ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Other Sources  (19,445)
  • INSTRUMENTATION AND PHOTOGRAPHY  (10,620)
  • FLUID MECHANICS AND HEAT TRANSFER  (8,825)
Collection
  • Journals
  • Other Sources  (19,445)
Source
Years
  • 1
    Publication Date: 2004-12-03
    Description: This paper reports a new balance for the measurement of three components of force - lift, drag and pitching moment - in impulsively starting flows which have a duration of about one millisecond. The basics of the design of the balance are presented and results of tests on a 15 deg semi-angle cone set at incidence in the T4 shock tunnel are compared with predictions. These results indicate that the prototype balance performs well for a 1.9 kg, 220 mm long model. Also presented are results from initial bench tests of another application of the deconvolution force balance to the measurement of thrust produced by a 2D scramjet nozzle.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Shock Tunnel Studies of Scramjet Phenomena 1993; p 107-112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Basic algorithms for unstructured mesh generation and fluid flow calculation are discussed. In particular the following are addressed: preliminaries of graphs and meshes; duality and data structures; basic graph operations important in CFD (Computational Fluid Dynamics); triangulation methods, including Varonoi diagrams and Delaunay triangulation; maximum principle analysis; finite volume schemes for scalar conservation law equations; finite volume schemes for the Euler and Navier-Stokes equations; and convergence acceleration for steady state calculations.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: VKI, Computational Fluid Dynamics, Volume 1; 141 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Radiography is discussed as a method for nondestructive evaluation of internal flaws of solids. Gamma ray and X-ray equipment are described along with radiographic film, radiograph interpretation, and neutron radiography.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Nondestructive Testing; p 63-99
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-10-04
    Description: Piloted simulator studies of low-speed longitudinal handling qualities of supersonic transport aircraft
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: AIAA Simulation for Aerospace Flight Conference, A Volume of Technical Papaers Presented August 26-28, 1963, Columbus, Ohio; 35-43
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-09-13
    Description: Ground wind measurements and theoretical response of inertia-type anemometer
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-12-09
    Description: Transient solutions were obtained for a square region of heat conducting semitransparent material cooling by thermal radiation. The region is in a vacuum environment, so energy is dissipated only by radiation from within the medium leaving through its boundaries. The effect of heat conduction during the transient is to partially equalize the internal temperature distribution. As the optical thickness of the region is increased, the temperature gradients increase near the boundaries and corners, unless heat conduction is large. The solution procedure must provide accurate temperature distributions in these regions to prevent error in the calculated radiation losses. Two-dimensional numerical Gaussian integration is used to obtain the local radiative source term. A finite difference procedure with variable space and time increments is used to solve the transient energy equation. Variable spacing was used to concentrate grid points in regions with large temperature gradients.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal of Heat and Mass Transfer (ISSN 0017-9310); 35; 10; p. 2579-2592.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: We study the onset of a pure Marangoni convection in a liquid layer with two deformable interfaces in the no-gravity environment. Both oscillatory and stationary instabilities are considered for a wide range of parameters. It is shown that only stationary instability is possible when surface tension at the colder interface is lower than that at the hotter one. Oscillatory instability tends to disappear and to be replaced by the stationary instability with increase of the Prandtl number and decrease of surface tension at the colder interface.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Advances in Space Research (ISSN 0273-1177); 16; 7; p. (7)83-(7)86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 4; p. 735-740
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: A consistent solution of the radiative transfer equation characterizing photon transport in a semi-infinite medium of refractive index greater than or equal to one is obtained following the method of Sobolev. Fresnel specular reflection, Snell's law and isotropic scattering are assumed. An algorithm is developed and its accuracy is demonstrated. A numerical Laplace transform inversion leads to an efficient evaluation for the interior flux and source function distributions.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 53; 3; p. 257-267
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: High-resolution (0.01/cm) absorption spectra of lean mixtures of CH4 in dry air were recorded with the McMath-Pierce Fourier transform spectrometer (FTS) of the National Solar Observatory on Kitt Peak at various temperatures between 24 and -61 C. The spectra have been analyzed to determine the values at room temperature of pressure-broadened widths and pressure-induced shifts of more than 740 transitions. The temperature dependence of air-broadened widths and pressure-induced shifts was deduced for approx. 370 transitions in the nu(sub 1) + nu(sub 4), nu(sub 3) + nu(sub 4), and nu(sub 2) + nu(sub 3) bands of (12)CH4 located between 4118 and 4615/cm. These results were obtained by analyzing a total of 29 spectra simultaneously using a multi-spectral non-linear least-squares fitting technique. This new technique allowed the determination of correlated spectral line parameters (e.g. intensity and broadening coefficient) better than the procedure of averaging values obtained by fitting the spectra individually. This method also provided a direct determination of the uncertainties in the retrieved parameters due to random errors. For each band analysed in this study the dependence of the various spectral line parameters upon the tetrahedral symmetry species and the rotational quantum numbers of the transitions is also presented.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 51; 3; p. 439-465
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: The multigrid method has been applied to an existing three-dimensional compressible Euler solver to accelerate the convergence of the implicit symmetric relaxation scheme. This lower-upper symmetric Gauss-Seidel implicit scheme is shown to be an effective multigrid driver in three dimensions. A grid refinement study is performed including the effects of large cell aspect ratio meshes. Performance figures of the present multigrid code on Cray computers including the new C90 are presented. A reduction of three orders of magnitude in the residual for a three-dimensional transonic inviscid flow using 920 k grid points is obtained in less than 4 min on a Cray C90.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 5; p. 950-955
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: The present paper explores the use of large-eddy simulations as a tool for predicting noise from first principles. A high-order numerical scheme is used to perform large-eddy simulations of a supersonic jet flow with emphasis on capturing the time-dependent flow structure representating the sound source. The wavelike nature of this structure under random inflow disturbances is demonstrated. This wavelike structure is then enhanced by taking the inflow disturbances to be purely harmonic. Application of Lighthill's theory to calculate the far-field noise, with the sound source obtained from the calculated time-dependent near field, is demonstrated. Alternative approaches to coupling the near-field sound source to the far-field sound are discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 5; p. 897-906
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: The steady state solution of the system of equations consisting of the full Navier-Stokes equations and two turbulence equations has been obtained using a multigrid strategy of unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time-stepping scheme with a stability-bound local time step, while turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positivity. Low-Reynolds-number modifications to the original two-equation model are incorporated in a manner which results in well-behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved, initializing all quantities with uniform freestream values. Rapid and uniform convergence rates for the flow and turbulence equations are observed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal for Numerical Methods in Fluids (ISSN 0271-2091); 18; 10; p. 887-914
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: In the present work, the high Reynolds number flow past an inclined plate with a splitter plate placed in its wake is considered numerically. A numerical conformal mapping technique is employed to transform the two-plate system into the same number of cylinders: the flow field is assumed to be two-dimensional. The vortex shedding from the inclined plate is modelled using the discrete vortex method. It is shown that the splitter plate has a profound effect on the development of the flow over a range of values of a suitably defined offset parameter and for a range of positions of the leading edge of the splitter plate. The acoustic field is also calculated and the spectrum reflects the flow results.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Sound and Vibration (ISSN 0022-460X); 166; 2; p. 209-235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simuulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rarefaction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefaction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the after body sting are emphasizes in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 7; p. 1399-1406
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: Results are reported of the Surface Tension Driven Convection Experiment (STDCE) aboard USML-1 Spacelab. Steady and transient thermocapillary flows were investigated in a 10 cm dia. circular container filled with 10 Cs silicone oil. The velocity and temperature fields were studied in detail under various conditions. It is shown in this paper how the Marangoni number affects the velocity field. A numerical analysis of the flows was also conducted and its results were compared to the experimental data. Good agreement is shown.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Advances in Space Research (ISSN 0273-1177); 16; 7; p. (7)79-(7)82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: The concept of the well-known Langley plot technique, used for the calibration of ground-based instruments, has been generalized for application to satellite instruments. In polar regions, near summer solstice, the solar backscattered ultraviolet (SBUV) instrument on the Nimbus 7 satellite samples the same ozone field at widely different solar zenith angles. These measurements are compared to assess the long-term drift in the instrument calibration. Although the technique provides only a relative wavelength-to-wavelength calibration, it can be combined with existing techniques to determine the drift of the instrument at any wavelength. Using this technique, we have generated a 12-year data set of ozone vertical profiles from SBUV with an estimated accuracy of +/- 5% at 1 mbar and +/- 2% at 10 mbar (95% confidence) over 12 years. Since the method is insensitive to true changes in the atmospheric ozone profile, it can also be used to compare the calibrations of similar SBUV instruments launched without temporal overlap.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D2; p. 2997-3004
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: The transformation validity question utilizing resulting data from direct numerical simulations (DNS) of supersonic, isothermal cold wall channel flow was investigated. The DNS results stood for a wide scope of parameter and were suitable for the purpose of examining the generality of Van Driest transformation. The Van Driest law of the wall can be obtained from the inner-layer similarity arguments. It was demonstrated that the Van Driest transformation cannot be incorporated to collapse the sublayer and log-layer velocity profiles simultaneously. Velocity and temperature predictions according to the preceding composite mixing-length model were presented. Despite satisfactory congruity with the DNS data, the model must be perceived as an engineering guide and not as a rigorous analysis.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 10; p. 2110-2113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: A Monte Carlo solution technique has been formulated to predict the radiative heat transfer in three-dimensional, inhomogeneous participating media which exhibit spectrally dependent emission and absorption and anisotropic scattering. Details of the technique and selected numerical sensitivities are discussed. The technique was applied to a problem involving a medium composed of a gas mixture of carbon dioxide and nitrogen and suspended carbon particles. A homogeneous medium was modeled to examine the effect of total pressure and carbon-particle concentration on radiative heat transfer. Variation in total pressure, over the range studied, had minimal effect on the amount of heat radiated to the enclosure walls and on the radiative-flux distribution within the medium. Increases in the carbon particle concentration produced significantly higher heat fluxes at the boundaries and altered the radiative flux distribution. The technique was then applied to an inhomogeneous medium to examine effects of specific temperature and carbon particle concentration distributions on radiative heat transfer. For the inhomogeneous conditions examined, the largest radiative flux divergence occurs near the center of the medium and the regions near some enclosure walls act as energy sinks.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 8; 1; p. 133-139
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: Numerical results obtained with direct simulation Monte Carlo and Navier-Stokes methods are presented for a Mach-20 nitrogen flow about a 70-deg blunted cone. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Three sets of flow conditions are considered with freestream Knudsen numbers ranging from 0.03 to 0.001. The focus is on the wake structure: how the wake structure changes as a function of rare faction, what the afterbody levels of heating are, and to what limits the continuum models are realistic as rarefunction in the wake is progressively increased. Calculations are made with and without an afterbody sting. Results for the afterbody sting are emphasized in anticipation of an experimental study for the current flow conditions and model configuration. The Navier-Stokes calculations were made with and without slip boundary conditions. Comparisons of the results obtained with the two simulation methodologies are made for both flowfield structure and surface quantities.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 7; p. 1399-1406
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Simplified Shuttle Payload Thermal Analyzer program (SSPTA) was developed to aid in the evaluation of thermal design concepts of instruments to be flown in the Space Shuttle cargo bay. SSPTA consists of a collection of programs that are currently used in the thermal analysis of spacecraft and have been modified for quick, preliminary analysis of payloads. SSPTA includes a reduced math model of the Shuttle cargo bay to simplify use of the program for payload analysis. One of the prime objectives in developing SSPTA was to create a program which was easy to use. With SSPTA, the user required input is simple and the user is free from many of the concerns of computer usage such as disk space handling, tape usage, and complicated program control. Although SSPTA was designed primarily to analyze Shuttle payloads, it can easily be used to perform thermal analysis in other situations. SSPTA is comprised of a system of data files called 'bins', a master program, and a set of thermal subprograms. The bin system is a collection of disk files which contain data required by or computed by the thermal subprograms. SSPTA currently has the capability of handling 50 bins. The master program serves primarily as a manager for the bin system and its interaction with the thermal subprograms. Input to the master program consists of simple user commands which direct the data manipulation procedures, prepare the data for these procedures, and call the appropriate thermal subprograms. The subprograms of SSPTA are all based on programs which have been used extensively in the analysis of orbiting spacecraft and space hardware. Subprogram CONSHAD uses the user supplied geometric radiation model to compute black body view factors, shadow factors, and a description of the surface model. The subprogram WORKSHEET uses the surface model description, optical property data, and node assignment data to prepare input for SCRIPTF. Subprogram SCRIPTF computes the inverses of the infrared (IR) and ultraviolet (UV) radiation transfer equations; it also computes the radiation coupling between nodes in the thermal model. Subprogram ORBITAL uses the shadow tables to compute incident flux intensities on each surface in the geometric model. Subprogram ABSORB uses these flux intensities combined with the IR and UV inverses to compute the IR and UV fluxes absorbed by each surface. The radiation couplings from SCRIPTF and the absorbed fluxes from ABSORB are used by subprogram TTA to compute the temperature and power balance for each node in the thermal model. Output consists of tabulated data from each of the subprograms executed during a particular analysis. Due to the modular form of SSPTA, analyses may be run in whole or in part, and new subprograms may be added by the user. SSPTA is written in FORTRAN for use on a DEC VAX-11/780. SSPTA was originally developed in 1977 for use on IBM 370 series computers. This version is an update which was ported to the VAX in 1980.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: GSC-12698
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: There is no simple and perfect way to measure residual stresses in metal parts that have been welded or deformed to make complex structures such as pressure vessels and aircraft, yet these locked-in stresses can contribute to structural failure by fatigue and fracture. However, one proven and tested technique for determining the internal stress of a metal part is to drill a test hole while measuring the relieved strains around the hole, such as the hole-drilling strain gage method described in ASTM E 837. The program HOLEGAGE processes strain gage data and provides additional calculations of internal stress variations that are not obtained with standard E 837 analysis methods. The typical application of the technique uses a three gage rosette with a special hole-drilling fixture for drilling a hole through the center of the rosette to produce a hole with very small gage pattern eccentricity error. Another device is used to control the drilling and halt the drill at controlled depth steps. At each step, strains from all three strain gages are recorded. The influence coefficients used by HOLEGAGE to compute stresses from relieved hole strains were developed by published finite element method studies of thick plates for specific hole sizes and depths. The program uses a parabolic fit and an interpolating scheme to project the coefficients to other hole sizes and depths. Additionally, published experimental data are used to extend the coefficients to relatively thin plates. These influence coefficients are used to compute the stresses in the original part from the strain data. HOLEGAGE will compute interior planar stresses using strain data from each drilled hole depth layer. Planar stresses may be computed in three ways including: a least squares fit for a linear variation with depth, an integral method to give incremental stress data for each layer, or by a linear fit to the integral data (with some surface data points omitted) to predict surface stresses before strain gage sanding preparations introduced additional residual stresses. Options are included for estimating the effect of hole eccentricity on calculations, smoothing noise from the strain data, and inputting the program data either interactively or from a data file. HOLEGAGE was written in FORTRAN 77 for DEC VAX computers under VMS, and is transportable except for system-unique TIME and DATE system calls. The program requires 54K of main memory and was developed in 1990. The program is available on a 9-track 1600 BPI VAX BACKUP format magnetic tape (standard media) or a TK50 tape cartridge. The documentation is included on the tape. DEC VAX and VMS are trademarks of Digital Equipment Corporation.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: ARC-12807
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Remote Interactive Particle-tracing (RIP) is a distributed-graphics program which computes particle traces for computational fluid dynamics (CFD) solution data sets. A particle trace is a line which shows the path a massless particle in a fluid will take; it is a visual image of where the fluid is going. The program is able to compute and display particle traces at a speed of about one trace per second because it runs on two machines concurrently. The data used by the program is contained in two files. The solution file contains data on density, momentum and energy quantities of a flow field at discrete points in three-dimensional space, while the grid file contains the physical coordinates of each of the discrete points. RIP requires two computers. A local graphics workstation interfaces with the user for program control and graphics manipulation, and a remote machine interfaces with the solution data set and performs time-intensive computations. The program utilizes two machines in a distributed mode for two reasons. First, the data to be used by the program is usually generated on the supercomputer. RIP avoids having to convert and transfer the data, eliminating any memory limitations of the local machine. Second, as computing the particle traces can be computationally expensive, RIP utilizes the power of the supercomputer for this task. Although the remote site code was developed on a CRAY, it is possible to port this to any supercomputer class machine with a UNIX-like operating system. Integration of a velocity field from a starting physical location produces the particle trace. The remote machine computes the particle traces using the particle-tracing subroutines from PLOT3D/AMES, a CFD post-processing graphics program available from COSMIC (ARC-12779). These routines use a second-order predictor-corrector method to integrate the velocity field. Then the remote program sends graphics tokens to the local machine via a remote-graphics library. The local machine interprets the graphics tokens and draws the particle traces. The program is menu driven. RIP is implemented on the silicon graphics IRIS 3000 (local workstation) with an IRIX operating system and on the CRAY2 (remote station) with a UNICOS 1.0 or 2.0 operating system. The IRIS 4D can be used in place of the IRIS 3000. The program is written in C (67%) and FORTRAN 77 (43%) and has an IRIS memory requirement of 4 MB. The remote and local stations must use the same user ID. PLOT3D/AMES unformatted data sets are required for the remote machine. The program was developed in 1988.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-12430
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This software package includes two programs, the KPD12 and the KPD12P. Both programs utilizes the vortex-blob method to simulate flow around solid bodies, in an unbounded domain using the KPD12, with periodicity in one direction using the KPD12P. The main advantage of the vortex-blob method is the ability to handle situations involving arbitrary shapes including multiple bodies. The user just supplies points on the solid boundaries; there is no grid. The KPD12 program has worked successfully on bluff bodies, stalled wings, and multiple-element airfoils. The KPD12P program has been used successfully on high-solidity separated cascades and on cases of rotating stall in cascades of thin airfoils. However, they do not capture subtle viscous effects such as incipient separation and friction drag. The KPD12 and the KPD12P programs apply the vortex-blob method to time-dependent, high-Reynolds-number flows around solid bodies. Both programs solve the two-dimensional incompressible Navier-Stokes equations, neglecting the viscous effects away from the walls. By creating new vortices along the wall at every time step, they treat the no-penetration and no-slip boundary conditions while using an influence matrix. The code automatically controls the number of vortices. Furthermore, the code has the option of treating the boundary layers by simple integral methods to determine the separation points. The KPD12 outputs forces, moments, and pressure distributions on the bodies. The KPD12P also outputs the turning angle and loss of total pressure. The source code is in Cray FORTRAN and contains a few calls to Cray vector functions which are vectorized with the Cray compiler. However, substitutes for these vector functions are provided. The code is set up to plot the bodies, vortex positions, and streamlines using the DISSPLA graphics software. The software requires a mainframe computer with at least 589k of memory available running under COS 1.16. KPD12 was developed in 1988.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-12119
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: The Steady State Thermal Analysis Program (STEADY) provides the thermal designer with a quick and convenient method for calculating heat loads and temperatures. STEADY can be used on small nodal networks for conceptual or preliminary thermal design and analysis. STEADY will accept up to 20 nodes of fixed or variable temperature, with constant or temperature-dependent thermal conductivities, and any set of consistent units. In a steady state thermal network, the heat balance on each variable temperature node must sum to zero. The general heat transfer equations are solved with a Newton-Raphson technique and refined by a fourth order quartic solution. Input data includes the number of nodes, number of boundary nodes, the fixed temperatures at all boundary nodes, initial temperature guesses for variable nodes, impressed heat loads, conduction and radiation coefficients, and control parameters such as convergence criteria, maximum iterations, and damping factors. The output is stored in a print file and tabulates final temperatures and heat flows for all nodes. STEADY is menu driven and allows the user to save files for future modification. STEADY is written in FORTRAN 77 (Ryan McFarland's RMFORTRAN) for interactive execution and has been implemented on the IBM PC computer series under DOS with a central memory requirement of approximately 92K of 8 bit bytes using a math coprocessor, and 103K bytes without the coprocessor. This program was developed in 1987.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NPO-17179
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-24
    Description: The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data. The flexible structure of TRASYS allows considerable freedom in the definition and choice of solution method for a thermal radiation problem. The program's flexible structure has also allowed TRASYS to retain the same basic input structure as the authors update it in order to keep up with changing requirements. Among its other important features are the following: 1) up to 3200 node problem size capability with shadowing by intervening opaque or semi-transparent surfaces; 2) choice of diffuse, specular, or diffuse/specular radiant interchange solutions; 3) a restart capability that minimizes recomputing; 4) macroinstructions that automatically provide the executive logic for orbit generation that optimizes the use of previously completed computations; 5) a time variable geometry package that provides automatic pointing of the various parts of an articulated spacecraft and an automatic look-back feature that eliminates redundant form factor calculations; 6) capability to specify submodel names to identify sets of surfaces or components as an entity; and 7) subroutines to perform functions which save and recall the internodal and/or space form factors in subsequent steps for nodes with fixed geometry during a variable geometry run. There are two machine versions of TRASYS v27: a DEC VAX version and a Cray UNICOS version. Both versions require installation of the NASADIG library (MSC-21801 for DEC VAX or COS-10049 for CRAY), which is available from COSMIC either separately or bundled with TRASYS. The NASADIG (NASA Device Independent Graphics Library) plot package provides a pictorial representation of input geometry, orbital/orientation parameters, and heating rate output as a function of time. NASADIG supports Tektronix terminals. The CRAY version of TRASYS v27 is written in FORTRAN 77 for batch or interactive execution and has been implemented on CRAY X-MP and CRAY Y-MP series computers running UNICOS. The standard distribution medium for MSC-21959 (CRAY version without NASADIG) is a 1600 BPI 9-track magnetic tape in UNIX tar format. The standard distribution medium for COS-10040 (CRAY version with NASADIG) is a set of two 6250 BPI 9-track magnetic tapes in UNIX tar format. Alternate distribution media and formats are available upon request. The DEC VAX version of TRASYS v27 is written in FORTRAN 77 for batch execution (only the plotting driver program is interactive) and has been implemented on a DEC VAX 8650 computer under VMS. Since the source codes for MSC-21030 and COS-10026 are in VAX/VMS text library files and DEC Command Language files, COSMIC will only provide these programs in the following formats: MSC-21030, TRASYS (DEC VAX version without NASADIG) is available on a 1600 BPI 9-track magnetic tape in VAX BACKUP format (standard distribution medium) or in VAX BACKUP format on a TK50 tape cartridge; COS-10026, TRASYS (DEC VAX version with NASADIG), is available in VAX BACKUP format on a set of three 6250 BPI 9-track magnetic tapes (standard distribution medium) or a set of three TK50 tape cartridges in VAX BACKUP format. TRASYS was last updated in 1993.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: MSC-21030
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: TDIGG is a fast and versatile program for generating two-dimensional computational grids for use with finite-difference flow-solvers. Both algebraic and elliptic grid generation systems are included. The method for grid generation by algebraic transformation is based on an interpolation algorithm and the elliptic grid generation is established by solving the partial differential equation (PDE). Non-uniform grid distributions are carried out using a hyperbolic tangent stretching function. For algebraic grid systems, interpolations in one direction (univariate) and two directions (bivariate) are considered. These interpolations are associated with linear or cubic Lagrangian/Hermite/Bezier polynomial functions. The algebraic grids can subsequently be smoothed using an elliptic solver. For elliptic grid systems, the PDE can be in the form of Laplace (zero forcing function) or Poisson. The forcing functions in the Poisson equation come from the boundary or the entire domain of the initial algebraic grids. A graphics interface procedure using the Silicon Graphics (GL) Library is included to allow users to visualize the grid variations at each iteration. This will allow users to interactively modify the grid to match their applications. TDIGG is written in FORTRAN 77 for Silicon Graphics IRIS series computers running IRIX. This package requires either MIT's X Window System, Version 11 Revision 4 or SGI (Motif) Window System. A sample executable is provided on the distribution medium. It requires 148K of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. This program was developed in 1992.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: MFS-28848
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The PYROLASER package is an operating system for the Pyrometer Instrument Company's Pyrolaser. There are 6 individual programs in the PYROLASER package: two main programs, two lower level subprograms, and two programs which, although independent, function predominantly as macros. The package provides a quick and easy way to setup, control, and program a standard Pyrolaser. Temperature and emissivity measurements may be either collected as if the Pyrolaser were in the manual operations mode, or displayed on real time strip charts and stored in standard spreadsheet format for post-test analysis. A shell is supplied to allow macros, which are test-specific, to be easily added to the system. The Pyrolaser Simple Operation program provides full on-screen remote operation capabilities, thus allowing the user to operate the Pyrolaser from the computer just as it would be operated manually. The Pyrolaser Simple Operation program also allows the use of "quick starts". Quick starts provide an easy way to permit routines to be used as setup macros for specific applications or tests. The specific procedures required for a test may be ordered in a sequence structure and then the sequence structure can be started with a simple button in the cluster structure provided. One quick start macro is provided for continuous Pyrolaser operation. A subprogram, Display Continuous Pyr Data, is used to display and store the resulting data output. Using this macro, the system is set up for continuous operation and the subprogram is called to display the data in real time on strip charts. The data is simultaneously stored in a spreadsheet format. The resulting spreadsheet file can be opened in any one of a number of commercially available spreadsheet programs. The Read Continuous Pyrometer program is provided as a continuously run subprogram for incorporation of the Pyrolaser software into a process control or feedback control scheme in a multi-component system. The program requires the Pyrolaser to be set up using the Pyrometer String Transfer macro. It requires no inputs and provides temperature and emissivity as outputs. The Read Continuous Pyrometer program can be run continuously and the data can be sampled as often or as seldom as updates of temperature and emissivity are required. PYROLASER is written using the Labview software for use on Macintosh series computers running System 6.0.3 or later, Sun Sparc series computers running OpenWindows 3.0 or MIT's X Window System (X11R4 or X11R5), and IBM PC or compatibles running Microsoft Windows 3.1 or later. Labview requires a minimum of 5Mb of RAM on a Macintosh, 24Mb of RAM on a Sun, and 8Mb of RAM on an IBM PC or compatible. The Labview software is a product of National Instruments (Austin,TX; 800-433-3488), and is not included with this program. The standard distribution medium for PYROLASER is a 3.5 inch 800K Macintosh format diskette. It is also available on a 3.5 inch 720K MS-DOS format diskette, a 3.5 inch diskette in UNIX tar format, and a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh WordPerfect version 2.0.4 format is included on the distribution medium. Printed documentation is included in the price of the program. PYROLASER was developed in 1992.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: MFS-28819
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to the April 1983 revision of SINDA, a general thermal analyzer program. The purpose of the additional routines is to allow for the modeling of active heat transfer loops. The modeler can simulate the steady-state and pseudo-transient operations of 16 different heat transfer loop components including radiators, evaporators, condensers, mechanical pumps, reservoirs and many types of valves and fittings. In addition, the program contains a property analysis routine that can be used to compute the thermodynamic properties of 20 different refrigerants. SINFAC can simulate the response to transient boundary conditions. SINFAC was first developed as a method for computing the steady-state performance of two phase systems. It was then modified using CNFRWD, SINDA's explicit time-integration scheme, to accommodate transient thermal models. However, SINFAC cannot simulate pressure drops due to time-dependent fluid acceleration, transient boil-out, or transient fill-up, except in the accumulator. SINFAC also requires the user to be familiar with SINDA. The solution procedure used by SINFAC is similar to that which an engineer would use to solve a system manually. The solution to a system requires the determination of all of the outlet conditions of each component such as the flow rate, pressure, and enthalpy. To obtain these values, the user first estimates the inlet conditions to the first component of the system, then computes the outlet conditions from the data supplied by the manufacturer of the first component. The user then estimates the temperature at the outlet of the third component and computes the corresponding flow resistance of the second component. With the flow resistance of the second component, the user computes the conditions down stream, namely the inlet conditions of the third. The computations follow for the rest of the system, back to the first component. On the first pass, the user finds that the calculated outlet conditions of the last component do not match the estimated inlet conditions of the first. The user then modifies the estimated inlet conditions of the first component in an attempt to match the calculated values. The user estimated values are called State Variables. The differences between the user estimated values and calculated values are called the Error Variables. The procedure systematically changes the State Variables until all of the Error Variables are less than the user-specified iteration limits. The solution procedure is referred to as SCX. It consists of two phases, the Systems phase and the Controller phase. The X is to imply experimental. SCX computes each next set of State Variables in two phases. In the first phase, SCX fixes the controller positions and modifies the other State Variables by the Newton-Raphson method. This first phase is the Systems phase. Once the Newton-Raphson method has solved the problem for the fixed controller positions, SCX next calculates new controller positions based on Newton's method while treating each sensor-controller pair independently but allowing all to change in one iteration. This phase is the Controller phase. SINFAC is available by license for a period of ten (10) years to approved licensees. The licenced program product includes the source code for the additional routines to SINDA, the SINDA object code, command procedures, sample data and supporting documentation. Additional documentation may be purchased at the price below. SINFAC was created for use on a DEC VAX under VMS. Source code is written in FORTRAN 77, requires 180k of memory, and should be fully transportable. The program was developed in 1988.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: GSC-13231
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-24
    Description: The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data. The flexible structure of TRASYS allows considerable freedom in the definition and choice of solution method for a thermal radiation problem. The program's flexible structure has also allowed TRASYS to retain the same basic input structure as the authors update it in order to keep up with changing requirements. Among its other important features are the following: 1) up to 3200 node problem size capability with shadowing by intervening opaque or semi-transparent surfaces; 2) choice of diffuse, specular, or diffuse/specular radiant interchange solutions; 3) a restart capability that minimizes recomputing; 4) macroinstructions that automatically provide the executive logic for orbit generation that optimizes the use of previously completed computations; 5) a time variable geometry package that provides automatic pointing of the various parts of an articulated spacecraft and an automatic look-back feature that eliminates redundant form factor calculations; 6) capability to specify submodel names to identify sets of surfaces or components as an entity; and 7) subroutines to perform functions which save and recall the internodal and/or space form factors in subsequent steps for nodes with fixed geometry during a variable geometry run. There are two machine versions of TRASYS v27: a DEC VAX version and a Cray UNICOS version. Both versions require installation of the NASADIG library (MSC-21801 for DEC VAX or COS-10049 for CRAY), which is available from COSMIC either separately or bundled with TRASYS. The NASADIG (NASA Device Independent Graphics Library) plot package provides a pictorial representation of input geometry, orbital/orientation parameters, and heating rate output as a function of time. NASADIG supports Tektronix terminals. The CRAY version of TRASYS v27 is written in FORTRAN 77 for batch or interactive execution and has been implemented on CRAY X-MP and CRAY Y-MP series computers running UNICOS. The standard distribution medium for MSC-21959 (CRAY version without NASADIG) is a 1600 BPI 9-track magnetic tape in UNIX tar format. The standard distribution medium for COS-10040 (CRAY version with NASADIG) is a set of two 6250 BPI 9-track magnetic tapes in UNIX tar format. Alternate distribution media and formats are available upon request. The DEC VAX version of TRASYS v27 is written in FORTRAN 77 for batch execution (only the plotting driver program is interactive) and has been implemented on a DEC VAX 8650 computer under VMS. Since the source codes for MSC-21030 and COS-10026 are in VAX/VMS text library files and DEC Command Language files, COSMIC will only provide these programs in the following formats: MSC-21030, TRASYS (DEC VAX version without NASADIG) is available on a 1600 BPI 9-track magnetic tape in VAX BACKUP format (standard distribution medium) or in VAX BACKUP format on a TK50 tape cartridge; COS-10026, TRASYS (DEC VAX version with NASADIG), is available in VAX BACKUP format on a set of three 6250 BPI 9-track magnetic tapes (standard distribution medium) or a set of three TK50 tape cartridges in VAX BACKUP format. TRASYS was last updated in 1993.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: COS-10026
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-24
    Description: INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: COS-10019
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: SAGE, Self Adaptive Grid codE, is a flexible tool for adapting and restructuring both 2D and 3D grids. Solution-adaptive grid methods are useful tools for efficient and accurate flow predictions. In supersonic and hypersonic flows, strong gradient regions such as shocks, contact discontinuities, shear layers, etc., require careful distribution of grid points to minimize grid error and produce accurate flow-field predictions. SAGE helps the user obtain more accurate solutions by intelligently redistributing (i.e. adapting) the original grid points based on an initial or interim flow-field solution. The user then computes a new solution using the adapted grid as input to the flow solver. The adaptive-grid methodology poses the problem in an algebraic, unidirectional manner for multi-dimensional adaptations. The procedure is analogous to applying tension and torsion spring forces proportional to the local flow gradient at every grid point and finding the equilibrium position of the resulting system of grid points. The multi-dimensional problem of grid adaption is split into a series of one-dimensional problems along the computational coordinate lines. The reduced one dimensional problem then requires a tridiagonal solver to find the location of grid points along a coordinate line. Multi-directional adaption is achieved by the sequential application of the method in each coordinate direction. The tension forces direct the redistribution of points to the strong gradient region. To maintain smoothness and a measure of orthogonality of grid lines, torsional forces are introduced that relate information between the family of lines adjacent to one another. The smoothness and orthogonality constraints are direction-dependent, since they relate only the coordinate lines that are being adapted to the neighboring lines that have already been adapted. Therefore the solutions are non-unique and depend on the order and direction of adaption. Non-uniqueness of the adapted grid is acceptable since it makes possible an overall and local error reduction through grid redistribution. SAGE includes the ability to modify the adaption techniques in boundary regions, which substantially improves the flexibility of the adaptive scheme. The vectorial approach used in the analysis also provides flexibility. The user has complete choice of adaption direction and order of sequential adaptions without concern for the computational data structure. Multiple passes are available with no restraint on stepping directions; for each adaptive pass the user can choose a completely new set of adaptive parameters. This facility, combined with the capability of edge boundary control, enables the code to individually adapt multi-dimensional multiple grids. Zonal grids can be adapted while maintaining continuity along the common boundaries. For patched grids, the multiple-pass capability enables complete adaption. SAGE is written in FORTRAN 77 and is intended to be machine independent; however, it requires a FORTRAN compiler which supports NAMELIST input. It has been successfully implemented on Sun series computers, SGI IRIS's, DEC MicroVAX computers, HP series computers, the Cray YMP, and IBM PC compatibles. Source code is provided, but no sample input and output files are provided. The code reads three datafiles: one that contains the initial grid coordinates (x,y,z), one that contains corresponding flow-field variables, and one that contains the user control parameters. It is assumed that the first two datasets are formatted as defined in the plotting software package PLOT3D. Several machine versions of PLOT3D are available from COSMIC. The amount of main memory is dependent on the size of the matrix. The standard distribution medium for SAGE is a 5.25 inch 360K MS-DOS format diskette. It is also available on a .25 inch streaming magnetic tape cartridge in UNIX tar format or on a 9-track 1600 BPI ASCII CARD IMAGE format magnetic tape. SAGE was developed in 1989, first released as a 2D version in 1991 and updated to 3D in 1993.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-13359
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-24
    Description: INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: COS-10030
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Scale-space filtering is used to screen information obtained from signals that produce a complex curve (such as that in geographic and thermal analysis) to gain a truer representation of the area under analysis. PSF extends this technique to extract non-periodic hills and valleys from a signal. Because the signal's information is sometimes too complex to determine with certainty if some features are real or artificial, PSF calculates probabilities, with the extracted features corresponding to real events, in order to aid in determining the signal's accuracy. Since the probabilities associated with the features are derived from domain-specific statistics, it is (most likely) necessary to modify the program code to correspond to the user's particular domain. PSF also provides a standard scale-space filtering algorithm for use when the desired features can be identified with certainty or when it is not practical to get the domain-specific statistics. The PSF algorithm is based on Witkin's scale-space filtering theory. The program detects signal variations by finding the points of inflection in the input signal. The number and position of these points are dependent upon the scale of the derivative operators used to detect them. Therefore, instead of assuming any single scale to be correct, PSF identifies points of inflection in a large number of different scales. It then describes the curve according to the groups of points of inflection, across all scales, caused by the same physical process. PSF provides an output table giving the following information: the abscissa of the first inflection of the peak, the type of peak, the distance between the first and second inflection points, the abscissa of the peak, and the probability of the feature corresponding to a real event in the curve. The program will also list points representing a graphical image of the signal and detected peaks. This data can be used with a standard plotting program (not included) to display the signal and its features graphically. PSF is written in C language (49%) and Common LISP (51%) for use on a Sun SPARC workstation running the UNIX operating system. PSF requires 4Mb of RAM. The standard distribution medium for this program is a .25 streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. PSF was developed in 1991. Sun and SPARC are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: ARC-13198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids, including those about airfoils. In a grid used for computing aerodynamic flow over an airfoil, or any other body shape, the surface of the body is usually treated as an inner boundary and often cannot be easily represented as an analytic function. The GRAPE computer program was developed to incorporate a method for generating two-dimensional finite-difference grids about airfoils and other shapes by the use of the Poisson differential equation. GRAPE can be used with any boundary shape, even one specified by tabulated points and including a limited number of sharp corners. The GRAPE program has been developed to be numerically stable and computationally fast. GRAPE can provide the aerodynamic analyst with an efficient and consistent means of grid generation. The GRAPE procedure generates a grid between an inner and an outer boundary by utilizing an iterative procedure to solve the Poisson differential equation subject to geometrical restraints. In this method, the inhomogeneous terms of the equation are automatically chosen such that two important effects are imposed on the grid. The first effect is control of the spacing between mesh points along mesh lines intersecting the boundaries. The second effect is control of the angles with which mesh lines intersect the boundaries. Along with the iterative solution to Poisson's equation, a technique of coarse-fine sequencing is employed to accelerate numerical convergence. GRAPE program control cards and input data are entered via the NAMELIST feature. Each variable has a default value such that user supplied data is kept to a minimum. Basic input data consists of the boundary specification, mesh point spacings on the boundaries, and mesh line angles at the boundaries. Output consists of a dataset containing the grid data and, if requested, a plot of the generated mesh. The GRAPE program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 135K (octal) of 60 bit words. For plotted output the commercially available DISSPLA graphics software package is required. The GRAPE program was developed in 1980.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-11379
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: The complex environment of the typical research laboratory requires flexible process control. This program provides natural language process control from an IBM PC or compatible machine. Sometimes process control schedules require changes frequently, even several times per day. These changes may include adding, deleting, and rearranging steps in a process. This program sets up a process control system that can either run without an operator, or be run by workers with limited programming skills. The software system includes three programs. Two of the programs, written in FORTRAN77, record data and control research processes. The third program, written in Pascal, generates the FORTRAN subroutines used by the other two programs to identify the user commands with the user-written device drivers. The software system also includes an input data set which allows the user to define the user commands which are to be executed by the computer. To set the system up the operator writes device driver routines for all of the controlled devices. Once set up, this system requires only an input file containing natural language command lines which tell the system what to do and when to do it. The operator can make up custom commands for operating and taking data from external research equipment at any time of the day or night without the operator in attendance. This process control system requires a personal computer operating under MS-DOS with suitable hardware interfaces to all controlled devices. The program requires a FORTRAN77 compiler and user-written device drivers. This program was developed in 1989 and has a memory requirement of about 62 Kbytes.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: LEW-14907
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: The Thermal Radiation Analyzer System, TRASYS, is a computer software system with generalized capability to solve the radiation related aspects of thermal analysis problems. TRASYS computes the total thermal radiation environment for a spacecraft in orbit. The software calculates internode radiation interchange data as well as incident and absorbed heat rate data originating from environmental radiant heat sources. TRASYS provides data of both types in a format directly usable by such thermal analyzer programs as SINDA/FLUINT (available from COSMIC, program number MSC-21528). One primary feature of TRASYS is that it allows users to write their own driver programs to organize and direct the preprocessor and processor library routines in solving specific thermal radiation problems. The preprocessor first reads and converts the user's geometry input data into the form used by the processor library routines. Then, the preprocessor accepts the user's driving logic, written in the TRASYS modified FORTRAN language. In many cases, the user has a choice of routines to solve a given problem. Users may also provide their own routines where desirable. In particular, the user may write output routines to provide for an interface between TRASYS and any thermal analyzer program using the R-C network concept. Input to the TRASYS program consists of Options and Edit data, Model data, and Logic Flow and Operations data. Options and Edit data provide for basic program control and user edit capability. The Model data describe the problem in terms of geometry and other properties. This information includes surface geometry data, documentation data, nodal data, block coordinate system data, form factor data, and flux data. Logic Flow and Operations data house the user's driver logic, including the sequence of subroutine calls and the subroutine library. Output from TRASYS consists of two basic types of data: internode radiation interchange data, and incident and absorbed heat rate data. The flexible structure of TRASYS allows considerable freedom in the definition and choice of solution method for a thermal radiation problem. The program's flexible structure has also allowed TRASYS to retain the same basic input structure as the authors update it in order to keep up with changing requirements. Among its other important features are the following: 1) up to 3200 node problem size capability with shadowing by intervening opaque or semi-transparent surfaces; 2) choice of diffuse, specular, or diffuse/specular radiant interchange solutions; 3) a restart capability that minimizes recomputing; 4) macroinstructions that automatically provide the executive logic for orbit generation that optimizes the use of previously completed computations; 5) a time variable geometry package that provides automatic pointing of the various parts of an articulated spacecraft and an automatic look-back feature that eliminates redundant form factor calculations; 6) capability to specify submodel names to identify sets of surfaces or components as an entity; and 7) subroutines to perform functions which save and recall the internodal and/or space form factors in subsequent steps for nodes with fixed geometry during a variable geometry run. There are two machine versions of TRASYS v27: a DEC VAX version and a Cray UNICOS version. Both versions require installation of the NASADIG library (MSC-21801 for DEC VAX or COS-10049 for CRAY), which is available from COSMIC either separately or bundled with TRASYS. The NASADIG (NASA Device Independent Graphics Library) plot package provides a pictorial representation of input geometry, orbital/orientation parameters, and heating rate output as a function of time. NASADIG supports Tektronix terminals. The CRAY version of TRASYS v27 is written in FORTRAN 77 for batch or interactive execution and has been implemented on CRAY X-MP and CRAY Y-MP series computers running UNICOS. The standard distribution medium for MSC-21959 (CRAY version without NASADIG) is a 1600 BPI 9-track magnetic tape in UNIX tar format. The standard distribution medium for COS-10040 (CRAY version with NASADIG) is a set of two 6250 BPI 9-track magnetic tapes in UNIX tar format. Alternate distribution media and formats are available upon request. The DEC VAX version of TRASYS v27 is written in FORTRAN 77 for batch execution (only the plotting driver program is interactive) and has been implemented on a DEC VAX 8650 computer under VMS. Since the source codes for MSC-21030 and COS-10026 are in VAX/VMS text library files and DEC Command Language files, COSMIC will only provide these programs in the following formats: MSC-21030, TRASYS (DEC VAX version without NASADIG) is available on a 1600 BPI 9-track magnetic tape in VAX BACKUP format (standard distribution medium) or in VAX BACKUP format on a TK50 tape cartridge; COS-10026, TRASYS (DEC VAX version with NASADIG), is available in VAX BACKUP format on a set of three 6250 BPI 9-track magnetic tapes (standard distribution medium) or a set of three TK50 tape cartridges in VAX BACKUP format. TRASYS was last updated in 1993.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: COS-10040
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-24
    Description: INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-11794
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-24
    Description: The Vibration Pattern Imager (VPI) system was designed to control and acquire data from laser vibrometer sensors. The PC computer based system uses a digital signal processing (DSP) board and an analog I/O board to control the sensor and to process the data. The VPI system was originally developed for use with the Ometron VPI Sensor (Ometron Limited, Kelvin House, Worsley Bridge Road, London, SE26 5BX, England), but can be readily adapted to any commercially available sensor which provides an analog output signal and requires analog inputs for control of mirror positioning. VPI's graphical user interface allows the operation of the program to be controlled interactively through keyboard and mouse-selected menu options. The main menu controls all functions for setup, data acquisition, display, file operations, and exiting the program. Two types of data may be acquired with the VPI system: single point or "full field". In the single point mode, time series data is sampled by the A/D converter on the I/O board at a user-defined rate for the selected number of samples. The position of the measuring point, adjusted by mirrors in the sensor, is controlled via a mouse input. In the "full field" mode, the measurement point is moved over a user-selected rectangular area with up to 256 positions in both x and y directions. The time series data is sampled by the A/D converter on the I/O board and converted to a root-mean-square (rms) value by the DSP board. The rms "full field" velocity distribution is then uploaded for display and storage. VPI is written in C language and Texas Instruments' TMS320C30 assembly language for IBM PC series and compatible computers running MS-DOS. The program requires 640K of RAM for execution, and a hard disk with 10Mb or more of disk space is recommended. The program also requires a mouse, a VGA graphics display, a Four Channel analog I/O board (Spectrum Signal Processing, Inc.; Westborough, MA), a break-out box and a Spirit-30 board (Sonitech International, Inc.; Wellesley, MA) which includes a TMS320C30 DSP processor, 256Kb zero wait state SRAM, and a daughter board with 8Mb one wait state DRAM. Please contact COSMIC for additional information on required hardware and software. In order to compile the provided VPI source code, a Microsoft C version 6.0 compiler, a Texas Instruments' TMS320C30 assembly language compiler, and the Spirit 30 run time libraries are required. A math co-processor is highly recommended. A sample MS-DOS executable is provided on the distribution medium. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. VPI was developed in 1991-1992.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: LAR-14897
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-24
    Description: The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids. 3DGRAPE is designed to make computational grids in or about almost any shape. These grids are generated by the solution of Poisson's differential equations in three dimensions. The program automatically finds its own values for inhomogeneous terms which give near-orthogonality and controlled grid cell height at boundaries. Grids generated by 3DGRAPE have been applied to both viscous and inviscid aerodynamic problems, and to problems in other fluid-dynamic areas. 3DGRAPE uses zones to solve the problem of warping one cube into the physical domain in real-world computational fluid dynamics problems. In a zonal approach, a physical domain is divided into regions, each of which maps into its own computational cube. It is believed that even the most complicated physical region can be divided into zones, and since it is possible to warp a cube into each zone, a grid generator which is oriented to zones and allows communication across zonal boundaries (where appropriate) solves the problem of topological complexity. 3DGRAPE expects to read in already-distributed x,y,z coordinates on the bodies of interest, coordinates which will remain fixed during the entire grid-generation process. The 3DGRAPE code makes no attempt to fit given body shapes and redistribute points thereon. Body-fitting is a formidable problem in itself. The user must either be working with some simple analytical body shape, upon which a simple analytical distribution can be easily effected, or must have available some sophisticated stand-alone body-fitting software. 3DGRAPE does not require the user to supply the block-to-block boundaries nor the shapes of the distribution of points. 3DGRAPE will typically supply those block-to-block boundaries simply as surfaces in the elliptic grid. Thus at block-to-block boundaries the following conditions are obtained: (1) grids lines will match up as they approach the block-to-block boundary from either side, (2) grid lines will cross the boundary with no slope discontinuity, (3) the spacing of points along the line piercing the boundary will be continuous, (4) the shape of the boundary will be consistent with the surrounding grid, and (5) the distribution of points on the boundary will be reasonable in view of the surrounding grid. 3DGRAPE offers a powerful building-block approach to complex 3-D grid generation, but is a low-level tool. Users may build each face of each block as they wish, from a wide variety of resources. 3DGRAPE uses point-successive-over-relaxation (point-SOR) to solve the Poisson equations. This method is slow, although it does vectorize nicely. Any number of sophisticated graphics programs may be used on the stored output file of 3DGRAPE though it lacks interactive graphics. Versatility was a prominent consideration in developing the code. The block structure allows a great latitude in the problems it can treat. As the acronym implies, this program should be able to handle just about any physical region into which a computational cube or cubes can be warped. 3DGRAPE was written in FORTRAN 77 and should be machine independent. It was originally developed on a Cray under COS and tested on a MicroVAX 3200 under VMS 5.1.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ARC-12620
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-24
    Description: Commercially available hot wires/films were used to measure the velocities of evaporated hydrogen or helium gas during cryogenic mixing experiments. Hot wires were found to be too delicate to use in this harsh environment. Hot films were rugged enough to use at cryogenic temperatures even though they failed after a number of thermal cycles. Since the hot films have small aspect ratios, 13.4 and 20, they are quite sensitive to the thermal loading, Tw/Tg, even with a correction for the conduction end loss. In general, although the increase of the Nusselt number with Reynolds number at low temperatures was similar to that at room temperature, there was also a pronounced variation with Tw/Tg over the large range of 1.2 to 12 investigated.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: ASME, Transactions, Journal of Heat Transfer (ISSN 0022-1481); 114; 4; p. 859-865.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-24
    Description: In the present paper, direct numerical methods by which to simulate the spatially developing free shear flows in the transitional region are described and the numerical results of a spatially developing plane wake are presented. The incompressible time-dependent Navier-Stokes equations were solved using Pade finite difference approximations in the streamwise direction, a mapped pseudospectral Fourier method in the cross-stream direction, and a third-order compact Runge-Kutta scheme for time advancement. The unstable modes of the Orr-Sommerfeld equations were used to perturb the inlet of the wake. Statistical analyses were performed and some numerical results were compared with experimental measurements. When only the fundamental mode is forced, the energy spectra show amplification of the fundamental and its higher harmonics. In this case, unperturbed alternate vortices develop in the saturation region of the wake. The phase jitter around the fundamental frequency plays a critical role in generating vortices of random shape and spacing. Large- and small-scale distortions of the fundamental structure are observed. Pairing of vortices of the same sign is observed, as well as vortex coupling of vortices of the opposite sign.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: JSME International Journal, Series II (ISSN 0914-8817); 35; 4; p. 543-548.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-24
    Description: This book first reviews the overall aspects and background information related to thermal radiation heat transfer and incorporates new general information, advances in analytical and computational techniques, and new reference material. Coverage focuses on radiation from opaque surfaces, radiation interchange between various types of surfaces enclosing a vacuum or transparent medium, and radiation including the effects of partially transmitting media, such as combustion gases, soot, or windows. Boundary conditions and multiple layers are discussed with information on radiation in materials with nonunity refractive indices.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ; 1090 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-24
    Description: The present approach to the prediction of instability generation that is due to the interaction of freestream disturbances with regions of subscale variations in surface boundary conditions can account for the finite Reynolds number effects, while furnishing a framework for the study of receptivity in compressible flow and in 3D boundary layers. The approach is illustrated for the case of Tollmien-Schlichting wave generation in a Blasius boundary layer, due to the interaction of a freestream acoustic wave with a localized wall inhomogeneity. Results are presented for the generation of viscous and inviscid instabilities in adverse pressure-gradient boundary layers, supersonic boundary layer instabilities, and cross-flow vortex instabilities.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: In: Boundary layer transition and control; Proceedings of the Conference, Univ. of Cambridge, United Kingdom, Apr. 8-12, 1991 (A93-17251 04-34); p. 45.1-45.20.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-24
    Description: This paper demonstrates that optical microlithography can be used to produce a crossed grating which diffracts light into multiple orders sufficient to record moire interferograms with sensitivities ranging from 2.0 to 0.285 micron/fringe. The grating profile produced by the method is analyzed to establish the diffraction efficiency in each diffraction order, and generalized expressions are given for variable sensitivity moire interferometry. Experimental tests are conducted to verify analytical arguments. In one of these tests, two different diffraction order pairs are used simultaneously to verify that surface displacement can be measured at different sensitivities.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: 1991 SEM Spring Conference on Experimental Mechanics, Milwaukee, WI, June 10-13, 1991, Proceedings (A93-16601 04-39); p. 268-277.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The growth and development of a horseshoe vortex system in an incompressible, three-dimensional turbulent junction flow were investigated experimentally. A streamlined cylinder mounted with its axis normal to a flat surface was used to generate the junction vortex flow. The flow environment was characterized by a body Reynolds number of 183,000, based on the leading edge diameter of the streamlined cylinder. The study included surface flow visualizations, surface pressure measurements, and mean flow measurements of total pressure, static pressure, and velocity distributions in three planes around the base of the streamlined cylinder, and in two planes in the wake flow. Some characterizations of vortex properties based on the measured mean cross-flow velocity components are presented. The results show the presence of a single large, dominant vortex, with strong evidence of a very small corner vortex in the junction between the cylinder and the flat surface. The center of the dominant vortex drifts away from both the body and the flat surface as the flow develops along and downstream of the body. The growth and development of the core of the large, dominant vortex are documented.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ASME, Transactions, Journal of Fluids Engineering (ISSN 0098-2202); 114; 4; p. 559-565.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-24
    Description: We report the use of a short-length, multimode sapphire rod as an extension to a Michelson configuration, but operated as a low-finesse Fabry-Perot cavity. We demonstrate the performance of such a device as an interferometric sensor, where the interference between the reflections from the sapphire-air interface and an air-metallic surface is observed for microdisplacement of the metallic surface which is placed close to the sapphire endface. We describe in detail the fabrication procedure and present results obtained from the detection of temperature changes, applied strain, and surface acoustic waves.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Fiber optic smart structures and skins IV; Proceedings of the Meeting, Boston, MA, Sept. 5, 6, 1991 (A93-21068 06-35); p. 117-124.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-24
    Description: The nonlinear resonant-triad interaction, proposed by Raetz (1959), Craik (1971), and others for a Blasius boundary layer, is analyzed here for an adverse-pressure-gradient boundary layer. We assume that the adverse pressure gradient is in some sense weak and, therefore, that the instability growth rate is small. This ensures that there is a well-defined critical layer located somewhere within the flow and that the nonlinear interaction is effectively confined to that layer. The initial interaction is of the parametric resonance type, even when the modal amplitudes are all of the same order. This means that the oblique instability waves exhibit faster than exponential growth and that the growth rate of the two-dimensional mode remains linear. However, the interaction and the resulting growth rates become fully coupled, once oblique-mode amplitudes become sufficiently large, but the coupling terms are now quartic, rather than quadratic as in the Craik (1971) analysis. More importantly, however, new nonlinear interactions, which were not present in the Craik-type analyses, now come into play. These interactions eventually have a dominant effect on the instability wave development.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics (ISSN 0022-1120); p. 523-551.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-08-24
    Description: This algorithm has been developed for calculating both the quantity of compressor bleed flow required to cool a turbine and the resulting decrease in efficiency due to cooling air injected into the gas stream. Because of the trend toward higher turbine inlet temperatures, it is important to accurately predict the required cooling flow. This program is intended for use with axial flow, air-breathing jet propulsion engines with a variety of airfoil cooling configurations. The algorithm results have compared extremely well with figures given by major engine manufacturers for given bulk metal temperatures and cooling configurations. The program calculates the required cooling flow and corresponding decrease in stage efficiency for each row of airfoils throughout the turbine. These values are combined with the thermodynamic efficiency of the uncooled turbine to predict the total bleed airflow required and the altered turbine efficiency. There are ten airfoil cooling configurations and the algorithm allows a different option for each row of cooled airfoils. Materials technology is incorporated and requires the date of the first year of service for the turbine stator vane and rotor blade. The user must specify pressure, temperatures, and gas flows into the turbine. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 3080 series computer with a central memory requirement of approximately 61K of 8 bit bytes. This program was developed in 1980.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-13999
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-24
    Description: A fast algorithm has been developed for accurately generating boundary-conforming, three-dimensional consecutively refined computational grids applicable to arbitrary wing-body and axial turbomachinery geometries. This algorithm has been incorporated into the GRID3O computer program. The method employed in GRID3O is based on using an analytic function to generate two-dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These grids are of the O-type and are characterized by quasi-orthogonality, geometric periodicity, and an adequate resolution throughout the flow field. Because the built-in nonorthogonal coordinate stretching and shearing cause the grid lines leaving the blade or wing trailing-edge to end at downstream infinity, use of the generated grid simplifies the numerical treatment of three-dimensional trailing vortex sheets. The GRID3O program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 450K of 8 bit bytes. The GRID3O program was developed in 1981.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-13818
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-08-24
    Description: As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient calculations are based on the steady-state solutions obtained. Input to the TACT1 program includes a geometrical description of the blade and insert, the nodal spacing to be used, and the boundary conditions describing the outside hot-gas and the coolant-inlet conditions. The program output includes the value of nodal temperatures and pressures at each iteration. The final solution output includes the temperature at each coolant node, and the coolant flow rates and Reynolds numbers. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 480K of 8 bit bytes. The TACT1 program was developed in 1978.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-13293
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-24
    Description: This is a finite-difference program for calculating the viscous compressible boundary layer flow over either planar or axisymmetric surfaces. The flow may be initially laminar and progress through a transitional zone to a fully turbulent flow, or it may remain laminar, depending on the imposed boundary conditions, laws of viscosity, and numerical solution of the momentum and energy equations. The flow may also be forced into a turbulent flow at a chosen spot by the data input. The input may contain factors of arbitrary Reynolds number, free-stream Mach number, free stream turbulence, wall heating or cooling, longitudinal wall curvature, wall suction or blowing, and wall roughness. The solution may start from an initial Falkner-Skan similarity profile, an approximate equilibrium turbulent profile, or an initial arbitrary input profile. This program has been implemented on the IBM 7094/7044 Direct Couple System. This program is written in FORTRAN IV and was developed in 1974.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-12178
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-08-24
    Description: A computer program has been developed for the design of sharp-edged throat supersonic nozzles where losses are accounted for by correcting the ideal nozzle geometry for boundary layer displacement thickness. The ideal nozzle is designed by the method of characteristics to produce uniform parallel flow at the nozzle exit in the smallest possible distance. Boundary-layer parameters (displacement and momentum thicknesses) are calculated for the ideal nozzle, and the final nozzle geometry is obtained by adding the displacement thickness to the ideal nozzle coordinates. The boundary layer parameters are also used to calculate the aftermixing conditions downstream of the nozzle assuming the flow mixes to a uniform state. The computer program input consists essentially of the nozzle-exit Mach number, specific-heat ratio, nozzle angle, throat half-height, nozzle subsonic section coordinates and corresponding pressure ratios, total temperature and pressure, gas constant, and initial momentum or displacement thickness. The program gas properties are set up for air; for other gases, changes are required to the program. The computer program output consists of the corrected nozzle coordinates, the principal boundary-layer parameters, and the aftermixing conditions. This program has been implemented on the IBM 7094/7044 Direct Couple System.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-11636
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: A computer program has been developed which analyzes by means of mathematical models the temperature profiles in the contents of a filled propellant tank. In designing space vehicles using cryogenic liquid propellants, it is necessary to know how heat transferred from the tank walls and heat absorbed internally affect the temperature distribution with the tank contents. The mathematical flow model is based on results from small-scale experiments. The results showed that when a subcooled fluid is subject to both nonuniform internal heating and wall heating, two distinct temperature regions are developed. In the lower region, the fluid is thoroughly mixed and maintains a uniform temperature profile. In the upper region, a stratified layer develops, and a temperature gradient is formed from the accumulation of warm fluid from the boundary layer along the tank walls; it also indicated that the temperature profiles in the stratified layer exhibited similarity. This concept was developed primarily for internal heating caused by nuclear radiation. However, the theory and computer program are applicable for any form of internal or bulk heating. This program is written in FORTRAN IV for batch execution and has been implemented on the IBM 7094. This program was developed in 1970.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-11034
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-08-24
    Description: This program solves the two-dimensional, compressible laminar or turbulent boundary-layer equations in an arbitrary pressure gradient. Cohen and Reshotko's method is used for the laminar boundary layer, Sasman and Cresci's method for the turbulent boundary layer, and the Schlichting-Ulrich-Granville method to predict transition. Transition may also be forced at any point by the user. Separation, if it occurs, is predicted for both laminar and turbulent flow. The user may begin values for displacement thickness and momentum thickness in either laminar or turbulent flow. This program was implemented on the IBM 7094.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: LEW-11097
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-08-24
    Description: Reacting free shear layers are of fundamental importance in many industrial systems including gas turbine combustors and rockets. Efficient propulsion systems are essential for air breathing supersonic ramjets in the high Mach number range. A limiting factor in these engines is the time for fuel and oxidizer to mix in the combustion chamber; for fast mixing, the flow must be vigorously turbulent which requires the laminar flow to be unstable. Understanding the stability characteristics of compressible reacting free shear layers is, therefore, very important and may allow one to control the flow. Low speed shear layers are highly unstable but, as chemical reaction and compressibility effects tend to stabilize them, it is important to investigate the stability of high speed reacting mixing layers. The latter consists of two fluid streams containing fuel and oxidizer respectively, and the conclusions are expected to apply, with quantitative modifications, to other shear flows, e.g., jets. Since low speed reacting cases have been studied earlier, we concentrate on the effects of Mach number and heat release. We are primarily interested in solving the stability problem over a large range of Mach number and heat release. In order to understand the effect of the heat release on the stability of this flow, one must first study the characteristics of the non-reacting flow. Inviscid theory is a reliable guide for understanding stability of compressible shear flows at moderate and large Reynolds numbers and is the basis for this work.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1990; p 327-338
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Several direct numerical simulations of high-speed turbulent Couette flow were performed with a new spectral code. Mach numbers up to three and a Reynolds number of 3000 were used. A new time-integration scheme was developed to handle Mach numbers above 1.5, which require greater accuracy and stability than lower Mach numbers. At low Mach number, the large streamwise eddies found by M. J. Lee in high incompressible Couette flow simulations were reproduced. At higher Mach numbers these structures still exist, but they become considerably less organized (although the disorganization may be a function of the spanwise box size). While the same types of vortical structures seen in the incompressible flow are observed at higher Mach numbers, a new structure involving the divergence of the velocity is also observed. This structure is generally associated with low shear areas next to the walls, but it has not been determined whether it is a cause or an effect of the low shear. A 'nonphysical' simulation was performed to determine by what mechanism the Mach number affects the flow. It appears that pressure gradient (acoustic) effects are more important than variable viscosity effects in determining the wall shear, but the size of vortical structures is determined more by the local kinematic viscosity. Low-order mean statistics are provided to help quantify these effects.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1990; p 347-356
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2011-08-24
    Description: Many of the turbulent layers encountered in practical flows develop in adverse pressure gradients; hence, the dynamics of the thickening and possible separation of the boundary layer has important implications for design practices. What are the key physical processes that govern how a turbulent boundary layer responds to an adverse pressure gradient, and how should these processes be modeled? Despite the ubiquity of such flows in engineering and nature, these equations remain largely unanswered. The turbulence closure models presently used to describe these flows commonly use 'wall functions' that have ad hoc corrections for the effects of pressure gradients. There is, therefore, a practical and theoretical need to examine the effects of adverse pressure gradients on wall bounded turbulent flows in order to develop models based on sound physical principle. The evolution of a turbulent boundary layer on a flat wall with an externally imposed pressure gradient is studied.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1990; p 73-76
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Advancing the knowledge and understanding of turbulence theory is addressed. Specific problems to be addressed will include studies of subgrid models to understand the effects of unresolved small scale dynamics on the large scale motion which, if successful, might substantially reduce the number of degrees of freedom that need to be computed in turbulence simulation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1990; p 59-63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The increase in the range of length scales with increasing Reynolds number limits the direct simulation of turbulent flows to relatively simple geometries and low Reynolds numbers. However, since most flows of engineering interest occur at much higher Reynolds number than is currently within the capabilities of full simulation, prediction of these flow fields can only be obtained by solving some suitably-averaged set of governing equations. In the traditional Reynolds-averaged approach, the Navier-Stokes equations are averaged over time. This in turn yields correlations between various turbulence fluctuations. It is these terms, e.g. the Reynolds stresses, for which a turbulence model must be derived. Turbulence modeling of incompressible flows has received a great amount of attention in the literature. An area of research that has received comparatively less attention is the modeling of compressible turbulent flows. An approach to simulating compressible turbulence at high Reynolds numbers is through the use of Large-Eddy Simulation (LES). In LES the dependent variables are decomposed into a large-scale (resolved) component and a sub-grid scale component. It is the small-scale components of the velocity field which are presumably more homogeneous than the large scales and, therefore, more easily modeled. Thus, it seems plausible that simpler models, which should be more universal in character than those employed in second-order closure schemes, may be developed for LES of compressible turbulence. The objective of the present research, therefore, is to explore models for the Large-Eddy Simulation of compressible turbulent flows. Given the recent successes of Zeman in second order closure modeling of compressible turbulence, model development was guided by principals employed in second-order closures.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1990; p 39-49
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-08-24
    Description: With the recent revitalization of high speed flow research, compressibility presents a new set of challenging problems to turbulence researchers. Questions arise as to what extent compressibility affects turbulence dynamics, structures, the Reynolds stress-mean velocity (constitutive) relation, and the accompanying processes of heat transfer and mixing. In astrophysical applications, compressible turbulence is believed to play an important role in intergalactic gas cloud dynamics and in accretion disk convection. Understanding and modeling of the compressibility effects in free shear flows, boundary layers, and boundary layer/shock interactions is discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Annual Research Briefs, 1990; p 11-21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2011-08-24
    Description: Energy of a high harmonic standing wave tends to be distributed equally over the whole wave even in a stratified medium where the wave's peak amplitude can be much larger near the upper boundary than the lower one. This fact is generalized to the many diverse physical problems which solve second-order differential equations of Sturm-Liouville type. For any such solution y(z) whose sign fluctuates along the z-axis, quantities are found which have the same value between any two neighboring zeros of y. One of the equidistributed quantities for an oscillating fluid sphere is similar to kinetic energy but is identical only in limiting cases. The acoustic midpoint of a cavity can be a unique place where some nonlinear perturbations have extra strength. This may apply to the puzzling solar phenomenon called supergranulation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 414; 2; p. 892-897.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-08-24
    Description: Progress in developing fiber-optic interferometric sensors for aeroacoustic measurements in wind tunnels, performed under the NASA program, is reported. Preliminary results show that the fiber-optic interferometer sensor array is a powerful instrument for solving complex acoustic measurement problems in wind tunnels, which cannot be resolved with the conventional transducer technique.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Fiber optic and laser sensors X; Proceedings of the Meeting, Boston, MA, Sept. 8-11, 1992 (A93-52980 23-35); p. 16-27.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2011-08-24
    Description: Multiresponse imaging is a process that acquires A images, each with a different optical response, and reassembles them into a single image with an improved resolution that can approach 1/sq rt A times the photodetector-array sampling lattice. Our goals are to optimize the performance of this process in terms of the resolution and fidelity of the restored image and to assess the amount of information required to do so. The theoretical approach is based on the extension of both image restoration and rate-distortion theories from their traditional realm of signal processing to image processing which includes image gathering and display.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: ; : Problems in the ae
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-08-24
    Description: A computational code for the vorticity-potential method is developed for a three-dimensional bounded vorticity field. The evaluation of the boundary data for the vector potential in the code is improved so that the numerical solution simulates that in an unbounded domain to a high order. The time evolution of two vortex rings and that of an elliptic ring are investigated with this code. The cut-and-connect phenomena of vortex rings are successfully captured. The results are compared with those of asymptotic theory and the experiment. They also highlight the need for additional theoretical and numerical investigations.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Computers & Fluids (ISSN 0045-7930); 22; 4-5; p. 589-605.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2011-08-24
    Description: The Far Infrared Limb Observing Spectrometer (FILOS) is an instrument designed to measure chemical species in the upper atmosphere using limb emission in the FIR region of the spectrum. FILOS uses three Fabry-Perot etalons in series to obtain a resolution of 0.0017/cm near 100/cm (100 microns). It is compact and has low power and low data rate requirements so that it may be flown as an auxiliary balloon payload with larger instruments. FILOS has two 0.05/cm bandwidth channels which are currently tuned to a HCl line at 104.2/cm and a pair of OH lines at 101.3/cm. The instrument is described in further detail and results are presented from two recent balloon flights in which OH was measured as a function of time on one hour centers from sunrise to sunset.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Optical methods in atmospheric chemistry; Proceedings of the Meeting, Berlin, Germany, June 22-24, 1992 (A93-51501 22-35); p. 451-456.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-08-24
    Description: In an effort to improve the signal to noise in an interference experiment, we have developed a method to remove systematic phase drift between data sets acquired over long time intervals. Using this technique, it is possible to average repeatedly acquired phase measurements and improve the phase estimate without sacrificing spatial resolution. Results from tests using real-time phase stepping holographic interferometry applied to cantilever bending of a piezoelectric bimorph indicate that white noise has been reduced from 3 to less than 1 deg (lambda/360) by averaging 36 phase compensated data sets before object bending and 36 data sets after bending.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Laser interferometry IV: Computer-aided interferometry; Proceedings of the Meeting, San Diego, CA, July 22-24, 1991 (A93-44185 18-35); p. 221-230.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2011-08-24
    Description: The potential for using high-temperature superconductive elements, screen-printed onto ceramic substrates, as thermal bridges to replace the currently employed manganin wires is studied at NASA-LaRC. Substrate selection is considered to be the most critical parameter in device production. Due to the glass-like thermal behavior of yttria-stabilized-zirconia (YSZ) and fused silica substrates, these materials are found to reduce the heat load significantly. The estimated thermal savings for superconductive leads printed onto YSZ or fused silica substrates range from 6 to 14 percent.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Applied Superconductivity (ISSN 0964-1807); 1; 7-9; p. 1363-1372.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: An account is given of interface-driven motions of drops and bubbles. It is shown that even in the simplest cases, theory predicts exotic flow topologies. Attention is given to several unsolved problems that must be addressed both theoretically and experimentally.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: In: Microgravity fluid mechanics; Proceedings of the IUTAM Symposium, Bremen, Germany, Sept. 2-6, 1991 (A93-41676 17-34); p. 393-403.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-08-24
    Description: The instantaneous velocity fields of time-dependent flows, or of a collection of objects moving with spatially varying velocities, can be measured by means of digital image velocimetry (DIV). DIV overcomes several shortcomings of such existing techniques as laser-speckle or particle-image velocimetry. Attention is presently given to numerically generated images representing objects in uniform motion which are then used for the experimental validation of DIV.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: ; : Mechanical behavio
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2011-08-24
    Description: Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Applications of diamond films and related materials; Proceedings of the 1st International Conference, Auburn, AL, Aug. 17-22, 1991 (A93-40551 16-76); p. 311-318.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-08-24
    Description: AVIRIS is a facility consisting of a flight system, a ground data system, a calibration facility, and a full-time operations team. The facility was developed by JPL under funding from NASA. NASA also provides funding for operations and maintenance. The flight system is a whisk-broom imager that acquires data in 224 narrow, contiguous spectral bands covering the solar reflected portion of the electromagnetic spectrum. It is flown aboard the NASA high altitude ER-2 research aircraft. The ground data system is a facility dedicated to the processing and distribution of data acquired by AVIRIS. It operates year round at JPL. The calibration facility consists of a calibration laboratory at JPL and a suite of field instruments and procedures for performing inflight calibration of AVIRIS. A small team of engineers, technicians, and scientists supports a yearly operations schedule that includes 6 months of flight operations, 6 months of routine ground maintenance of the flight system, and year-round data processing and distribution. Details of the AVIRIS system, its performance history, and future plans are described.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Remote Sensing of Environment (ISSN 0034-4257); 44; 2-3; p. 127-143.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-08-24
    Description: The solar corona, supernova remnants, the hot diffuse interstellar gas in the Galaxy, galactic halos, and the hot intracluster gas in rich clusters of galaxies, are examples of extended astrophysical plasmas which emit line-rich spectra in the X-ray spectral range from 1.5 to 25 A. These phenomena represent a significant fraction of the baryonic matter in the universe. The study of the composition, structure and dynamics of these astrophysical plasmas requires observations with both high spectral and spatial resolution simultaneously. The Objective Double Crystal Spectrometer, coupled with a grazing incidence X-ray telescope, represents a stigmatic instrument which is highly efficient for the study of such sources. We describe the configuration and performance (spatial resolution, spectral resolution and efficiency) of the Objective Double Crystal spectrometer.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Multilayer and grazing incidence X-ray(EUV optics; Proceedings of the Meeting, San Diego, CA, July 22-24, 1991 (A93-39658 15-74); p. 461-470.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-08-24
    Description: The present treatment of vector magnetic field measurement in coronas by means of the Hanle effect of the Lyman-alpha line uses data from all-reflecting imaging coronagraph/polarimeters. The polarization sensitivity, bandpass, and spatial resolution of these instruments are defined through a modeling of the Hanle-effect signature in Lyman-alpha emission from coronal magnetic loops; the line-of-sight integration through an inhomogeneous coronal medium is taken into account. The use of the Hanle effect to measure solar corona vector magnetic fields is verified.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Multilayer and grazing incidence X-ray(EUV optics; Proceedings of the Meeting, San Diego, CA, July 22-24, 1991 (A93-39658 15-74); p. 402-413.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2011-08-24
    Description: Multilayer optics operated at normal incidence offer a powerful new technology for the study of the solar spectrum in the XUV. The spectra of most cosmic X-ray sources are strongly extinguished at wavelengths above 40 A due to absorption and scattering by interstellar grains. We describe a number of configurations which allow multilayer optics to be used at nonnormal angles of incidence in conjunction with grazing incidence optics to analyze the spectra of cosmic X-ray sources in the wavelength interval between 1.5 and 40 A. These optical configurations utilize both multilayer mirrors and gratings, and permit the efficient observation of extended sources using stigmatic spectrographs. The response of the instruments described to typical cosmic X-ray sources is also discussed.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Multilayer and grazing incidence X-ray(EUV optics; Proceedings of the Meeting, San Diego, CA, July 22-24, 1991 (A93-39658 15-74); p. 333-344.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2011-08-24
    Description: The rocketborne Multi-Spectral Solar Telescope Array (MSSTA) uses an array of Ritchey-Chretien, Cassegrain, and Herschelian telescopes to produce ultrahigh-resolution full-disk images of the sun within the soft X-ray, EUV, and FUV ranges. Such imaging of the solar disk and corona out to several solar radii placed great demands on the MSSTA's data storage capabilities; in addition, its photographic films required very low outgassing rates. Results are presented from calibration tests conducted on the MSSTA's emulsions, based on measurements at NIST's synchrotron facility.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Multilayer and grazing incidence X-ray(EUV optics; Proceedings of the Meeting, San Diego, CA, July 22-24, 1991 (A93-39658 15-74); p. 188-204.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-08-24
    Description: The spherical Schwarzschild microscope for soft X-ray applications in microscopy and projection lithography consists of two concentric spherical mirrors configured such that the third-order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for X-ray applications, it is desirable to have only two reflecting surfaces in a microscope. To reduce microscope aberrations and increase the field of view, generalized mirror surface profiles are here considered. Based on incoherent and sine wave modulation transfer function calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical Head reflecting two-mirror microscope configurations. The Head microscope with a NA of 0.4 achieves diffraction limited performance for objects with a diameter of 40 microns. Thus, it seems possible to record images with a feature size less than 100 A with a 40x microscope when using 40 A radiation.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Multilayer and grazing incidence X-ray(EUV optics; Proceedings of the Meeting, San Diego, CA, July 22-24, 1991 (A93-39658 15-74); p. 117-124.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2011-08-24
    Description: Consideration is given to a cryogenic multichannel electronically scanned pressure (ESP) module developed and tested over an extended temperature span from -184 to +50 C and a pressure range of 0 to 5 psig. The ESP module consists of 32 pressure sensor dice, four analog 8 differential-input multiplexers, and an amplifier circuit, all of which are packaged in a physical volume of 2 x 1 x 5/8 in with 32 pressure and two reference ports. Maximum nonrepeatability is measured at 0.21 percent of full-scale output. The ESP modules have performed consistently well over 15 times over the above temperature range and continue to work without any sign of degradation. These sensors are also immune to repeated thermal shock tests over a temperature change of 220 C/sec.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: International Instrumentation Symposium, 38th, Las Vegas, NV, Apr. 26-30, 1992, Proceedings (A93-37851 15-35); p. 773-791.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-08-24
    Description: The paper reports the development and initial testing of a digital resolver to replace existing analog signal processing instrumentation. Radiometers, mounted directly on one of the fully articulated blades, are electrically connected through a slip ring to analog signal processing circuitry. The measured signals are periodic with azimuth angle and are resolved into harmonic components, with 0 deg over the tail. The periodic nature of the helicopter blade motion restricts the frequency content of each flapping and yaw signal to the fundamental and harmonics of the rotor rotational frequency. A minicomputer is employed to collect these data and then plot them graphically in real time. With this and other information generated by the instrumentation, a helicopter test pilot can then adjust the helicopter model's controls to achieve the desired aerodynamic test conditions.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: International Instrumentation Symposium, 38th, Las Vegas, NV, Apr. 26-30, 1992, Proceedings (A93-37851 15-35); p. 619-628.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-08-24
    Description: Multi-component strain-gage force transducer design requires the designer to determine the spring constant of the numerous beams or flexures incorporated in the transducer. The classical beam deflection formulae that are used in calculating these spring constants typically assume that the beam has a uniform moment of inertia along the entire beam length. In practice all beams have a radius at the end where the beam interfaces with the shoulder of the transducer, and on short beams in particular this increases the beam spring constant considerably. A Basic computer program utilizing numerical integration is presented to determine this effect.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: International Instrumentation Symposium, 38th, Las Vegas, NV, Apr. 26-30, 1992, Proceedings (A93-37851 15-35); p. 417-432.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The objective is to describe continuing efforts to develop methods for measuring surface heat flux, gauge active surface temperature, and heat transfer coefficient quantities. The methodology involves inventing a procedure for fabricating improved plug-type heat flux gauges and also for formulating inverse heat conduction models and calculation procedures. These models and procedures are required for making indirect measurements of these quantities from direct temperature measurements at gauge interior locations. Measurements of these quantities were made in a turbine blade thermal cycling tester (TBT) located at MSFC. The TBT partially simulates the turbopump turbine environment in the Space Shuttle Main Engine. After the TBT test, experiments were performed in an arc lamp to analyze gauge quality.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: International Instrumentation Symposium, 38th, Las Vegas, NV, Apr. 26-30, 1992, Proceedings (A93-37851 15-35); p. 263-271.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-08-24
    Description: A ground-based optical telescope system has been constructed with the capability to locate fast optical transients that may be associated with gamma-ray bursts (GRBs). The instrument has been integrated and operated during a shakedown period at GSFC, Maryland. Results of 35 hours of 'state mode' data are presented. The telescope has the proven capability to slew to any point on the night sky within 1.0 sec, track that position with better than one arcsecond stability, and image a 9 x 12 arcmin field of view with 1 arcsec angular resolution with 1.5 sec time resolution. The telescope-CCD camera system has a sensitivity of 13th magnitude for transients and 14th mag for field stars. In the 35 hr of operation many single frame transients of instrumental and optical origin have been observed; no two-sequential frame astrophysical transients have been identified. The combined rate of instrumental transients (predominantly sea-level muons) is 7.2/hr and of optical transients (satellite glints, airplane strobe lights, and meteors) is 5.1/hr. The RMT will operate in conjunction with the MIT Explosive Transient Camera survey instrument at Kitt Peak National Observatory, Tucson. The RMT is now being installed at Kitt Peak. Full operation will begin this summer.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Robotic telescopes in the 1990s; Proceedings of the Symposium, 103rd Annual Meeting of the Astronomical Society of the Pacific, Univ. of Wyoming, Laramie, June 22-24, 1991, 1991 (A93-36457 14-89); p. 137-150.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-08-24
    Description: In the present grid-independent approximate Riemann solver for 2D and 3D flows that are governed by the Euler or Navier-Stokes equations, fluxes on grid faces are obtained by wave decomposition; the assumption of information-propagation in the velocity-difference directions leads to a more accurate resolution of shear and shock waves, when these are are oblique to the grid. The model, which yields significantly greater accuracy in both supersonic and subsonic first-order spatially accurate computations, describes the difference in states at each grid interface by the action of five waves.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Computational Physics (ISSN 0021-9991); 105; 2; p. 306-323.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-08-24
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 7; 2; p. 352-360.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-08-24
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 7; 2; p. 261-268.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-08-24
    Description: This report describes the calibration of a nonnulling, conical, seven-hole pressure probe over a large range of flow onset angles. The calibration procedure is based on the use of differential pressures to determine the three components of velocity. The method allows determination of the flow angle and velocity magnitude to within an average error of 1.0 deg and 1.0 percent, respectively. Greater accuracy can be achieved by using high-quality pressure transducers. Also included is an examination of the factors which limit the use of the probe, a description of the measurement chain, an error analysis, and a typical experimental result. In addition, a new general analytical model of pressure probe behavior is described, and the validity of the model is demonstrated by comparing it with experimentally measured calibration data for a three-hole yaw meter and a seven-hole probe.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Experiments in Fluids (ISSN 0723-4864); 14; 1-2; p. 104-120.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-08-24
    Description: The action of weak, streamwise vortices on a plane, incompressible, steady mixing layer is examined in the large Reynolds number limit. The outer, inviscid region is bounded by a vortex sheet to which the viscous region is confined. It is shown that the local linear analysis becomes invalid at streamwise distances O(epsilon sup -1), where (epsilon much less than 1) is the crossflow amplitude, and a new nonlinear analysis is constructed for this region. Numerical solutions of the nonlinear problem show that the vortex sheet undergoes an O(1) change in position and that the solution is ultimately terminated by a breakdown in the numerical procedure. The corresponding viscous layer shows downstream thickening, but appears to remain well behaved up to the terminal location.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Physics of Fluids A (ISSN 0899-8213); 5; 3; p. 600-607.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-08-24
    Description: This paper describes a recently completed electrooptical camera flying onboard the NASA ER-2 high altitude aircraft. The device includes a six-position filter wheel which can be fitted with a combination of polarizing and/or spectral filters. An alternate configuration will include a polarizing filter which can be rotated to any angle under computer control. The camera mount in the nose of the ER-2 can tilt forward or aft up to 40 degrees, both for bidirectional reflectance studies and for image motion compensation (the aircraft moves 34 meters between frame acquisitions). The ground resolution is nominally 5 meters from and altitude of 20 km. Spectral responsivity is that of the silicon imaging array (Kodak KAF-1400). Initial data sets were acquired in support of the International Satellite Cloud Climatology Program Regional Experiment of November, 1991, and will be used to study cirrus cloud properties.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Polarization and remote sensing; Proceedings of the Meeting, San Diego, CA, July 22, 23, 1992 (A93-30026 11-35); p. 200-204.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Microstrip detectors in which the usual discrete anode and cathode wires are replaced by conducting strips on an insulating or partially insulating substrate are fabricated using integrated circuit-type photolithographic techniques and hence offer very high spatial accuracy and uniformity, together with the capability of producing extremely fine electrode structures. Microstrip proportional counters have now been variously reported having an energy resolution of better than 11 percent FWHM at 5.9 keV. They have been fabricated with anode bars down to 2 microns and on a variety of substrate materials including thin films which can be molded to different shapes. This review will examine the development of the microstrip detector with emphasis on the qualities which make this detector particularly interesting for use in astronomy.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: EUV, X-ray, and gamma-ray instrumentation for astronomy III; Proceedings of the Meeting, San Diego, CA, July 22-24, 1992 (A93-29476 10-35); p. 96-103.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-08-24
    Description: A fault-tolerant, six-feature, all-sky star-field identification algorithm has been integrated with a CCD-based imaging camera. This autonomous intelligent camera identifies in real time any star field without a priori knowledge and requires a reference catalog incorporating fewer than 1000 stars. Observatory tests on star fields with this intelligent camera are described.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Optics Letters (ISSN 0146-9592); 18; 6; p. 402-404.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-08-24
    Description: This paper investigates the linear stability of confined mixing layers with special emphasis on the effects of heat release and compressibility. The results show that reflection of supersonic disturbances by the walls makes the confined supersonic mixing layer more unstable than the unconfined free shear layer. Decreasing the distance between the walls makes the flow more unstable. However, subsonic disturbances are relatively unaffected by the walls. Heat release and Mach number hardly change the growth rates of supersonic disturbances. The most unstable supersonic disturbances are two-dimensional in rectangular channel flows, but three-dimensional in partially confined flows. Finally, the reactants are not strongly mixed by supersonic instabilities, which mainly disturb one side of the layer.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 31; 3; p. 571-577.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-08-24
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: AIAA Journal (ISSN 0001-1452); 31; 3; p. 491-498.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-08-24
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: AIAA Journal (ISSN 0001-1452); 31; 3; p. 465-477.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-08-24
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: AIAA Journal (ISSN 0001-1452); 31; 3; p. 426-433.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-08-24
    Description: The description, analysis, and experimental results of a method for identifying possible defects on High Temperature Reusable Surface Insulation (HRSI) of the Orbiter Thermal Protection System (TPS) is presented. Currently, a visual postflight inspection of Orbiter TPS is conducted to detect and classify defects as part of the Orbiter maintenance flow. The objective of the method is to automate the detection of defects by identifying anomalies between preflight and postflight images of TPS components. The initial version is intended to detect and label gross (greater than 0.1 inches in the smallest dimension) anomalies on HRSI components for subsequent classification by a human inspector. The approach is a modified Golden Template technique where the preflight image of a tile serves as the template against which the postflight image of the tile is compared. Candidate anomalies are selected as a result of the comparison and processed to identify true anomalies. The processing methods are developed and discussed, and the results of testing on actual and simulated tile images are presented. Solutions to the problems of brightness and spatial normalization, timely execution, and minimization of false positives are also discussed.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Cooperative intelligent robotics in space III; Proceedings of the Meeting, Boston, MA, Nov. 16-18, 1992 (A93-29101 10-54); p. 330-340.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-08-24
    Description: The Capaciflector, a capacitive proximity sensor, is being developed by NASA for collision avoidance. Capaciflector provides a single output value as measure of altered base frequency. This value is a characteristic of an external object in the sensor's field of view. An attempt is made to use the Capaciflector for imaging with operating range from 1 to 2 inches. By positional arangement of sensors in a grid pattern and electronic activation of sensors over the grid one at a time an object characteristic image is obtained. The article describes the Capaciflector experimental imaging system and preliminary results obtained by the system.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Cooperative intelligent robotics in space III; Proceedings of the Meeting, Boston, MA, Nov. 16-18, 1992 (A93-29101 10-54); p. 13-24.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-08-24
    Description: There will be a need for a wide array of chemical sensors for biomedical experimentation and for the monitoring of water and air recycling processes on Space Station Freedom. The infrequent logistics flights of the Space Shuttle will necessitate onboard analysis. The advantages of biosensors and chemical sensors over conventional analysis onboard spacecraft are manifold. They require less crew time, space, and power. Sample treatment is not needed. Real time or near-real time monitoring is possible, in some cases on a continuous basis. Sensor signals in digitized form can be transmitted to the ground. Types and requirements for chemical sensors to be used in biomedical experimentation and monitoring of water recycling during long-term space missions are discussed.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Biosensors and Bioelectronics (ISSN 0956-5663); 7; 8; p. 535-548.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-08-24
    Description: A liquid crystal television (LCTV) SLM's phase, amplitude, and polarization all influence our selection of operating curves for input and filter. With its continuum of drive voltage, the LCTV permits grey-level control in both locations. Selection of an optimum curve depends on expected variations in signal amplitude, presence of input scene structured noise, and other factors. Using modulators obtained from a commercially available projection LCTV, and with no specifically added input noise present, we have obtained laboratory results in which the ratio of peak intensity to correlator system noise exceeded 100:1. Unfortunately, it was massively inefficient to implement the algorithm which had been developed as the abstract for this paper was submitted. Fortunately, we have quite recently developed two insights that will speed it by several orders of magnitude, and we shall report that result in the future. We will also extend the work to include clutter objects and additive input scene noise.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Optical pattern recognition III; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992 (A93-28672 10-63); p. 78-82.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-08-24
    Description: The features and the components of a new microscale guidance, navigation, and control (GN&C) system for future space systems are discussed. An approach is described for the utilization of new microengineering technologies for achieving major reductions in the GN&C system's mass, size, power, and costs. The micro-GN&C system and the component concepts include microactuated adaptive optics, micromachined inertial sensors, fiberoptic data nets with light-power transmission, and VLSI microcomputers. The GN&C system will be applied in microspacecraft, microlanders, microrovers, remote sensing platforms, interferometers, and deployable reflectors.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Sensors and sensor systems for guidance and navigation II; Proceedings of the Meeting, Orlando, FL, Apr. 22, 23, 1992 (A93-28151 10-35); p. 144-158.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-08-24
    Description: NASA's Office of Commercial Programs is funding a multispectral sensor system to be used in the development of remote sensing applications. The Airborne Terrestrial Applications Sensor (ATLAS) is designed to provide versatility in acquiring spectral and spatial information and will be a test bed for the development of specifications for airborne and spaceborne remote sensing instrumentation for dedicated applications. This objective requires spectral coverage from the visible through thermal IR wavelengths, variable spatial resolution form 2-25 meters; high geometric and geolocation accuracy; on-board radiometric calibration; digital recording; and optimized performance for minimized cost, size, and weight.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: In: Small satellite technologies and applications II; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992 (A93-28076 10-12); p. 63-74.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...