ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Marine biology 73 (1983), S. 67-71 
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The isotopic ratios of sulfur and carbon in the tissues of infanal organisms collected from a natural petroleum seep in the Santa Barbara Channel, California, USA were examined to see if petroleum is utilized by the benthic community. Sulfur isotope data were consistent with a pathway of petroleum energy from sulfate reducers → H2S → Beggiatoa sp. → nematodes and other infauna. The carbon of infaunal organisms was isotopically lighter at the seep than at a comparison station; the mean δ13C for 12 species was-1.32‰ towards the petroleum δ13C value. The shifts were largest in two species of deep-feeding maldanid polychaetes. The tissues of one of the species, Praxillella affinis pacifica, were also analyzed for 14C content and δ34S, and the biomass produced by the populations over 26 mo was estimated. The results of these analyses allowed us to estimate that for the seep population: (1) there was 15.6% more fossil carbon, (2) chemoautotrophic bacteria contributed 13.6% more carbon, and (3) 19% more carbon was produced by the population over 26 mo. In spite of the possible sources of error, these values are in reasonable agreement. In general, these data infer that, although petroleum utilization by the benthic food web proceeds both directly through heterotrophs and indirectly through chemoautotrophs, the two pathways are tightly coupled. A carbon budget for P. affinis pacifica was constructed with three assumed sources: chemoautotrophic biomass, petroleum carbon utilized heterotrophically, and nonexotic carbon utilized heterotrophically. Calculations based on this budget indicate that the food web is fueled to a greater extent by the isotopically lighter gases than by the liquid oil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] For three billion years, before the Cambrian diversification of life, laminated carbonate build-ups called stromatolites were widespread in shallow marine seas. These ancient structures are generally thought to be microbial in origin and potentially preserve evidence of the Earth's ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1983-01-01
    Print ISSN: 0025-3162
    Electronic ISSN: 1432-1793
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-08-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-02-14
    Description: Stromatolites, layered sedimentary rock structures produced by communities of microorganisms, constitute the most abundant early evidence of life on Earth. Microbial mats, which are found most frequently in hypersaline marine or hot spring environments, serve as useful modern analogs of stromatolitic communities. Biochemical studies of mats were conducted to assist in the interpretations of stromatolites. The data suggest that salinity effects are insufficient by themselves to cause the C-13 differences observed betwwen Precambrain stromatolites and modern microbial mats.
    Keywords: SPACE BIOLOGY
    Type: NASA, Washington Second Symposium on Chemical Evolution and the Origin and Evolution of Life; p 100
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-02-14
    Description: The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.
    Keywords: ASTROPHYSICS
    Type: NASA, Washington Second Symposium on Chemical Evolution and the Origin and Evolution of Life; p 40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: Stromatolites offer an unparalleled geologic record of early life, because they constitute the oldest and most abundant recognizable remains of microbial ecosystems. Microbial mats are living homologs of stromatolites; thus, the physiology of the microbiota as well as the processes which create those features of mats (e.g., biomarker organic compounds, elemental and stable isotopic compositions) which are preserved in the ancient record. Observations of the carbon isotopic composition (delta C-13) of stromatolites and microbial mats were made and are consistent with the hypothesis that atmospheric CO2 concentrations have declined by at least one to two orders of magnitude during the past 2.5 Ga. Whereas delta C-13 values of carbonate carbon average about 0 permil during both the early and mid-Proterozoic, the delta C-13 values of stromatolitic organic matter increase from an average of -35 between 2.0 and 2.6 Ga ago to an average of about -28 about 1.0 Ga ago. Modern microbial mats in hypersaline environments have delta C-13 values typically in the range of -5 to -9, relative to an inorganic bicarbonate source at 0 permil. Both microbial mats and pur cultures of cyanobacteria grown in waters in near equilibrium with current atmospheric CO2 levels exhibit minimal discrimination against C-13. In contrast, hot spring cyanobacterial mats or cyanobacterial cultures grown under higher CO2 levels exhibit substantially greater discrimination. If care is taken to compare modern mats with stromatolites from comparable environments, it might be possible to estimate ancient levels of atmospheric CO2. In modern microbial mats, a tight coupling exists between photosynthetic organic carbon production and subsequent carbon oxidation, mostly by sulfate reduction. The rate of one process fuels a high rate of the other, with much of the sulfate reduction occurring within the same depth interval as oxygenic photosynthesis. Other aspects of this study are presented.
    Keywords: SPACE BIOLOGY
    Type: NASA, Washington, Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life; p 74
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.
    Keywords: SPACE BIOLOGY
    Type: NASA, Washington, Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life; p 21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-11-22
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand 〈150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN11260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: Although present Martian surface conditions appear unfavorable for life as we know it, there is compelling geological evidence that the climate of early Mars was much more Earth-like, with a denser atmosphere and abundant surface water. The fact that life developed on the Earth within the first billion years of its history makes it quite plausible that life may have also developed on Mars. If life did develop on Mars, it is likely to have left behind a fossil record. This has led to the development of a new subdiscipline of paleontology, herein termed 'exopaleontology', which deals with the exploration for fossils on other planets. The most important factor enhancing microbial fossilization is the rapid entombment of microorganisms by fine-grained, stable mineral phases, such as silica, phosphate, or carbonate. The oldest body fossils on Earth are preserved in this way, occurring as permineralized cells in fine-grained siliceous sediments (cherts) associated with ancient volcanic terranes in Australia and South Africa. Modern terrestrial environments where minerals may precipitate in the presence of microorganisms include subaerial thermal springs and shallow hydrothermal systems, sub-lacustrine springs and evaporitic alkaline lakes, zones of mineralization within soils where 'hardpans' (e.g. calcretes, silcretes) form, and high latitude frozen soils or ground ice.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., The Twenty-Fifth Lunar and Planetary Science Conference. Part 1: A-G; p 367-368
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...