ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: We continue the development of our concept of a biotechnological loop for in-situ resource extraction along with propellant and food production at a future lunar outpost, based on the cultivation of litholytic cyanobacteria (LCB) with lunar regolith (LR) in a geobioreactor energized by sunlight. Our preliminary studies have shown that phototropic cultivation of LCB with simulants of LR in a low-mineralized medium supplemented with CO2 leads to rock dissolution (bioweathering) with the resulting accumulation of Fe, Mg and Al in cyanobacterial cells and in the medium. LCB cultivated with LR simulants produces more O2 than the same organisms cultivated in a high-mineralized medium. The loss of rock mass after bioweathering with LCB suggests the release of O from regolith. Further studies of chemical pathways of released O are required. The bioweathering process is limited by the availability of CO2, N, and P. Since lunar regolith is mainly composed of O, Si, Ca, Al and Mg, we propose to use organic waste to supply a geobioreactor with C, N and P. The recycling of organic waste, including urine, through a geobioreactor will allow for efficient element extraction as well as oxygen and biomass production. The most critical conclusion is that a biological life support system tied to a geobioreactor might be more efficient for supporting an extraterrestrial outpost than a closed environmental system.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-18306 , Lunar Science Forum 2009; Jul 21, 2009 - Jul 23, 2009; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.
    Keywords: Life Sciences (General)
    Type: JSC-CN-20215 , 13th International Symposium on Microbial Ecology; Aug 22, 2010 - Aug 27, 2010; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Iron oxide and hydroxide minerals, including hematite, can mineralize and preservemicrofossils and physical biomarkers (Allen at al., 2004). Preserved remnants of phototrophic microorganisms are recognized as biosignatures of past life on Earth (Schopf, 2006). To date, two types of surface iron depositing environments have been studied as analogs to possible habitable environments on earliest Mars: the highly acidified Rio Tinto River (Iberian Belt, Spain) [Gomez Ortis et al., 2007], and the nearneutral iron depositing Chocolate Pots Hot Spring (Yellowstone National Park, US) [Parenteau at al., 2005]. While phototrophs in the Rio Tinto are only represented by eukaryotic algae (Amaral Zettler et all., 2002), Chocolate Pots is mainly populated with cyanobacteria (Pierson et all., 2000; Brown et all., 2007). Which of these environments is the closer analog to a potentially habitable early Mars? Paleobiological data, combined with recent "tree of life" interpretations, suggest that phototrophic eukaryotes evolved not earlier than 2.5 - 2.8 b.y. after Earth s accretion (4.6 b.y.), while cyanobacteria and /or their iron-tolerant predecessors evolved between 1 - 1.5 b.y. after accretion (Brown et al., 2007). Lindsay and Brasier (2002) postulated that microbial life on Mars surface could have lasted no more than 1-1.5 b.y. after Mars accretion (also 4.6 b.y.). Recent multispectral mapping of Mars suggests that near-neutral wet environments prevailed at approximately this time (Bibring, et al., 2006). Thus, near-neutral iron depositing hot springs such as Chocolate Pots Hot Spring seem to be the more likely habitable analogs for earliest Mars.
    Keywords: Space Sciences (General)
    Type: 2nd International Workshop Exploring Mars and Its Earth Analogues; Jun 19, 2007 - Jun 23, 2007; Trento; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: The success of selecting future landing sites on Mars to discover extinct and/or extant extraterrestrial life is dependent on the correct approximation of available knowledge about terrestrial paleogeochemistry and life evolution to Martian (paleo) geology and geochemistry. It is well known that both Earth and Mars are Fe rich. This widespread occurrence suggests that Fe may have played a key role in early life forms, where it probably served as a key constituent in early prosthetic moieties in many proteins of ancient microbes on Earth and likely Mars. The second critical idea is the premise that Life on Mars could most likely have developed when Mars experienced tectonic activity [1] which dramatically decreased around 1 bin years after Martian creation. After that Martian life could have gone extinct or hibernated in the deep subsurface, which would be expensive to reach in contrast to the successful work of Martian surface rovers. Here we analyze the diversity of microbes in several terrestrial Fe rich surface environments in conjunction with the phylogeny and molecular timing of emergence of those microbes on Earth. Anticipated results should help evaluate future landing sites on Mars in searches for biosignatures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19784 , Astrobiology Science Conference; Apr 26, 2010 - Apr 29, 2010; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: Verifying the links between genomie features in living organisms and their mineralization/demineralization activity will help to reveal traces of life on Earth and beyond. Among contemporary environments, iron-depositing hot springs (IDHS) may represent one of the most appropriate natural models for insights into ancient life since organisms may have originated on Earth and possibly Mars in association with hydrothennal activity and high [Fe(2+)]. Siderophilic or "iron-loving" cyanobacteria (CB) inhabiting IDHS may have genomic features and properties similar to those of ancient organisms because abundant Fe(2+) in IDHS has a strong potential to increase the magnitude of oxidative stress. That is why specific and/or additional proteins involved in Fe mineralization by siderophilic CB are expected. Inorganic polyphosphates (PPi) are known to increase the viability of prokaryotes Linder heavy metal concentrations and UV stress conditions. PPi have also been proposed as biosignatures. Ancient CB could have also been stressed by occasional migrations from the Fe(2+) rich Ocean to the basaltic land which was almost devoid of dissolved Fe(2+). Thus, the study of the adaptation reactions of siderophilic CB to fluctuation of dissolved Fe level may shed light on the paleophysiology of ancient oxygenic prokaryotes. Moreover, bioweathered Fe, Al, P, Cu, Ti and rare earth elements can be thought of as candidate organomarkers that document the effects of or ganic molecules in weathered rocks. However, the molecular mechanisms of the maintenance of Fe homeostasis in siderophilic CB, the role of PPi for this process and bioweathering activities are poorly understood. Here we present preliminary results describing a new mechanism of Fe mineralization in siderophilic CB, the effect of Fe on the generation of PPi bodies in siderophilic CB, their bioweathering activity and preliminary analysis of the diversity of proteins involved in the prevention of oxidative stress in phototrophs inhabiting IDHS.
    Keywords: Geosciences (General)
    Type: JSC-CN-19615 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: It has been postulated that life may have originated on Earth, and possibly on Mars, in association with hydrothermal activity and high concentrations of ferrous iron. However, it is not clear how an iron-rich thermal hydrosphere could be hospitable to microbes, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, the study of microbial diversity in iron-depositing hot springs (IDHS) and the mechanisms of iron homeostasis and suppression of oxidative stress may help elucidate how Precambrian organisms could withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe(2+) and O2. Proteins and clusters of orthologous groups (COGs) involved in the maintenance of Fe homeostasis found in cyanobacteria (CB) inhabiting environments with high and low [Fe] were main target of this analysis. Preliminary results of the analysis suggest that the Chocolate Pots (CP) microbial community is heavily dominated by phototrophs from the cyanobacteria (CB), Chloroflexi and Chlorobi phyla, while the Mushroom Spring (MS) effluent channel harbors a more diverse community in which Chloroflexi are the dominant phototrophs. It is speculated that CB inhabiting IDHS have an increased tolerance to both high concentrations of Fe(2+) and ROS produced in the Fenton reaction. This hypothesis was explored via a comparative analysis of the diversity of proteins and COGs involved in Fe and redox homeostasis in the CP and MS microbiomes.
    Keywords: Life Sciences (General)
    Type: JSC-CN-20026 , DDOE JGI User Meeting; Mar 23, 2010 - Mar 26, 2010; Walnut Creek, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We speculate that both external and intracellular iron precipitate in iron-tolerant CB might be involved in oxidative stress suppression shown by [9]. Significant differences are apparent between a set of proteins involved in the maintenance of Fe homeostasis and oxidative stress protection in iron-tolerant and fresh-water and marine CB. Correspondingly, these properties may help to make iron-tolerant CB as dominant organisms in IDHS and probably on early Earth and Mars. Further comparative analyses of hot springs metagenomes and the genomes of iron-tolerant microbes versus fresh-water/marine ones may point out to different habitable zones on early Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19953 , 37th COSPAR Assembly; Jul 18, 2010 - Jul 25, 2010; Bremen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Main findings: 1) supplementing very dilute media for cultivation of CB with analogs of lunar or Martian regolith effectively supported the proliferation of CB; 2) O2 evolution by siderophilic cyanobacteria cultivated in diluted media but supplemented with iron-rich rocks was higher than O2 evolution by same strain in undiluted medium; 3) preliminary data suggest that organic acids produced by CB are involved in iron-rich mineral dissolution; 4) the CB studied can accumulate iron on and in their cells; 4) sequencing of the cyanobacterium JSC-1 genome revealed that this strain possesses molecular features which make it applicable for the cultivation in special photoreactors on Moon and Mars. Conclusion: As a result of pilot studies, we propose, to develop a concept for semi-closed integrated system that uses CB to extract useful elements to revitalize air and produce valuable biomolecules. Such a system could be the foundation of a self-sustaining extraterrestrial outpost (Hendrickx, De Wever et al., 2005; Handford, 2006). A potential advantage of a cyanobacterial photoreactor placed between LSS and ISRU loops is the possibility of supplying these systems with extracted elements and compounds from the regolith. In addition, waste regolith may be transformed into additional products such as methane, biomass, and organic and inorganic soil enrichment for the cultivation of higher plants.
    Keywords: Life Sciences (General)
    Type: JSC-CN-19923 , 38th COSPAR Assembly; Jul 18, 2010 - Jul 25, 2010; Bremen; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...