to investigate the permanently shadowed areas of the lunar poles and demonstrate ISRU technology. As a part of the RESOLVE project, the regolith volatile characterization (RVC) subsystem was designed to examine the release of volatiles from sample cores. The test sample was heated in the reactor to release the volatiles where they were analyzed with gas chromatography. Subsequently, the volatile sample was introduced into the lunar water resource demonstration (LWRD) subsystem where the released hydrogen and water were selectively captured. The objective of the Regolith Volatile Characterization (RVC) subsystem was to heat the crushed core sample and determine the desorption of volatile species of interest. The RVC subsystem encompasses the reactor and the system for volatile analysis. The system was designed to analyze H2, He, CO, CO2, N2, 02, CH4, H2S and H2O. The GC chosen for this work is a Siemens MicroSAM process GC with 3 columns and 8 TCD detectors. Neon was chosen as the carrier gas to enhance the analysis of hydrogen and helium.The limit of detection for the gases is approx.1000ppm for H2, CO. CO2 , N2, O2 and H2 S. The limit of detection for CH4 is approx.4000ppm and the water limit of detection is -10000 ppm with a sample analysis time of 2-3 minutes. These values (with the exception of water and H2S) were determined by dilution of a six gas mixture from Scott Gas (5% CO2, CO, O2, N2, 4% CH4 and H2) using mass flow controllers (MFC5). Water was calibrated at low levels using an in house relative humidity (RH) generator. H 2S and high concentrations of H2 were calibrated by diluting a pure stream of gas with MFCs. Higher concentrations of N2 and 02 were calibrated using Air again diluting with MFCs. There were three modification goals for the GC in EBU2 that would allow this process GC to be used in the field demo for RESOLVE. The first modification was to decrease the weight associated with the GC, this included eliminating the explosion proof case (Figure 1) and replacing it with a lightweight case as well as using an on board COPV tank for the neon carrier gas. The next goal was to add a second oven for the molecular sieve column to allow for dual temperature control during GC operation; the separation of hydrogen and helium is optimum at lower temperatures while the water analysis required higher temperatures creating a competing design requirement. The second oven also allows a lower limit of detection for water quantification and avoids the possibility of water condensing in the GC which could ruin the column characteristics. The final goal was to modify the column arrangement to optimize the system for our specific application. Figure 2 shows the internal details of the module optimized optimized for our field application. The modifications and performance of the gas analysis system will be discussed in detail.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-123 , AIAA Conference; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: We present RPWS Langmuir probe data from the third Enceladus flyby (E3) showing (he presence of dusty plasma near Enceladus' South Pole. There is a sharp rise in both the electron and ion number densities when the spacecraft traverses through Enceladus plume. The ion density near Enceladus is found to increase abruptly from about 10(exp 2) cm (exp -3) before the closest approach to 10(exp 5) cm (exp -3) just 30 s after the closest approach, an amount two orders of magnitude higher than the electron density. Assuming that the inconsistency between the electron and ion number densities is due to the presence of dust particles that are collecting the missing electron charges, we present dusty plasma characteristics down to sub-micron particle sizes. By assuming a differential dust number density for a range in dust sizes and by making use of Langmuir probe data, the dust densities for certain lower limits in dust size distribution were estimated. In order to achieve the dust densities of micrometer and larger sized grains comparable to the ones reported in the literature. we show that the power law size distribution must hold down to at least 0.03 micron such that the total differential number density is dominated by the smallest sub-micron sized grains. The total dust number density in Enceladus' plume is of the order of l0(exp 2) cm(exp -3) reducing to 1 cm(exp -3) in the E- ring. The dust density for micrometer and larger sized grains is estimated to be about 10(exp -4) cm(exp -3) in the plume while it is about 10(exp -6) - 10(exp -7) cm(exp -3) in the E-ring. Dust charge for micron sized grains is estimated to be about eight thousand electron charges reducing to below one hundred electron charges for 0.03 micron sized grains. The effective dusty plasma Debye length is estimated and compared with intergrain distance as well as the electron Debye length. The maximum dust charging time of 1.4 h is found for 0.03 11mmicron sized grains just 1 min before the closest approach. The charging time decreases substantially in the plume where it is only a fraction of a second for 1 micron sized grains, 1 s for 0.l micron sized grains and about 10 s for 0.03 micron sized grains.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.01240.2012 , Planetary and Space Science (ISSN 0032-0633); 59; 17-25
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: The paired howardite breccias Mt. Pratt (PRA) 04401 and PRA 04402 are notable for their high proportion of carbonaceous chondrite clasts [1]. They consist predominantly of coarse (0.1-7 mm) diogenite (orthopyroxene), eucrite (plagioclase + pyroxene), and carbonaceous chondrite clasts set in a finer grained matrix of these same materials. Coarse C-chondrite clasts up to 7 mm are composed mainly of fine-grained phyllosilicates with lesser sulfides and high-mg# anhydrous magnesian silicates. Most of these clasts appear to be texturally consistent with CM2 classification [1] and some contain relict chondrules. The clasts are angular and reaction or alteration textures are not apparent in the surrounding matrix. PRA 04401 contains about 70 modal% C-chondrite clasts while PRA 04402 contains about 7%. Although many howardites are known to contain abundant C-chondrite clasts [2,3,4], PRA 04401 is, to our knowledge, the most chondrite-rich howardite lithology identified to date. Low EPMA totals from CM2-type clasts in other howardites suggest that they frequently contain 10 wt% or more water [2], a figure consistent with their mineralogy. PRA 04401, therefore, demonstrates the potential for hydrous lithologies with greater than 5 wt% water to occur locally within the nominally anhydrous HED parent body. Since the origin of this water is xenogenic, it might therefore be concentrated in portions of the asteroid surface where it would be more readily observable by remote sensing techniques. We plan to further examine C-chondrite clasts in PRA 04401/2 with the intent of establishing firm chemical classification, estimating water content, and evaluating their relationship with the host breccia. To help place them in context of the HED parent, we will also compare these breccias with other howardites to evaluate which lithologies are likely to be more prevalent on the asteroid surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-21143 , 73rd Annual Meeting of the Meteoritical Society; Jul 26, 2010 - Jul 30, 2010; New York, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: Pallasites are mixtures of metal with magnesian olivine. Most have similar metal compositions and olivine oxygen isotopic compositions; these are the main-group pallasites (PMG). The Eagle Station grouplet of pallasites (PES) have distinctive metal and olivine compositions and oxygen isotopic compositions. Pallasites are thought to have formed at the core-mantle boundary of their parent asteroids by mixing molten metal with solid olivine of either cumulatic or restitic origin. We have continued our investigation of pallasite olivines by doing in situ trace element analyses in order to further constrain their origin. We determined Al, P, Ca, Ga and first row transition element contents of olivine grains from suite of PMG and PES by LA-ICP-MS at JSC. Included in the PMG suite are some that have anomalous metal compositions (PMG-am) and atypically ferroan olivines (PMG-as). Our EMPA work has shown that there are unanticipated variations in olivine Fe/Mn, even within those PMG that have uni-form Fe/Mg. Manganese is homologous with Fe2+, and thus can be used the same way to investigate magmatic fractionation processes. It has an advantage for pallasite studies in that it is unaffected by redox exchange with the metal. PMG can be divided into three clusters on the basis of Mn/Mg; low, medium and high that can be thought of as less, typically and more fractionated in an igneous sense. The majority of PMG have medium Mn/Mg ratios. PMG-am occur in all three clusters; there does not seem to be any relationship between putative olivine igneous fractionation and metal composition. The PMG-as and one PMG-am make up the high Mn/Mg cluster; no PMG are in this cluster. The high Mn/Mg cluster ought to be the most fractionated (equivalent to the most Fe-rich in igneous suites), yet they have among the lowest contents of incompatible lithophile elements Al and Ti and the two PMG-as in this cluster also have low Ca and Sc contents. This is inconsistent with simple igneous fractionation on a single, initially homogeneous parent asteroid. For Al and Ti, the low and high Mn/Mg clusters have generally uniform contents, while the medium cluster has wide ranges. This is also true of analyses of duplicate grains from the medium cluster pallasites which can have very different Al and Ti contents. Those from the low and high clusters do not. These observations suggest that pallasite olivines are not cumulates, but rather are restites from high degrees of melting. The moderately siderophile elements P and Ga show wide ranges in the high Mn/Mg cluster, but very uniform compositions in the medium cluster, opposite the case for Al and Ti. There is no correlation of P or Ga and Fe/Mn as might be expected if redox processes controlled the contents of moderately siderophile elements in the olivines. The lack of correlation of P could reflect equilibration with phosphates, although there is no correlation of Ca with P as might be expected
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-21141 , 73rd Annual Meeting of the Meteoritical Society; Jul 26, 2010 - Jul 30, 2010; New York, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: MODIS collects data in both the reflected solar and thermal emissive regions using 36 spectral bands. The center wavelengths of these bands cover the3.7 to 14.24 micron region. In addition to using its on-board calibrators (OBC), which include a full aperture solar diffuser (SD) and a blackbody (BB), lunar observations have been scheduled on a regular basis to support both Terra and Aqua MODIS on-orbit calibration and characterization. This paper provides an overview of MODIS lunar observations and their applications for the reflective solar bands (RSB) and thermal emissive bands (TEB) with an emphasis on potential calibration improvements of MODIS band 21 at 3.96 microns. This spectral band has detectors set with low gains to enable fire detection. Methodologies are proposed and examined on the use of lunar observations for the band 21 calibration. Also presented in this paper are preliminary results derived from Terra MODIS lunar observations and remaining challenging issues.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.CPR.4718.2011 , IEEE Spie Optics+Photonics; Aug 03, 2010 - Aug 05, 2010; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: Robust estimation method is proposed to combine multiple observations and create consistent, accurate, dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce higher-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data than is currently possible. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. However, the DEMs currently produced by the ASP often contain errors and inconsistencies due to image noise, shadows, etc. The proposed method addresses this problem by making use of multiple observations and by considering their goodness of fit to improve both the accuracy and robustness of the estimate. The stepwise regression method is applied to estimate the relaxed weight of each observation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN2436 , International Symposium on Visual Computing; Nov 30, 2009 - Dec 02, 2009; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: The Lunar CRater Observation and Sensing Satellite (LCROSS) launched with the Lunar Reconnaissance Orbiter (LRO) on June 18, 2009. While the science purpose of the LCROSS mission was to determine the presence of water-ice in a permanently-shadowed crater on the moon, the functional purpose was to be a pioneer for future low-cost, risk-tolerant small satellite NASA missions. Recent strategic changes at the Agency level have only furthered the importance of small satellite missions. NASA Ames Research Center and its industry partner, Northrop-Grumman, initiated this spacecraft project two-years after its co-manifest mission had started, with less than one-fifth the budget. With a $79M total cost cap (including operations and reserves) and 31-months until launch, LCROSS needed a game-changing approach to be successful. At the LCROSS Confirmation Review, the ESMD Associate Administrator asked the Project team to keep a close record of lessons learned through the course of the mission and share their findings with the Agency at the end of the mission. This paper summarizes the Project, the mission, its risk position, and some of the more notable lessons learned.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN1984 , 61st International Astronautical Congress; Sep 27, 2010 - Oct 01, 2010; Prague; Czech Republic
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: Several hydrated silicate deposits on Mars are observed within craters and are interpreted as excavated Noachian material. Toro crater (71.8 deg E, 17.0 deg N), located on the northern edge of the Syrtis Major Volcanic Plains, shows spectral and morphologic evidence of impact-induced hydrothermal activity. Spectroscopic observations were used to identify extensive hydrated silicate deposits, including prehnite, chlorites, smectites, and opaline material, a suite of phases that frequently results from hydrothermal alteration in terrestrial craters and also expected on Mars from geochemical modeling of hydrothermal environments. When combined with altimetry and high-resolution imaging data, these deposits appear associated predominantly with the central uplift and with portions of the northern part of the crater floor. Detailed geologic mapping of these deposits reveals geomorphic features that are consistent with hydrothermal activity that followed the impact event, including vent-like and conical mound structures, and a complex network of tectonic structures caused by fluid interactions such as fractures and joints. The crater age has been calculated from the cumulative crater size-frequency distributions and is found to be Early Hesperian. The evidence presented here provides support for impact-induced hydrothermal activity in Toro crater, that extends phyllosilicate formation processes beyond the Noachian era.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; 208; 667-683
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: Observation of methane in the Martian atmosphere has been reported by different detection techniques [1-4]. With more evidence showing extensive water-rock interaction in Martian history [5-7], abiotic formation by Fischer-Tropsch Type (FTT) synthesis during serpentization reactions may be one possible process responsible for methane generation on Mars [8, 9]. While the experimental studies performed to date leave little doubt that chemical reactions exist for the abiotic synthesis of organic compounds by mineral surface-catalyzed reactions [10-12], little is known about the reaction pathways by which CO2 and/or CO are reduced under hydrothermal conditions. Carbon and hydrogen isotope measurements of alkanes have been used as an effective tool to constrain the origin and reaction pathways of hydrocarbon formation. Alkanes generated by thermal breakdown of high molecular weight organic compounds have carbon and hydrogen isotopic signatures completely distinct from those formed abiotically [13-15]. Recent experimental studies, however, showed that different abiogenic hydrocarbon formation processes (e.g., polymerization vs. depolymerization) may have different carbon and hydrogen isotopic patterns [16]. Results from previous experiments studying decomposition of higher molecular weight organic compounds (lignite) also suggested that pressure could be a crucial factor affecting fractionation of carbon isotopes [17]. Under high pressure conditions, no experimental data are available describing fractionation of carbon isotope during mineral catalyzed FTT synthesis. Thus, hydrothermal experiments present an excellent opportunity to provide the requisite carbon isotope data. Such data can also be used to identify reaction pathways of abiotic organic synthesis under experimental conditions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-20126 , Astrobiology Science Conference 2010; Apr 26, 2010 - Apr 29, 2010; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: An analytical model for hydrogen reduction of regolith was used to investigate the effects of several key variables on the energy and mass performance of reactors for a lunar in-situ resource utilization oxygen production plant. Reactor geometry, reaction time, number of reactors, heat recuperation, heat loss, and operating pressure were all studied to guide hardware designers who are developing future prototype reactors. The effects of heat recuperation where the incoming regolith is pre-heated by the hot spent regolith before transfer was also investigated for the first time. In general, longer reaction times per batch provide a lower overall energy, but also result in larger and heavier reactors. Three reactors with long heat-up times results in similar energy requirements as a two-reactor system with all other parameters the same. Three reactors with heat recuperation results in energy reductions of 20 to 40 percent compared to a three-reactor system with no heat recuperation. Increasing operating pressure can provide similar energy reductions as heat recuperation for the same reaction times.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Paper-2010-800 , E-17949 , 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: In this talk, I will summarize how the NASA Ames Intelligent Robotics Group has been developing and field testing planetary robots for human exploration, creating automated planetary mapping systems, and engaging the public as citizen scientists.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN1188 , Field Robotics Center seminar; Jan 21, 2010; Pittsburgh, PA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy (formerly the Vision for Space Exploration). Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture team, and International Architecture Working Group-Power Function team. The results include a summary of FSP design characteristics, a compilation of mission-compatible FSP configuration options, and an FSP concept-of-operations that is consistent with the overall mission objectives.
    Keywords: Lunar and Planetary Science and Exploration
    Type: E-17386-1 , IECEC-201-17386 , 2010 International Energy Conversion Engineering Conference (IECEC); Jul 26, 2010|8th Annual International Energy Conversion and Engineering Conference (IECEC 2010); Jul 25, 2010 - Jul 28, 2010; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: The high cost of re-supply from Earth demands resources to be utilized to the fullest extent for exploration missions. Recycling is a key technology that maximizes the available resources by converting waste products into useful commodities. One example of this is to convert crew member waste such as plastic packaging, food scraps, and human waste, into fuel. The ability to refuel on the lunar surface would reduce the vehicle mass during launch and provide excess payload capability. The goal of this project is to determine the feasibility of recycling waste into methane on the lunar outpost by performing engineering assessments and lab demonstrations of the technology. The first goal of the project was to determine how recycling could influence lunar exploration. Table I shows an estimation of the typical dried waste stream generated each day for a crew of four. Packaging waste accounts for nearly 86% of the dry waste stream and is a significant source of carbon on the lunar surface. This is important because methane (CH4) can be used as fuel and no other source of carbon is available on the lunar surface. With the initial assessment indicating there is sufficient resources in the waste stream to provide refueling capabilities, the project was designed to examine the conversion of plastics into methane.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2009-118 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The presence of water ice on most of the large satellites of the outer planets was established many years ago through near-infrared observations with ground-based telescopes. Frozen carbon dioxide, sulfur dioxide, methane, nitrogen, and other molecular ices are also found in various combinations on inner planets such as Mars to bodies far beyond Pluto. Recent discoveries of ice varieties on some asteroids and sequestered in protected regions on Mercury and the Moon point to the near-universal distribution of frozen volatiles throughout the solar system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN4053 , Science (ISSN 1095-9203)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: The In-Situ Resource Utilization (ISRU) project of the NASA Constellation Program, Exploration Technology Development Program (ETDP) has been engaged in the design and testing of various Lunar ISRU O2 production plant prototypes that can extract chemically bound oxygen from the minerals in the lunar regolith. This work demands that lunar regolith (or simulants) shall be introduced into the O2 production plant from a holding bin or hopper and subsequently expelled from the ISRU O2 production plant for disposal. This sub-system is called the Regolith Feed System (RFS) which exists in a variety of configurations depending on the O2 production plant oxygen being used (e.g. Hydrogen Reduction, Carbothermal, Molten Oxide Electrolysis). Each configuration may use a different technology and in addition it is desirable to have heat recuperation from the spent hot regolith as an integral part of the RFS. This paper addresses the various RFS and heat recuperation technologies and system configurations that have been developed under the NASA ISRU project since 2007. In addition current design solutions and lessons learned from reduced gravity flight testing will be discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Paper 2010-1547 , KSC-2010-296 , AIAA Aerospace Science Meeting (ASM) 2010; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: The planet Venus represents an exciting target for future exploration by spacecraft. One target of scientific interest is the lower atmosphere, which represents an environment of high temperature and moderate to high atmospheric pressure. This represents a considerable challenge to the technical art of ballooning, but one which may be amenable to solution. Several possible designs for low-altitude balloons are discussed. Conceptual design for three mission examples are analyzed: a conventional balloon operating below the cloud level at an altitude of 25 kilometers, a large rigid-envelope balloon operating near the surface at an altitude of 5 kilometers, and a small, technology demonstrator rigid-envelope balloon operating at 5 kilometers.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Paper-2010-628 , E-17947 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: The exploration of the lunar surface will rely on properly designed excavation equipment for surface preparations and for collection of lunar regolith in In-Situ Resource Utilization (ISRU) processes. Performance efficiency, i.e minimizing loading forces while maximizing material collection, and mass and volume reductions are major design goals. The NASA Glenn Research Center has embarked on an experimental program to determine the flow characteristics and dynamic forces produced by excavation operations using various excavator bucket designs. A new large scale soil bin facility, 2.27 m x 5.94 m x 0.76 m (nominally 8 ft. x 20 ft. x 27 in.) in size, capable of accommodating moderately large test implements was used for the simulations of lunar operations. The soil bin is filled with GRC-3simulant (a mixture of industrial sands and silt with a particle size distribution and the bulk mechanical (shear) strength representative of an average of lunar regolith from different regions) and uses motorized horizontal rails and a vertical actuator to drive the implement through the lunar simulant soil. A six-axis load cell and encoders provide well resolved measurements of the three dimensional forces and torques and motion of the bucket. In addition, simultaneous video allows for the analysis of the flow behavior and structure formation of the regolith during excavation. The data may be useful in anchoring soil mechanic models and to provide engineering data for design consideration.
    Keywords: Lunar and Planetary Science and Exploration
    Type: E-17937 , Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments; Mar 14, 2010 - Mar 17, 2010; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: Successful exploration of most planetary surfaces, with their impact-generated dusty regoliths, will depend on the capabilities to keep surfaces free of the performance-compromising dust. Once in contact with surfaces, whether set in motion by natural or mechanical means, regolith fines, or dust, behave like abrasive Velcro, coating surfaces, clogging mechanisms, making movement progressively more difticult, and being almost impossible to remove by mechanical mcans (brushing). The successful dust removal strategy will deal with dust dynamics resulting from interaction between Van der Waals and Coulombic forces. Here, proof of concept for an electrostatically-based concept for dust control tool is described and demonstrated. A low power focused electron beam is used in the presence of a small electrical field to increase the negative charge to mass ratio of a dusty surface until dust repulsion and attraction to a lower potential surface, acting as a dust collector, occurred. Our goal is a compact device of less than 5 kg mass and using less than 5 watts of power to be operational in less than 5 years with heritage from ionic sweepers for active spacecraft potential control (e.g ., on POLAR). Rovers could be fitted with devices that could hamess the removal of dust for sampling as part of the extended exploration process on Mercury, Mars, asteroids or outer solar system satellites, as well as the Moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4605.2011 , Space, Propulsion and Energy Sciences International Forum - SPESIF 2010; Feb 23, 2010 - Feb 26, 2010; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal attitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere,
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4599.2011 , Science; 329; 672-675
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: From observations of the metallic species sodium (Na), potassium (K), and magnesium (Mg) in Mercury's exosphere, we derive implications for source and loss processes. All metallic species observed exhibit a distribution and/or line width characteristic of high to extreme temperature - tens of thousands of degrees K. The temperatures of refractory species, including magnesium and calcium, indicate that the source process for the atoms observed in the tail and near-planet exosphere are consistent with ion sputtering and/or impact vaporization of a molecule with subsequent dissociation into the atomic form. The extended Mg tail is consistent with a surface abundance of 5-8% Mg by number, if 30% of impact-vaporized Mg remains as MgO and half of the impact vapor condenses. Globally, ion sputtering is not a major source of Mg, but locally the sputtered source can be larger than the impact vapor source. We conclude that the Na and K in Mercury's exosphere can be derived from a regolith composition similar to that of Luna 16 soil (or Apollo 17 orange glass), in which the abundance by number is 0.0027 (0.0028) for Na and 0.0006 (0.0045) for K.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4592.2011 , Icarus (ISSN 0019-1035); 209; 1; 75-87
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: We have used observations of sodium emission obtained with the McMath-Pierce solar telescope and MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) to constrain models of Mercury's sodium exosphere, The distribution of sodium in Mercury's exosphere during the period January 12-15. 2008. was mapped using the McMath-Pierce solar telescope with the 5" X 5" image slicer to observe the D-line emission. On January 14, 2008, the Ultraviolet and Visible Spectrometer (UVVS) channel on MASCS sampled the sodium in Mercury's anti-sunward tail region. We find that the bound exosphere has an equivalent temperature of 900-1200 K, and that this temperature can be achieved if the sodium is ejected either by photon-stimulated desorption (PSD) with a 1200 K Maxwellian velocity distribution, or by thermal accommodation of a hotter source. We were not able to discriminate between the two assumed velocity distributions of the ejected particles for the PSD. but the velocity distributions require different values of the thermal accommodation coefficient and result in different upper limits on impact vaporization, We were able to place a strong constraint on the impact vaporization rate that results in the release of neutral Na atoms with an upper limit of 2.1 x 10(exp 6) sq cm/s, The variability of the week-long ground-based observations can be explained by variations in the sources, including both PSD and ion-enhanced PSD, as well as possible temporal enhancements in meteoroid vaporization. Knowledge of both dayside and anti-sunward tail morphologies and radiances are necessary to correctly deduce the exospheric source rates, processes, velocity distribution, and surface interaction.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4590.2011 , Icarus; 211; 1; 21-36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: The Lunar Reconnaissance Orbiter (LRO) was implemented to facilitate scientific and engineering-driven mapping of the lunar surface at new spatial scales and with new remote sensing methods, identify safe landing sites, search for in situ resources, and measure the space radiation environment. After its successful launch on June 18,2009, the LRO spacecraft and instruments were activated and calibrated in an eccentric polar lunar orbit until September 15, when LRO was moved to a circular polar orbit with a mean altitude of 50 km. LRO will operate for at least one year to support the goals of NASA's Exploration Systems Mission Directorate (ESMD), and for at least two years of extended operations for additional lunar science measurements supported by NASA's Science Mission Directorate (SMD). LRO carries six instruments with associated science and exploration investigations, and a telecommunications/radar technology demonstration. The LRO instruments are: Cosmic Ray Telescope for the Effects of Radiation (CRaTER), Diviner Lunar Radiometer Experiment (DLRE), Lyman-Alpha Mapping Project (LAMP), Lunar Exploration Neutron Detector (LEND), Lunar Orbiter Laser Altimeter (LOLA), and Lunar Reconnaissance Orbiter Camera (LROC). The technology demonstration is a compact, dual-frequency, hybrid polarity synthetic aperture radar instrument (Mini-RF). LRO observations also support the Lunar Crater Observation and Sensing Satellite (LCROSS), the lunar impact mission that was co-manifested with LRO on the Atlas V (401) launch vehicle. This paper describes the LRO objectives and measurements that support exploration of the Moon and that address the science objectives outlined by the National Academy of Science's report on the Scientific Context for Exploration of the Moon (SCEM). We also describe data accessibility by the science and exploration community.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4525.2011 , Space Science Reviews; 150; 4-Jan; 7-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-12
    Description: Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN-2302
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: The surface brightness temperature of Titan can be measured from Cassini through a spectral window at 19 microns where the atmosphere is low in opacity. The Composite Infrared Spectrometer (CIRS) on Cassini observes this wavelength in its far-infrared channel. Because the Cassini tour has provided global coverage and a range of viewing geometries, CIRS has been able to go beyond the earlier flyby results of Voyager IRIS Near the equator, CIRS measures the zonally-averaged surface brightness temperature to be 917 K, very close to the temperature found at the surface by Huygens. Latitude maps show that Titan's surface temperatures drop off by about 2 K toward the south and by about 3 K toward the north. This temperature distribution is consistent with Titan's late northern winter when the data were taken. As the seasons progress, CIRS is continuing to search for corresponding changes in the temperatures of the surface and lower atmosphere. CIRS is also extending global mapping to both latitude and longitude to look for correlations between surface temperatures and geological features.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Cassini-Huygens Project: Huygens Legacy and Future Titan Exploration; Jan 13, 2010 - Jan 15, 2010; Barcelona; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: National Aeronautics and Space Administration s (NASA) efforts in human space flight are currently focused on the Space Shuttle and International Space Station (ISS) programs, with efforts beginning on the future exploration opportunities. Both the Space Shuttle and ISS programs are important to the development of a capability for human exploration beyond Low Earth Orbit (LEO). The ISS provides extensive research capabilities to determine how the human body reacts to long duration stays in space. Also, the ISS and Shuttle can serve as a limited testbed for equipment or entire systems that may be used on missions to the Moon, Mars, or to a near-Earth asteroid. It has been nearly 35 years since the Apollo astronauts visited the Moon. Future space explorers will have to re-learn how to work and live on planetary surfaces, and how to do that for extended periods of time. Exploration crews will perform a wide assortment of scientific tasks, including material sampling and emplacement of automated instruments. Surface mission operations include the activities of the crew living and working, mission support from the Earth, and the operation of robotic and other remotely commanded equipment on the surface and in planetary orbit. Other surface activities will include the following: exploring areas surrounding a habitat; using rovers to collect rock and soil samples; setting up experiments on the surface to monitor the radiation environment and any seismic or thermal activity; and conducting scientific analyses and experiments inside a habitat laboratory. Of course, the astronauts will also have to spend some of their surface time "doing chores" and maintaining their habitat and other systems. In preparation for future planetary exploration, NASA must design the answers to many operational questions. What will the astronauts do on the surface? How will they accomplish this? What tools will they require for their tasks? How will robots and astronauts work together? What vehicle and system capabilities are required to support the activities? How will the crew and the Earth-based mission control team interact? During the initial phases of manned planetary exploration, one challenge in particular is virtually the same as during the Apollo program: How can scientific return be maximized during a relatively short surface mission? Today, NASA is investigating solutions to these challenges by conducting analog missions. These Earth-based missions possess characteristics that are analogous to missions on the Moon or Mars. These missions are excellent for testing operational concepts, and the design, configuration, and functionality of spacesuits, robots, rovers, and habitats. Analog mission crews test specific techniques and procedures for surface field geology, biological sample collection, and planetary protection. The process of actually working an analog mission reveals a myriad of small details, which either contribute to or impede efficient operations, many of which would never have been thought about otherwise. It also helps to define the suite of tools, containers, and other small equipment that surface explorers will use. This paper focuses on how analog missions have addressed selected operational considerations for future planetary missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-22653 , Space 2011 Conference and Exposition; Sep 26, 2011 - Sep 29, 2011; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: Many options for exploration of space have been identified and evaluated since the Vision for Space Exploration (VSE) was announced in 2004. Lunar architectures have been identified and addressed in the Lunar Surface Systems team to establish options for how to get to and then inhabit and explore the moon. The Augustine Commission evaluated human space flight for the Obama administration and identified many options for how to conduct human spaceflight in the future. This paper will evaluate the options for exploration of space for the implications of architectures on the Environmental Control and Life Support (ECLSS), ExtraVehicular Activity (EVA) and Thermal Control System (TCS) Systems. The advantages and disadvantages of each architecture and options are presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-22221 , 41st International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: We report on the Beijing Lunar Declaration endorsed by the delegates of the Global Lunar Conference/11th ILEWG Conference on Exploration and Utilisation of the Moon, held at Beijing on 30 May- 3 June 2010. Specifically we focus on Part B:Technologies and resources; Infrastructures and human aspects; Moon, Space, Society and Young Explorers. We recommend continued and enhanced development and implementation of sessions about lunar exploration, manned and robotic, at key scientific and engineering meetings. A number of robotic missions to the Moon are now undertaken independently by various nations, with a degree of exchange of information and coordination. That should increase towards real cooperation, still allowing areas of competition for keeping the process active, cost-effective and faster. - Lunar landers, pressurized lunar rover projects as presented from Europe, Asia and America are important steps that can create opportunities for international collaboration, within a coordinated village of robotic precursors and assistants to crew missions. - We have to think about development, modernization of existing navigation capabilities, and provision of lunar positioning, navigation and data relay assets to support future robotic and human exploration. New concepts and new methods for transportation have attracted much attention and are of great potential.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M10-0984 , LEAG 2010: Annual Meeting of the Lunar Exploration Analysis Group; Sep 14, 2010 - Sep 16, 2010; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-19
    Description: The formation of cometary CS from CS2 was proposed about 20 years before the latter's detection in comet 122P/de Vico by Jackson et al. (2002). However, the origin of CS2 has received little attention from either experimentalists or theorists. As part of our on-going laboratory program to investigate cometary molecules we have examined chemical reactions that lead to CS2 in the solid state. Icy mixtures of known cometary molecules were proton irradiated near 10K to doses of several eV per molecule. Mid-IR spectroscopy was used as an in situ probe to record both CS2 formation in the ices and the destruction of precursors. We find that the most likely route to cometary CS2 is through OCS by way of the S + CO reaction. We also observe the monocyclic molecule OCS2 as an intermediate on the path from OCS to CS2. This work was funded by NASA's Planetary Geology and Geophysics program.
    Keywords: Lunar and Planetary Science and Exploration
    Type: COSPAR Meeting; Jul 18, 2010 - Jul 25, 2010; Bremen; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-19
    Description: Given the non-spherical shape of Enceladus, the satellite may experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical libration would produce a diurnal oscillation in the longitude of Enceladus' tidal bulge, which could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus' libration amplitude, small amplitude librations may have geologically significant consequences. For example, a physical libration will affect heat production along the tiger stripes as produced by tidal shear heating. We have modeled the expected power emitted along the tiger stripes for various types of physical libration and have quantified which types of physical libration best reproduce the observed power f1ux as detailed in Cassini CIRS data. We find that including a physical libration does allow better fits to the observations and we have identified regions of the libration phase space that where these fits are optimized. A physical libration has important implications for tidal dissipation within Ence1adus and if identified may provide an additional constraint on its interior mass distribution.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: In this talk I will describe the origin of dust in the early universe. I will be presenting observations of the spectral energy distribution of the galaxy J1148+5251, and present estimates of the dust mass in this high redshift (z=6.4) object. I will then discuss the origin of this dust, and the role of SN and AGB stars as dust sources, and the effect of SNRs on the destruction of dust in the interstellar medium of this galaxy.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Cosmic Chemical Evolution Workshop; Jun 01, 2010 - Jun 04, 2010; Saint Michaels, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-19
    Description: Since man was first determined to walk on the moon, simulating the lunar environment became a priority. Providing an accurate reduced gravity environment is crucial for astronaut training and hardware testing. This presentation will follow the development of reduced gravity simulators to a final comparison of environments between the currently used systems. During the Apollo program era, multiple systems were built and tested, with several NASA centers having their own unique device. These systems ranged from marionette-like suspension devices where the subject laid on his side, to pneumatically driven offloading harnesses, to parabolic flights. However, only token comparisons, if any, were made between systems. Parabolic flight allows the entire body to fall at the same rate, giving an excellent simulation of reduced gravity as far as the biomechanics and physical perceptions are concerned. While the effects are accurate, there is limited workspace, limited time, and high cost associated with these tests. With all mechanical offload systems only the parts of the body that are actively offloaded feel any reduced gravity effects. The rest of the body still feels the full effect of gravity. The Partial Gravity System (Pogo) is the current ground-based offload system used to training and testing at the NASA Johnson Space Center. The Pogo is a pneumatic type system that allows for offloaded motion in the z-axis and free movement in the x-axis, but has limited motion in the y-axis. The pneumatic system itself is limited by cylinder stroke length and response time. The Active Response Gravity Offload System (ARGOS) is a next generation groundbased offload system, currently in development, that is based on modern robotic manufacturing lines. This system is projected to provide more z-axis travel and full freedom in both the x and y-axes. Current characterization tests are underway to determine how the ground-based offloading systems perform, how they compare to parabolic flights, and which of the systems is preferable for specific uses. These tests were conducted with six degree of freedom robots and manual inputs. Initial results show a definitive difference in abilities of the two offload systems.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-20569 , Seventh Annual One-Day Symposium of Human Factors and Ergonomics; May 21, 2010; Clear Lake, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-19
    Description: Previous laboratory simulations showed that complex molecules, including prebiotic compounds/can be formed under interstellar conditions from the vacuum UV irradiation of interstellar ice analogs containing H2O, CO, NH3 etc. Although some complex prebiotic species have not been confirmed In the interstellar medium, they are known to be present in meteorites. Nucleobases, the building blocks of DNA and RNA, have also been detected in meteorites. Here, we present a study of the formation of pyrimidine-based compounds from the UV irradiation of pyrimidine in H2O- and/or NH3-ices at 20-30 K, Our results show that various derivatives, induding the nucleobases uracil and cytosine, are formed under these conditions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Amerian Chemical Society (ACS) #13746-10-ST Meeting; Mar 20, 2010 - Mar 25, 2010; San Francisco, Ca; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-19
    Description: We present C-, N-, and O-XANES (X-ray Absorption Near-Edge Spectroscopy) results of organic residues produced in the laboratory from the UV irradiation of astrophysical ice analogs containing H20, CO, CH30H, NH31 in order to mimic processes that may occur in cold icy bodies of the outer Solar System, particularly in comets, Such analyses showed that laboratory-formed organic residues mainly consist of a solid phase and an oily phase. C-XANES analysis of the solid phase suggests a rich distribution of organic functionalities, among which carbonyl groups, C=C bonds, and alcohols are present. Results from N-XANES indicate the possible presence of amide, amine, and nitrile groups, The O-XANES spectra confirmed the a-bearing groups, These results are compared with the XANES spectra obtained from STARDUST cometary samples,
    Keywords: Lunar and Planetary Science and Exploration
    Type: American Chemical Society (ACS) #13746-10-ST Conference; Mar 20, 2010 - Mar 25, 2010; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: The diversity of albedos and surface colors on observed Kuiper Belt and Inner Oort Cloud objects remains to be explained in terms of competition between primordial intrinsic versus exogenic drivers of surface and near-surface evolution. Earlier models have attempted without success to attribute this diversity to the relations between surface radiolysis from cosmic ray irradiation and gardening by meteoritic impacts. A more flexible approach considers the different depth-dependent radiation profiles produced by low-energy plasma, suprathermal, and maximally penetrating charged particles of the heliospheric and local interstellar radiation environments. Generally red objects of the dynamically cold (low inclination, circular orbit) Classical Kuiper Belt might be accounted for from erosive effects of plasma ions and reddening effects of high energy cosmic ray ions, while suprathermal keV-MeV ions could alternatively produce more color neutral surfaces. The deepest layer of more pristine ice can be brought to the surface from meter to kilometer depths by larger impact events and potentially by cryovolcanic activity. The bright surfaces of some larger objects, e.g. Eris, suggest ongoing resurfacing activity. Interactions of surface irradiation, resultant chemical oxidation, and near-surface cryogenic fluid reservoirs have been proposed to account for Enceladus cryovolcanism and may have further applications to other icy irradiated bodies. The diversity of causative processes must be understood to account for observationally apparent diversities of the object surfaces.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 42nd Annual Meeting of the Division for Planetary Sciences of the American Astronomical Society; Oct 03, 2010 - Oct 08, 2010; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-19
    Description: It has been suggested that allophane or related poorly crystalline aluminosilicates are present on Mars, and that they comprise the high-silica phase detected by the Thermal Emission Spectrometer (TES) in Surface Type 2 materials (Michalski et al., 2005). Using new laboratory spectra of allophanic materials, we (Rampe et al., this meeting) have detected allophane on the Martian surface via spectral modeling of TES data. We find that ST2 materials in the Northern Plains are consistent with a significant amount of high-silica allophane-like materials. In addition, we find that allophane may be present in some areas of ancient highlands (TES surface type 1), but spectra of those regions are more consistent with aluminous allophane. The presence of allophane and its chemical variability have important implications for chemical weathering and soil development on Mars. Allophane-like materials are amorphous or poorly crystalline hydrous aluminosilicates formed from chemical weathering of glasses, feldspars, and other silicates (cf. Parfitt, 2009). True allophane is a combination of SiO2, Al2O3 and H2O where Al:Si ranges from ~0.5-2. Aluminosilicate gels are amorphous and chemically similar to allophane but can have higher SiO2 contents. The presence of allophane indicates low-temperature chemical weathering and provides constraints on alteration conditions, limiting pH to circum-neutral (~4.5-8). Our model results indicate that weathering occurred in the relatively young northern plains of Mars. The high-silica allophane-like material present there implies little silica mobility through the soil column, which suggests that weathering involved small amounts of liquid water, consistent with our previous models of weathering in ice-rich soils (Kraft et al., 2007). The aluminous allophane indicated by our spectral models to be present in the highlands suggest that those regions experienced greater amounts of SiO2 leaching and weathering in those soils may have involved much larger amounts of water. The presence of allophane-like materials suggests that these weathering regimes were not influenced by the acidic weathering that appears to have affected other areas of Mars and has been proposed as a planetwide alteration process (Hurowitz and McLennan, 2007). Soil development in basaltic material (typically tephra) on Earth usually leads to formation of andosols. Although we do not suggest a one-to-one analogy between dark basaltic Martian soils and andosols, there may be important similarities, as andosols are typified by significant production of allophane as well as poorly crystalline Fe-hydroxides. The detection of allophane on Mars suggests a positive utility of an andosol model for Martian soils, particularly when coupled with the ubiquitous presence of Feoxide materials on Mars. An andosol model of soil formation is mineralogically consistent with palagonite models for the formation of Martian dust (cf. Banin et al., 1992; Morris et al., 2001), which suggests a possible genetic relationship of dust and bright soils to the broader soil layer of Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-22187 , AGU Fall Meeting 2010; Dec 13, 2010 - Dec 18, 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-19
    Description: An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2010 AGU Fall Meeting; 13?17 Dec. 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-19
    Description: In a recent study (Desai, 2008) of the actual landing sites for the Mars Pathfinder, Mars Exploration Rovers and the Phoenix Mars Lander, data collected indicates that these missions landed at least 13 km downrange of their targeted landing sites. A direct reason is that density measurements taken during entry, descent and landing were consistently found to be lower than those predicted by Mars atmospheric models. The basis of this study is to further investigate this problem to see if certain aspects of current Mars atmospheric models need to be reevaluated. This study compared four different atmospheric profiles at nine pairs of comparable sites around Mars. The comparable sites are similar in location and Local True Solar Time; however they are from different Mars years. One year had normal conditions, while the other year experienced a global dust storm. Three of the atmospheric profiles were obtained by the Mars Global Surveyor (MGS); these data sets include a Radio Science profile and Thermal Emission Spectrometer data in limb and nadir projections. The three MGS data sets were selected from large observational databases to allow the sites to have data observed at nearcoincident times. The last atmospheric profile is from the Mars Global Reference Atmospheric Model (Mars-GRAM), an engineering level atmospheric model widely used for mission applications. Through careful data evaluation, several conclusions were drawn. Ratios among the data show that the three observed MGS profiles were consistent with each other, although they were recorded by three different methods. Mars-GRAM data had larger differences from the observed data. Mars-GRAM particularly had issues with consistently overestimating upper atmosphere atmospheric density, as noted in Desai s study. Differences between the observed atmospheric density profiles from the Mars-GRAM atmospheric density profile could be attributed to a temperature bias in the model, especially in the upper atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M10-0135 , 24th National Conference on Undergraduate Research (NCUR); Apr 15, 2010 - Apr 17, 2010; Missoula, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-19
    Description: Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH(-), the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Themo-Gravimetric Analysis (TGA) with mass spectrometric (MS) determination of evolved gas species yields chemical information on various oxygenated volatiles (water, carbon dioxide, sulfur oxides, nitrogen oxides and phosphorus oxides) and their evolution temperature profiles. The DTA and TGAMS studies included JSC-1A fine, NU-LHT-2M and its proposed feed stocks: anorthosite; dunite; HQ (high quality) glass and the norite from which HQ glass is produced. Fig 1 is a data profile for anorthosite. The DTA (Fig 1a) indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water (Molecular Weight, MW, 18 in Fig 1c) is lost accounting for approximately 0.1% mass loss due to water removal (Fig 1b). Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals. Between 490 and the 970 transition other volatile oxides are lost including those of hydrogen (third water type), carbon (MW = 44), sulfur (MW = 64 and 80), nitrogen (MW 30 and 46) and possibly phosphorus (MW = 79, 95 or 142). Peaks at MW = 35 and 19 may be attributable to loss of chlorine and fluorine respectively. Negative peaks in the NO (MW = 30) and oxygen (MW = 32) MS profiles may indicate the production of NO2 (MW = 46). Because so many compounds are volatilized in this temperature range quantification of the mass loss associated with individual species is difficult. Similar information will be presented for the other materials studied in this investigation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Earth and Space 2010: 12th Biennial ASCE Aerospace Division International Conference; Mar 14, 2010 - Mar 17, 2010; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-19
    Description: Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600 C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Earth and Space 2010 Conference; Mar 14, 2010 - Mar 17, 2010; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission was selected as the second in the low-cost Mars Scout mission series. MAVEN will determine the role that loss of volatiles to space has played through time from a highly inclined elliptical orbit. The launch period opens November 18. 2013 with arrival September 16, 2014. After achieving a 35-hour capture orbit, maneuvers will reduce the period to 4.5-hours with periapsis near 150 kilometers and maintain the periapsis within a specified density corridor. MAVEN will also execute "Deep Dip" campaigns, with periapsis at an altitude near 125 kilometers. This paper presents the unique mission design challenges of the MAVEN mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AAS 10-192 , LEGNEW-OLDGSFC-GSFC-LN-1061 , AAS/AIAA Space Flight Mechanics Meeting; Feb 14, 2010 - Feb 17, 2010; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: Integration and test (I&T) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) is presented. A collaborative NASA project between Goddard Space Flight Center and Ames Research Center, LADEE's mission is to explore the low lunar orbit environment and exosphere for constituents. Its instruments include two spectrometers, a dust detector, and a laser communication technology demonstration. Although a relatively low-cost spacecraft, LADEE has I&T requirements typical of most planetary probes, such as prelaunch contamination control, sterilization, and instrument calibration. To lead to a successful mission, I&T at the spacecraft, instrument, and observatory level must include step-by-step and end-to-end functional, environmental, and performance testing. Due to its compressed development schedule, LADEE I&T planning requires adjusting test flows and sequences to account for long-lead critical-path items and limited spares. A protoflight test-level strategy is also baselined. However, the program benefits from having two independent but collaborative teams of engineers, managers, and technicians that have a wealth of flight project experience. This paper summarizes the LADEE I&T planning, flow, facilities, and probe-unique processes. Coordination of requirements and approaches to I&T when multiple organizations are involved is discussed. Also presented are cost-effective approaches to I&T that are transferable to most any spaceflight project I&T program.
    Keywords: Lunar and Planetary Science and Exploration
    Type: LEGNEW-OLDGSFC-GSFC-LN-1071 , International Planetary Probe Workshop; Jun 14, 2010 - Jun 18, 2010; Barcelona; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: We describe an algorithm which fits model planetary system parameters to light curves from Kepler Mission target stars. The algorithm begins by producing an initial model of the system which is used to seed the fit,with particular emphasis on obtaining good transit timing parameters. An attempt is then made to determine whether the observed transits are more likely due to a planet or an eclipsing binary. In the event that the transits are consistent with a transiting planet, an iterative fitting process is initiated: a wavelet-based whitening filter is used to eliminate stellar variations on timescales long compared to a transit; a robust nonlinear fitter operating on the whitened light curve produces a new model of the system; and the procedure iterates until convergence upon a self-consistent whitening filter and planet model. The fitted transits are removed from the light curve anda search for additional planet candidates is performed upon the residual light curve. The fitted models are used in additional tests which identify false positive planet detections: multiple planet candidates with near-identical fitted periods are far more likely to be an eclipsing binary, for example, while target stars in which the model lightcurve is correlated with the star centroid position may indicate a background eclipsing binary, and subtraction of all model planet candidates yields a light curve of pure noise and stellar variability, which can be used to study the probability that the planet candidates result from statistical fluctuations in the data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN60103 , Proceedings of SPIE (ISSN 0277-786X) (e-ISSN 1996-756X); 7740; 77400J|SPIE Telescopes + Instrumentation; Jun 27, 2010 - Jul 02, 2010; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-27
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: Guidance, Navigation, and Control Conference; 2-5 Aur. 2010; Toronto, ON; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-27
    Description: This slide presentation describes new fractionation methods that are used to create dust that is respirable for testing the effects of inhalation of lunar dust in preparation for future manned lunar exploration. Because lunar dust is a very limited commodity, a method that does not result in loss of the material had to be developed. The dust separation system that is described incorporates some traditional methods, while preventing the dust from being contaminated or changed in reactivity properties while also limiting losses.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-22445 , 2010 AGU Fall Meeting; 13?17 Dec. 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-27
    Description: Plume impingement effects from the descent and ascent engine firings of the Lunar Lander were analyzed in support of the Lunar Architecture Team under the Constellation Program. The descent stage analysis was performed to obtain shear and pressure forces on the lunar surface as well as velocity and density profiles in the flow field in an effort to understand lunar soil erosion and ejected soil impact damage which was analyzed as part of a separate study. A CFD/DSMC decoupled methodology was used with the Bird continuum breakdown parameter to distinguish the continuum flow from the rarefied flow. The ascent stage analysis was performed to ascertain the forces and moments acting on the Lunar Lander Ascent Module due to the firing of the main engine on take-off. The Reacting and Multiphase Program (RAMP) method of characteristics (MOC) code was used to model the continuum region of the nozzle plume, and the Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) was used to model the impingement results in the rarefied region. The ascent module (AM) was analyzed for various pitch and yaw rotations and for various heights in relation to the descent module (DM). For the ascent stage analysis, the plume inflow boundary was located near the nozzle exit plane in a region where the flow number density was large enough to make the DSMC solution computationally expensive. Therefore, a scaling coefficient was used to make the DSMC solution more computationally manageable. An analysis of the effectiveness of this scaling technique was performed by investigating various scaling parameters for a single height and rotation of the AM. Because the inflow boundary was near the nozzle exit plane, another analysis was performed investigating three different inflow contours to determine the effects of the flow expansion around the nozzle lip on the final plume impingement results.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19817 , JSC-CN-20923 , 27th International Symposium on RGD; 1015 Jul. 2010; Pacific Grove, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-26
    Description: We present a Monte Carlo model of the distribution of neutral sodium in Mercury's exosphere and tail using data from the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft during the first two flybys of the planet in January and September 2008. We show that the dominant source mechanism for ejecting sodium from the surface is photon-stimulated desorption (PSD) and that the desorption rate is limited by the diffusion rate of sodium from the interior of grains in the regolith to the topmost few monolayers where PSD is effective. In the absence of ion precipitation, we find that the sodium source rate is limited to approximately 10(exp 6) - 10(exp 7) per square centimeter per second, depending on the sticking efficiency of exospheric sodium that returns to the surface. The diffusion rate must be at least a factor of 5 higher in regions of ion precipitation to explain the MASCS observations during the second MESSENGER f1yby. We estimate that impact vaporization of micrometeoroids may provide up to 15% of the total sodium source rate in the regions observed. Although sputtering by precipitating ions was found not to be a significant source of sodium during the MESSENGER flybys, ion precipitation is responsible for increasing the source rate at high latitudes through ion-enhanced diffusion.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4601.2011 , Icarus (ISSN 0019-1035); 209; 1; 63-74
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-26
    Description: CoRoT-7 b is the first confirmed rocky exoplanet, but, with an orbital semimajor axis of 0.0172 au, its origins may be unlike any rocky planet in our Solar System. In this study, we consider the roles of tidal evolution and evaporative mass loss in CoRoT-7 b's history, which together have modified the planet's mass and orbit. If CoRoT-7 b has always been a rocky body, evaporation may have driven off almost half its original mass, but the mass loss may depend sensitively on the extent of tidal decay of its orbit. As tides caused CoRoT-7 b's orbit to decay, they brought the planet closer to its host star, thereby enhancing the mass loss rate. Such a large mass loss also suggests the possibility that CoRoT-7 b began as a gas giant planet and had its original atmosphere completely evaporated. In this case, we find that CoRoT-7 b's original mass probably did not exceed 200 Earth masses (about two-third of a Jupiter mass). Tides raised on the host star by the planet may have significantly reduced the orbital semimajor axis, perhaps causing the planet to migrate through mean-motion resonances with the other planet in the system, CoRoT-7 c. The coupling between tidal evolution and mass loss may be important not only for CoRoT-7 b but also for other close-in exoplanets, and future studies of mass loss and orbital evolution may provide insight into the origin and fate of close-in planets, both rocky and gaseous.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4464.2011 , Monthly Notices of the Royal Astronomical Society; 407; 2; 910-922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-08-26
    Description: The MESSENGER spacecraft flyby of Mercury on 14 January 2008 provided a new opportunity to study the intrinsic magnetic field of the innermost planet and its interaction with the solar wind, The model presented in this paper is based on the solution of the three-dimensional, bi-f1uid equations for solar wind protons and electrons in the absence of mass loading, In this study we provide new estimates of Mercury's intrinsic magnetic field and the solar wind conditions that prevailed at the time of the flyby. We show that the location of the boundary layers and the strength of the magnetic field along the spacecraft trajectory can be reproduced with a solar wind ram pressure P(sub sw) = 6.8 nPa and a planetary magnetic dipole having a magnitude of 210 R(sub M)(exp 3)- nT and an offset of 0.18 R(sub M) to the north of the equator, where R(sub M) is Mercury's radius. Analysis of the plasma flow reveals the existence of a stable drift belt around the planet; such a belt can account for the locations of diamagnetic decreases observed by the MESSENGER Magnetometer. Moreover, we determine that the ion impact rate at the n011hern cusp was four times higher than at the southern cusp, a result that provides a possible explanation for the observed north-south asymmetry in exospheric sodium in the neutral tail.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4602.2011 , Icarus (ISSN 0019-1035); 209; 3-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-26
    Description: We present the thermal infrared (5-35 micrometer) spectrum of 956 Elisa as measured by the Spitzer Infrared Spectrograph ("IRS"; Houck,1.R. et .11. [20041. Astrophys, 1. SuppL 154, 18-24) together with new ground-based lightcurve data and near-IR spectra. From the visible lightcurve photometry, we determine a rotation period of 16.494 +/- 0.001 h, identify the rotational phase of the Spitzer observations, and estimate the visible absolute magnitude (Hv) at that rotational phase to be 12.58 +/- 0.04. From radiometric analysis of the thermal flux spectrum, we find that at the time of observation 956 Elisa had a projected radius of 5.3 +/- 0.4 km with a visible albedo pv = 0.142+/- 0.022, significantly lower than that of the prototype V-type asteroid, 4 Vesta. (This corresponds to a radius of 5.2 +/- 0.4 km at lightcurve mean.) Analysis with the standard thermal model (STM) results in a sub-solar temperature of 292.3 +/- 2.8 K and beaming parameter eta = 1.16 +/- 0.05. Thermophysical modeling places a lower limit of 20 J m(exp -2)K(exp -1)s(exp -1/2) on the thermal inertia of the asteroid's surface layer (if the surface is very smooth) but more likely values fall between 30 and 150 J m(exp -2)K(exp -1)s(exp -1/2) depending on the sense of rotation. The emissivity spectrum, calculated by dividing the measured thermal flux spectrum by the modeled thermal continuum, exhibits mineralogically interpretable spectral features within the 9-12 micrometer reststrahlen band, the 15-16.5 micrometer Si-O-Si stretching region, and the 16-25 micrometer reststrahlen region that are consistent with pyroxene of diogenitic composition: extant diogenitic pyroxenes fall within the narrow compositional range W0(sub 2+/-1)En(sub 74+/-2)Fs(sub 24+/-1). Spectral deconvolution of the 9-12 micrometer reststrahlen features indicates that up to approximately 20% olivine may also be present, suggesting an olivine-diogenite-like mineralogy. The mid-IR spectrum is inconsistent with non-cumulate eucrite as the major component on the surface of 956 Elisa, although cumulate eucrite material may be present at abundances lower than that of the diogenite component. Analysis of new near-IR spectra of 956 Elisa with the Modified Gaussian Model (MGM; Sunshine, J,M., Pieters, C.M., Pratt, S.F.[1990]. J. Geophys. Res, 95 (May), 6955-6966) results in two pyroxene compositions: 75% magnesian low-Ca pyroxene and 25% high-Ca pyroxene. High-Ca pyroxene is not evident in the mid-IR data, but may belong to a component that is underrepresented in the mid-IR spectrum either because of its spatial distribution on the asteroid or because of its particle size. High-Ca pyroxenes that occur as exsolution lamellae may also be more evident spectrally in the NIR than in the mid-IR. In any case, we find that the mid-IR spectrum of 956 Elisa is dominated by emission from material of diogenite- like composition, which has very rarely been observed among asteroids.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.4296.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-13
    Description: This paper discusses the results of an attempt to use laboratory test data and empirically derived models to quantify the degree of surface damage and associated light scattering that might be expected from hypervelocity particle impacts in space environment. Published descriptions of the interplanetary dust environment were used as the sources of particle mass, size, and velocity estimates. Micrometeoroid sizes are predicted to be predominantly in the mass range 10(exp -5) g or less, with most having diameters near 1 micrometer, but some larger than I20 micrometers, with velocities near 20 kilometers per second. In a laboratory test, latex ( p = 1.1. grams per cubic centimeter) and iron (7.9 grams per cubic centimeter) particles with diameters ranging from 0.75 micrometers to 1.60 micrometers and with velocities ranging from 2.0 kilometers per second to 18.5 kilometers per second, were shot at a Be substrate mirror that had a dielectric coated gold reflecting surface. Scanning electron and atomic force microscopy were used to measure crater dimensions that were then associated with particle impact energies. These data were then fitted to empirical models derived from solar cell and other spacecraft surface components returned from orbit, as well as studies of impact craters studied on glassy materials returned from the lunar surface, to establish a link between particle energy and impact crater dimension. From these data, an estimate of total expected damaged area was computed and this result produced an estimate of expected surface scatter from the modeled environment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: LEGNEW-OLDGSFC-GSFC-LN-1216 , Space Simulation Conference; Oct 18, 2010 - Oct 21, 2010; Annapolis, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-13
    Description: Increased navigation speed is desirable for lunar rovers, whether autonomous, crewed or remotely operated, but is hampered by the low gravity, high contrast lighting and rough terrain. We describe lidar based navigation system deployed on NASA's K10 autonomous rover and to increase the terrain hazard situational awareness of the Lunar Electric Rover crew.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN2071 , i-SAIRAS 2010. 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space; Aug 29, 2010 - Sep 01, 2010; Sapporo, Japan; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-13
    Description: Dioctahedral smectites (e.g., nontronite and montmorillionite) are interpreted to occupy the optical surface of Mars at a number of locations on the basis of spectral features derived from interlayer H2O and MOH (M=Fe(3+)2, Fe(3+)Al, Al2, etc.) as observed by orbiting MRO-CRISM and MEx-OMEGA hyperspectral imaging spectrometers. At wavelengths shorter than approximately 2.7 micrometers, the strongest bands from interlayer H2O occur at approximately 1.4 and 1.9 micrometers from 2v1 and v1+v2, respectively, where v1 and v2 are the fundamental stretching and bending vibrations of the H2O molecule. Smectite MOH vibrations occur near 1.4 micrometers (stretching overtone) and in the region between 2.1 and 2.7 micrometers (stretching + bending combination). Because interlayer H2O can exchange with the martian environment, a number of studies have examined the strength of the interlayer H2O spectral features under Mars-like environmental conditions. The relationship between spectral properties and the underlying crystal structure of the smectites was not determined, and the extent of interlayer H2O removal was not established. We report combined visible and near-IR (VNIR), Mossbauer (MB), and powder X-ray diffraction (XRD) data for samples of the Fe-bearing smectite nontronite where the interlayer was collapsed by complete removal of interlayer H2O.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19546 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-13
    Description: Fluvial features and evidence for aqueous alteration indicate that Mars was wet, at least partially and/or periodically, in the Noachian. Also, impact cratering appears to have been the dominant geological process [1] during that epoch. Thus, investigation of Noachian craters will further our understanding of this geologic process, its effects on the water-bearing Martian crust, and any life that may have been present at the time. Impact events disturbed and heated the water- and/or ice-bearing crust, likely initiated long-lived hydrothermal systems [2-4], and formed crater lakes [5], creating environments suitable for life [6]. Thus, Noachian impact craters are particularly important exploration targets because they provide a window into warm, water-rich environments of the past which were possibly conducive to life. In addition to the presence of lake deposits, assessment of the presence of hydrothermal deposits in the walls, floors and uplifts of craters is important in the search for life on Mars. Impact craters are also important for astrobiological exploration in other ways. For example, smaller craters can be used as natural excavation pits, and so can provide information and samples that would otherwise be inaccessible (e.g., [7]). In addition, larger (〉 ~75 km) craters can excavate material from a potentially habitable region, even on present-day Mars, located beneath a 〉5-km deep cryosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19785 , Astrobiology Science Conference; Apr 26, 2010 - Apr 29, 2010; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: The physical properties of the lunar regolith were originally inferred from remotely sensed data, first from the Earth and later from orbiting spacecraft. The Surveyor landings and the Apollo surface explorations produced a more concrete characterization of the macroscopic properties. In general, the upper regolith consists of a loosely consolidated layer centimeters thick underlain by a particulate but extremely compacted layer to depths of meters or tens of meters. The median particle size as determined by mechanical sieving in terrestrial laboratories is several tens of micrometers. However, the comminuting processes that form the layer produce particles in all sizes down to manometers. The smallest particles, having a high surface to volume ratio, tend to be electrostatically bound to larger particles and are quite difficult to separate mechanically in the laboratory. Particle size distributions determined from lunar soil samples often group particles smaller than 10 micrometers.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19465 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-08-13
    Description: Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks believed to have formed approx.3.9 Ga ago at beginning of the Noachian epoch. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose ori gins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of magnetite and carbonate may be unrelated: that is, from the perspective of the carbonate the magnetite is allochthonous. We have sought to resolve between these hypotheses through the detailed characterized of the compositional and structural relationships between the carbonate disks, their associated magnetites and the orthopyroxene matrix in which they are embedded [1]. Comparison of these results with experimental thermal decomposition studies of sideritic carbonates conducted under a range of heating scenarios suggests that the magnetite nanocrystals in the ALH84001 carbonate disks are not the products of thermal decomposition.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19702 , 41st Lunar and Planetary Science Conference (LPSC 2010); Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-08-13
    Description: The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14〈Z〈92) from scooped soil samples and drilled rock powders collected on the Mars surface. The geometry of the source, sample, and detector is shown. A transmission geometry was chosen so that diffracted intensities in the low-20 region (5-15 deg), important for phyllosilicate identification, could be detected.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-19549 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-13
    Description: The 2009 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). AMASE-related research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite, which will be part of the Analytical Laboratory on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS). An Evolved Gas Analysis Mass Spectrometer (EGA-MS) was used during AMASE to represent part of the capabilities of SAM. The other instrument included in the MSL Analytical Laboratory is CheMin, which uses X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during the AMASE 2009. Here, we discuss the preliminary interpretation of EGA and XRD analyses of selected AMASE carbonate samples and implications for mineralogical interpretations from MSL. Though CheMin will be the primary mineralogical tool on MSL, SAM EGA could be used to support XRD identifications or indicate the presence of volatile-bearing minerals which may be near or below XRD detection limits. Data collected with instruments in the field and in comparable laboratory setups (e.g., the SAM breadboard) will be discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19611 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-13
    Description: Meteor showers dominate the environment in this size range and explain the evening/morning flux asymmetry of 1.5:1. With sufficient numbers of impacts, this technique can help determine the population index for some showers. Measured flux of meteoroids in the 100g to kilograms range is consistent with other observations. We have a fruitful observing program underway which has significantly increased the number of lunar impacts observed. Over 200 impacts have been recorded in about 4 years. This analysis reports on the 115 impacts taken under photometric conditions during the first 3 full years of operation. We plan to continue for the foreseeable future as follows: 1) Run detailed model to try explain the concentration near the trailing limb; 2) Build up statistics to better understand the meteor shower environment; 3) Provide support for robotic seismometers and dust missions; and 4) Deploy near-infrared and visible cameras with dichroic beamsplitter to 0.5m telescope in New Mexico.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M10-0680 , Meteoroids 2010: An International Conference on Minor Bodies in the Solar System; May 24, 2010 - May 28, 2010; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-26
    Description: Within the framework of the International Lunar Surface Operation - In-Situ Resource Utilization Analogue Test held on January 27 - February 11, 2010 on the Mauna Kea volcano in Hawaii, a number of scientific instrument teams collaborated to characterize the field site and test instrument capabilities outside laboratory environments. In this paper, we provide a geological setting for this new field-test site, a description of the instruments that were tested during the 2010 ILSO-ISRU field campaign, and a short discussion for each instrument about the validity and use of the results obtained during the test. These results will form a catalogue that may serve as reference for future test campaigns. In this paper we provide a description and regional geological setting for a new field analogue test site for lunar resource exploration, and discuss results obtained from the 2010 ILSO-ISRU field campaign as a reference for future field-testing at this site. The following instruments were tested: a multispectral microscopic imager, MMI, a Mossbauer spectrometer, an evolved gas analyzer, VAPoR, and an oxygen and volatile extractor called RESOLVE. Preliminary results show that the sediments change from dry, organic-poor, poorly-sorted volcaniclastic sand on the surface, containing basalt, iron oxides and clays, to more water- and organic-rich, fine grained, well-sorted volcaniclastic sand, primarily consisting of iron oxides and depleted of basalt and clays. Furthermore, drilling experiments showed a very close correlation between drilling on the Moon and drilling at the test site. The ILSO-ISRU test site was an ideal location for testing strategies for in situ resource exploration at the lunar or martian surface.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-13
    Description: The success of selecting future landing sites on Mars to discover extinct and/or extant extraterrestrial life is dependent on the correct approximation of available knowledge about terrestrial paleogeochemistry and life evolution to Martian (paleo) geology and geochemistry. It is well known that both Earth and Mars are Fe rich. This widespread occurrence suggests that Fe may have played a key role in early life forms, where it probably served as a key constituent in early prosthetic moieties in many proteins of ancient microbes on Earth and likely Mars. The second critical idea is the premise that Life on Mars could most likely have developed when Mars experienced tectonic activity [1] which dramatically decreased around 1 bin years after Martian creation. After that Martian life could have gone extinct or hibernated in the deep subsurface, which would be expensive to reach in contrast to the successful work of Martian surface rovers. Here we analyze the diversity of microbes in several terrestrial Fe rich surface environments in conjunction with the phylogeny and molecular timing of emergence of those microbes on Earth. Anticipated results should help evaluate future landing sites on Mars in searches for biosignatures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19784 , Astrobiology Science Conference; Apr 26, 2010 - Apr 29, 2010; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-13
    Description: The Mars Exploration Rover Opportunity encountered sedimentary outcrop rocks at its landing site. Spherules with diameters in the millimeter range were found to weather from the outcrop rocks. With Opportunity s miniaturised M ssbauer spectrometer MIMOS II, hematite was detected in spherules and in the outcrop matrix [1,2]. Figure 1 shows the target Berry Bowl, where brushed outcrop and an accumulation of spherules could be investigated on sols 46 and 48 of Opportunity s mission. Hematite undergoes a transition from a weakly ferromagnetic above to an antiferromagnetic state below the Morin temperature (T(sub M) approx.265 K for chemically pure, crystalline hematite). The magnetic hyperfine splitting (B(sub hf)) shows a general decrease with increasing temperature and a drop of approx.0.8 T at T(sub M). The quadrupole splitting ((Delta)EQ) changes its sign at T(sub M), with negative values above and positive values below the transition. Crystallinity and particle size influence the magnitude and temperature dependence of the magnetic splitting and the quadrupole splitting [3].
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19547 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-13
    Description: NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and orange glass from a pyroclastic deposit. Each Meteorite Disk contains two ordinary chondrites, one carbonaceous chondrite, one iron, one stony iron, and one achondrite. These samples will help educators share the early history of the solar system with students and the public. Educators may borrow either lunar or meteorite disks and the accompanying education materials through the Johnson Space Center Curatorial Office. In trainings provided by the NASA Aerospace Education Services Program specialists, educators certified to borrow the disk learn about education resources, the proper use of the samples, and the special security for care and shipping of the disks. The Lunar and Meteorite Sample Education Disk Program will take NASA exploration to more people. Getting Space Rocks out to the public and inspiring the public about new space exploration is the focus of the NASA disk loan program.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19780 , Lunar and Planetary Science Conference (LPSC 2010); Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-13
    Description: Recent evidence from the Opportunity and Spirit rovers and the Mars Express mission suggests that the soils on Mars might be very high in biotoxic materials including sulfate salts, chlorides, and acidifying agents. Yet, very little is known about how the chemistries of Mars soils might affect the survival and growth of terrestrial microorganisms. The primary objectives of the research included: (1) prepare and characterize Mars analog soils amended with potential biotoxic levels of sulfates, chlorides, and acidifying minerals; and (2) use the simulants to conduct a series of toxicology assays to determine if terrestrial microorganisms from spacecraft can survive direct exposure to the biotoxic soils.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19676 , Astrobiology Science Conference 2010; Apr 26, 2010 - Apr 29, 2010; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-13
    Description: Veins of the hydroxylated, potassium ferric sulfate mineral jarosite - KFe3(SO4)2(OH)6 - have been identified in the martian meteorite Queen Alexandra Range (QUE) 94201. Iron potassium sulfate had been reported in QUE 94201 by Wentworth and Gooding. Jarosite has been reported in other Martian meteorites - Roberts Massif (RBT) 04262, Miller Range (MIL) 03346, and Yamato 000593 - and it has been identified on the Martian surface by Moessbauer spectroscopy. Given the presence of jarosite on Mars, and the burgeoning interest in water-rock interactions on Mars, the question arises whether jarosite in Martian meteorites is formed by aqueous alteration on Mars, or in Antarctica. Hydrogen isotopes are potentially sensitive indicators of the site of formation or last equilibration of hydrous alteration minerals, because of the large difference between D/H ratio of the Martian atmosphere (and also presumably the cryosphere) and terrestrial hydrogen. The Martian atmospheric delta D(sub SMOW) ratio is approximately +4200%o, igneous minerals with substantial hydrogen (phosphates) have high D, ~ +2000%o to +4700%o versus terrestrial waters with approximately 480%o to +130%o. The crystal chemistry and structure of jarosite are reviewed in Papi ke et al. Here we report hydrogen isotopes measured in jarosite in QUE 94201 by ion microprobe, and also report on the major element composition of jarosite measured by electron microprobe.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19569 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-13
    Description: Hematite-rich spherules were discovered embedded in sulfate-rich outcrop rock and as lag deposits of whole and broken spherules by the Opportunity rover at Meridiani Planem [1-6]. The Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES), which has a wider spectral range compared to the Mars Exploration Rover Mini-TES, provided an important constraint that hematite-rich spherules are dominated by emission along the crystallographic c-axis [7-10]. We have previously synthesized hematite spherules whose mineralogic, chemical, and crystallographic properties are strikingly similar to those for the hematite-rich spherules at Meridiani Planum [11]. The spherules were synthesized in the laboratory along with hydronium jarosite and minor hydronium alunite from Fe-Al-Mg-S-Cl acid sulfate solutions under hydrothermal conditions. The reaction sequence was (1) precipitation of hydronium jarosite, (2) jarosite dissolution and precipitation of hematite spherules, and (3) precipitation of hydronium alunite upon depletion of hydronium jarosite. The spherules exhibit a radial growth texture with the crystallographic c-axis aligned along the radial direction, so that thermal emission spectra have no hematite emissivity minimum at approx.390/cm similar to the emission spectra returned by MGS TES. The objective of this paper is to expand on our initial studies [11] to examine the morphological evolution during growth of spherules starting from sub-micrometer crystals to spherules many orders of magnitude in size.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-196868 , 41st Lunar and Planetary Science Conference (LPSC 2010); Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-08-13
    Description: Chondritic porous interplanetary dust particles (CP-IDPs) may be the best preserved remnants of primordial solar system materials, in part because they were not affected by parent body hydrothermal alteration. Their primitive characteristics include fine grained, unequilibrated, anhydrous mineralogy, enrichment in volatile elements, and abundant molecular cloud material and silicate stardust. However, while the majority of CP-IDP materials likely derived from the Solar System, their formation processes and provenance are poorly constrained. Stardust abundances provide a relative measure of the extent of processing that the Solar System starting materials has undergone in primitive materials. For example, among primitive meteorites silicate stardust abundances vary by over two orders of magnitude (less than 10-200 ppm). This range of abundances is ascribed to varying extents of aqueous processing in the meteorite parent bodies. The higher average silicate stardust abundances among CP-IDPs (greater than 375 ppm) are thus attributable to the lack of aqueous processing of these materials. Yet, silicate stardust abundances in IDPs also vary considerably. While the silicate stardust abundance in IDPs having anomalous N isotopic compositions was reported to be 375 ppm, the abundance in IDPs lacking N anomalies is less than 10 ppm. Furthermore, these values are significantly eclipsed among some IDPs with abundances ranging from 2,000 ppm to 10,000 ppm. Given that CP-IDPs have not been significantly affected by parent body processes, the difference in silicate stardust abundances among these IDPs must reflect varying extents of nebular processing. Here we present recent results of a systematic coordinated mineralogical/isotopic study of large cluster IDPs aimed at (1) characterizing the mineralogy of presolar silicates and (2) delineating the mineralogical and petrographic characteristics of IDPs with differing silicate stardust abundances. One of the goals of this study is to better understand the earliest stages of evolution of the Solar System starting materials.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19777 , LPSC 2010; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-08-13
    Description: The role that Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) play in the dynamic evolution of protosolar disks and the origin of our Solar System is a fundamental one. The GCRs are an important component of the interstellar medium (ISM), and even play a role in correcting the age determinations of some irons versus CAIs (calcium-aluminum inclusions) in meteoroids . Because CRs also are one of the energy transport mechanisms in a planetary nebula, the question of modelling their effect upon this broad subject is a serious topic for planetary science. The problem is addressed here.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19673 , 41st Lunar and Planetary Science Conference (LPSC), 2010; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-13
    Description: A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10(exp -8) Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust simulant processing capabilities: heating and cooling while stirring in order to degas and remove adsorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM-2010-216828 , E-16670-1 , 25th Space Simulation Conference; Oct 20, 2008 - Oct 23, 2008; Annapolis, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: EJSM Instrument Workshop; Jan 18, 2010; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: A lunar gravity field model up to degree and order 100 in spherical harmonics, named SGM 100i, has been determined from SELENE and historical tracking data, with an emphasis on using same-beam S-band differential VLBI data obtained in the SELENE mission between January 2008 and February 2009. Orbit consistency throughout the entire mission period of SELENE as determined from orbit overlaps for the two sub-satellites of SELENE involved in the VLBI tracking improved consistently from several hundreds of metres to several tens of metres by including differential VLBI data. Through orbits that are better determined, the gravity field model is also improved by including these data. Orbit determination performance for the new model shows improvements over earlier 100th degree and order models, especially for edge-on orbits over the deep far side. Lunar Prospector orbit determination shows an improvement of orbit consistency from I-day predictions for 2-day arcs of 6 m in a total sense, with most improvement in the along and cross-track directions. Data fit for the types and satellites involved is also improved. Formal errors for the lower degrees are smaller, and the new model also shows increased correlations with topography over the far side. The estimated value for the lunar GM for this model equals 4902.80080 +/- 0.0009 cu km/sq s (10 sigma). The lunar degree 2 potential Love number k2 was also estimated, and has a value of 0.0255 +/- 0.0016 (10 sigma as well).
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.JA.5447.2011 , Journal of Geodesy; 85; 4; 205-228
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: NASA has begun the development of a combined Stirling cycle power and cooling system (duplex) to enable the long-lived surface exploration of Venus and other harsh environments in the solar system. The duplex system will operate from the heat provided by decaying radioisotope plutonium-238 or its substitute. Since the surface of Venus has a thick, hot, and corrosive atmosphere, it is a challenging proposition to maintain sensitive lander electronics under survivable conditions. This development effort requires the integration of: a radioisotope or fission heat source; heat pipes; high-temperature, corrosion-resistant material; multistage cooling; a novel free-displacer Stirling convertor for the lander; and a minimal vibration thermoacoustic Stirling convertor for the seismometer. The first year effort includes conceptual system design and control studies, materials development, and prototype hardware testing. A summary of these findings and test results is presented in this report.
    Keywords: Lunar and Planetary Science and Exploration
    Type: E-17389 , 8th Annual International Energy Conversion Engineering Conference; Jul 25, 2010 - Jul 28, 2010; Nashville, GN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the field tests conducted in 2010 of the Regolith Environment Science & Oxygen & Lunar Volatile Extraction (RESOLVE). The Resolve program consist of several mechanism: (1) Excavation and Bulk Regolith Characterization (EBRC) which is designed to act as a drill and crusher, (2) Regolith Volatiles Characterization (RVC) which is a reactor and does gas analysis,(3) Lunar Water Resources Demonstration (LWRD) which is a fluid system, water and hydrogen capture device and (4) the Rover. The scientific goal of this test is to demonstrate evolution of low levels of hydrogen and water as a function of temperature. The Engineering goals of this test are to demonstrate:(1) Integration onto new rover (2) Miniaturization of electronics rack (3) Operation from battery packs (elimination of generator) (4) Remote command/control and (5) Operation while roving. Views of the 2008 and the 2010 mechanisms, a overhead view of the mission path, a view of the terrain, the two drill sites, and a graphic of the Master Events Controller Graphical User Interface (MEC GUI) are shown. There are descriptions of the Gas chromatography (GC), the operational procedure, water and hydrogen doping of tephra. There is also a review of some of the results, and future direction for research and tests.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2010-219 , AIAA SPACE 2010 Conference and Exposition; Aug 30, 2010 - Sep 02, 2010; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Lunar In Situ Resource Utilization (ISRU) consists of a number of tasks starting with mining of lunar regolith, followed by the transfer of regolith to an oxygen extraction reactor and finally processing the regolith and storing of extracted oxygen. The transfer of regolith from the regolith hopper at the ground level to an oxygen extraction reactor many feet above the surface could be accomplished in different ways, including using a mechanical auger, bucket ladder system or a pneumatic system. The latter system is commonly used on earth when moving granular materials since it offers high reliability and simplicity of operation. In this paper, we describe a pneumatic regolith feed system, delivering feedstock to a Carbothermal reactor and lessons learned from deploying the system during the 2010 ISRU field campaign on the Mauna Kea, Hawaii.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2010-184 , AIAA SPACE 2010 Conference and Exposition; Aug 30, 2010 - Sep 02, 2010; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: We have developed an Electrodynamic Dust Shield (EDS), an active dust mitigation technology with applications to solar panels, thermal radiators, optical systems, visors, seals and connectors. This active technology is capable of removing dust and granular material with diameters as large as several hundred microns. In this paper, we report on the development of three types of EDS systems for NASA's Habitat Demonstration Unit (HDU). A transparent EDS 20 cm in diameter with indium tin oxide electrodes on a 0.1 mm-thick polyethylene terephtalate (PET) film was constructed for viewport dust protection. Two opaque EDS systems with copper electrodes on 0.1 mm-thick Kapton were also built to demonstrate dust removal on the doors of the HDU. A lotus coating that minimizes dust adhesion was added to one of the last two EDS systems to demonstrate the effectiveness of the combined systems.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2010-183 , AIAA SPACE 2010 Conference and Exposition; Aug 30, 2010 - Sep 02, 2010; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: The technology of direct electrolysis of molten lunar regolith to produce oxygen and molten metal alloys has progressed greatly in the last few years. The development of long-lasting inert anodes and cathode designs as well as techniques for the removal of molten products from the reactor has been demonstrated. The containment of chemically aggressive oxide and metal melts is very difficult at the operating temperatures ca 1600 C. Containing the molten oxides in a regolith shell can solve this technical issue and can be achieved by designing a self-heating reactor in which the electrolytic currents generate enough Joule heat to create a molten bath. In a first phase, a thermal analysis model was built to study the formation of a melt of lunar basaltic regolith irradiated by a focused solar beam This mode of heating was selected because it relies on radiative heat transfer, which is the dominant mode of transfer of energy in melts at 1600 C. Knowing and setting the Gaussian-type heat flux from the concentrated solar beam and the phase and temperature dependent thermal properties, the model predicts the dimensions and temperature profile of the melt. A validation of the model is presented in this paper through the experimental formation of a spherical cap melt realized by others. The Orbitec/PSI experimental setup uses an 3.6-cm diameter concentrated solar beam to create a hemispheric melt in a bed of lunar regolith simulant contained in a large pot. Upon cooling, the dimensions of the vitrified melt are measured to validate the thermal model. In a second phase, the model is augmented by multiphysics components to compute the passage of electrical currents between electrodes inserted in the molten regolith. The current through the melt generates Joule heating due to the high resistivity of the medium and this energy is transferred into the melt by conduction, convection and primarily by radiation. The model faces challenges in two major areas, the change of phase as temperature increases, and the dominance of radiative heat flux as heat transfer mechanism within the melt the change of phase concerns the regolith itself which is present in states ranging from a fine grain regolith with low thermal conductivity and low density to a vitrified melt with much higher thermal conductivity, and higher density. As the regolith is heated, it starts to soften around 1300 C the melt iS very viscous and evolving gas bubbles out in thick, lava-like fashion. By 1600 C the regolith is completely melted and the viscosity is low The second challenge resides in the proper modeling of the radiative heat flux requiring the addition of the computing-demanding radiative-heat-transfer function to the general heat transfer equation. The model Includes temperature-dependent properties (density, thermal conductivity, heat capacity, and viscosity, and absorption coefficients) and solves the radiative heat flux equation assuming gray (fine grains) and semi-transparent (melt) media and using an absorption coefficient spectral found in the literature for terrestrial minerals similar in composition to those of lunar regolith simulant
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2010-139 , KSC-2010-139R , KSC-2011-002 , AIAA Space 2010 Conference; Aug 30, 2010 - Sep 02, 2010; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: The utilization of Space resources has been identified in publications for over 40 years for its potential as a "game changing" technology for the human exploration of Space. It is called "game changing" because of the mass leverage possible when local resources at the exploration destination arc used to reduce or even eliminate resources that are brought from the Earth. NASA, under the Exploration Technology Development Program has made significant investments in the development of Space resource utilization technologies as a part of the In-Situ Resource Utilization (ISRU) project. Over the last four years, the ISRU project has taken what was essentially an academic topic with lots of experimentation but little engineering and produced near-full-scale systems that have been demonstrated. In 2008 & again in early 2010, systems that could produce oxygen from lunar soils (or their terrestrial analogs) were tested at a lunar analog site on a volcano in Hawaii. These demonstrations included collaborations with International Partners that made significant contributions to the tests. The proposed federal budget for Fiscal Year 2011 encourages the continued development and demonstration of ISRU. However it goes beyond what the project is currently doing and directs that the scope of the project be expanded to cover destinations throughout the inner solar system with the potential for night demonstrations. This paper will briefly cover the past accomplishments of the ISRU project then move to a di scussion of the plans for the project's future as NASA moves to explore a new paradigm for Space Exploration that includes orbital fuel depots and even refueling on other planetary bodies in the solar system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2010-160 , Space 2010; Aug 30, 2010 - Sep 03, 2010; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans Currently being developed by NASA. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source so that a small zone of molten regolith is established. A continuous flow of methane is maintained over the molten regolith zone. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. It is further processed downstream to ultimately produce oxygen.
    Keywords: Lunar and Planetary Science and Exploration
    Type: E17503-1 , International Journal of Mineral Processing (ISSN 0301-7516); 96; 54-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: This slide presentation reviews the analysis of Apollo-era seismic data and indirect geophysical measurements (i.e., moment of inertia, lunar laser ranging and electromagnetic induction) and concludes that significant questions still remain. The Apollo deep moonquake seismograms using terrestrial array processing methods is analyzed to infer the structure of the lunar core. The results indicate the presence of a solid inner and fluid outer core.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M11-0151 , 2010 American Geophysical Union Fall meeting (AGU); Dec 13, 2010 - Dec 17, 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...