ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (54,143)
  • 2020-2020
  • 2015-2019  (36,112)
  • 1990-1994  (18,031)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Earth's Future, American Geophysical Union, 7(12), pp. 1296-1306, ISSN: 2328-4277
    Publication Date: 2021-02-15
    Description: To counteract global warming, a geoengineering approach that aims at intervening in the Arctic ice‐albedo feedback has been proposed. A large number of wind‐driven pumps shall spread seawater on the surface in winter to enhance ice growth, allowing more ice to survive the summer melt. We test this idea with a coupled climate model by modifying the surface exchange processes such that the physical effect of the pumps is simulated. Based on experiments with RCP 8.5 scenario forcing, we find that it is possible to keep the late‐summer sea ice cover at the current extent for the next ∼60 years. The increased ice extent is accompanied by significant Arctic late‐summer cooling by ∼1.3 K on average north of the polar circle (2021–2060). However, this cooling is not conveyed to lower latitudes. Moreover, the Arctic experiences substantial winter warming in regions with active pumps. The global annual‐mean near‐surface air temperature is reduced by only 0.02 K (2021–2060). Our results cast doubt on the potential of sea ice targeted geoengineering to mitigate climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall meeting, San Francisco, CA, 2019-12-09-2019-12-13USA, American Geophysical Union
    Publication Date: 2019-12-17
    Description: During the last decade the Arctic has experienced increasing human development while many native communities continue to live a subsistence lifestyle. Off-road winter tundra travel for resource exploration is most cost effective and least environmentally damaging during winter when the tundra is frozen and snow covered. Climate warming, which is occurring at an amplified rate in the Arctic, likely changes the period when access to the off-road tundra travel is possible. There currently exists, however, large uncertainty as to how climate change will impact the low-cost winter travel access across the tundra. Here we defined safe tundra access when soil temperatures are below a soil type dependent freezing temperature and snow cover is at least 20 cm. Our analysis is based on the simulated soil temperatures and snow depths of Land Surface Models (LSMs) contributing to “The Inter-Sectoral Impact Model Intercomparison Project” (ISIMIP). ISIMIP simulations are based on a common protocol, the same input data, the same spatial (0.5°) and temporal resolution (daily modeling output), and span over the period 1861-2100. The LSMs are forced by four different bias-corrected global circulation models (IPSL-CM5A-LR, GFDL-ESM2M, MIROC5, HadGEM2-ES) and three different future conditions (represented via representative concentration pathways (RCP) 2.6, 6.0, 8.5). The simulation results of our model ensemble (60 model combinations) show consistent permafrost warming and changing snow cover patterns at 60°N. Annual off-road tundra travel is considerably reduced (〉50%) under future climate change scenarios, especially under the RCP8.5. The main reduction can be observed in the spring and autumn (〉30%). The results of the multi-model ensemble differ in magnitude, however, their overall trend is consistent. Our results suggest a high vulnerability and substantial changes to the (subsistence) livelihoods of native communities and increasing costs for off-road resource exploration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: Climate change and sustainable use of natural capital demand increased collaboration across the sciences. The first steps for effective collaboration often focus on improving interoperability between observation and analyses methodologies. This is traditionally done through a combination of standards and best practices. The ocean observation community and observing infrastructures - with regionally diverse members working in physics, chemistry, biology and engineering - is looking toward a dynamic consensus-building approach to match the rapid pace of technological evolution. This is an essential part of the long-term cooperation among ocean observing infrastructures. In the last 12 months, the ocean observing community has implemented an Ocean Best Practices System (OBPS). This System was recently adopted by the Intergovernmental Ocean Commission as an international project under GOOS and IODE. The System consists of a permanent OBPS repository hosted by IODE with state-of-the-art semantic discovery and metadata indexing for improved access to best practices and, eventually, to the data associated with them. There have been discussions to understand how to deal with differing best practices and standards on the same observation or analyses objective and other issues that arise from a comprehensive ocean best practices system. A recent survey, to be described, offers options on alternative approaches. Further, we have created a forum, in “Frontiers in Marine Science” for discussion of best practices and their applications. This presentation will cover options for evolving and sustaining ocean best practices across infrastructures. The recommendations build upon the community survey, the OGC experience, the outcomes of the OceanObs’19 conference as well as inputs from the Decade for Ocean Sciences community meetings. The extension of this work to other communities will also be examined.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-14
    Description: IODP Exp. 383 recovered two Pleistocene sedimentary sequences from the upper continental slope along the southernmost Chilean margin that are well positioned to monitor changes in the Antarctic Circumpolar Current (ACC) upstream of the Drake Passage and the history of Patagonian glaciation. These sites are characterized by high sedimentation rates and a complex distribution of siliciclastic sediments with infrequent decimeter-scale beds of calcareous biogenic sediments. Unravelling ocean circulation and climate history from these sites requires a primary understanding of sedimentary provenance and transport mechanisms derived from a complete lithological characterization of the sequence. Here, we integrate downcore shipboard physical properties with sedimentological observations to fully characterize the sequences, evaluate potential for correlation and constrain regional depositional processes. Site U1542 (52°S; 1101 m water depth) consists of a 249 m spliced sedimentary sequence containing Middle Pleistocene to Holocene sediments. It mainly consists of clayey silt that is often interbedded with thin (~75 cm) beds of calcareous sand-bearing clayey to sandy silt with foraminifera and nannofossils or foraminifera-rich nannofossil ooze. Site U1544 (55°S; 2090 m water depth) consists of a 98 m sedimentary sequence obtained from a single hole. Sediments are also dominated by silty clay, but exhibit slightly thicker beds of calcareous ooze and a significantly higher proportion of cm- to dm-scale sand beds that are interpreted as turbidites. Based on the lithology of the recovered sediments and proximity to a glaciated continental margin, terrigenous sediment is likely delivered to these locations by a combination of ice rafting, glacial meltwater plumes, episodic downslope transport from the outer continental shelf and fine-grained sediments transported by the Cape Horn Current entering the Drake Passage as the northern branch of the ACC.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-03-29
    Description: Pore Pressure Pulse Drove the 2012 Emilia (Italy)Series of EarthquakesGiuseppe Pezzo1, Pasquale De Gori1, Francesco Pio Lucente1, and Claudio Chiarabba11Istituto Nazionale di Geofisica e Vulcanologia, Rome, ItalyAbstractThe 2012 Emilia earthquakes sequence is thefirst debated case in Italy of destructive eventpossibly induced by anthropic activity. During this sequence, two main earthquakes occurred separated by9 days on contiguous thrust faults. Scientific commissions engaged by the Italian government reportedcomplementary scenarios on the potential trigger mechanism ascribable to exploitation of a nearby oilfield.In this study, we combine a refined geodetic source model constrained by precise aftershock locationsand an improved tomographic model of the area to define the geometrical relation between the activatedfaults and investigate possible triggering mechanisms. An aftershock decay rate that deviates from theclassical Omori-like pattern andVp/Vschanges along the fault system suggests that natural pore pressurepulse drove the space-time evolution of seismicity and the activation of the second main shock
    Description: Published
    Description: 682-690
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-29
    Description: Near-fault ground motion records often present impulsive signals, characterized by a largeamplitude in the velocity wavefield and by the energy concentrated in a short time window as comparedto the total earthquake duration. Thispulse-likebehavior is ascribed to the directivity of the seismic rupture,and it requires a stronger demand to the buildings not predicted by the classical design spectra. In this workwe investigate the pulse occurrence and duration in near-fault synthetic seismograms generated from anensemble ofk 2source models. We exploited the fault geometry of theMw= 6.3, 2009 L’Aquila earthquake,which represents a typical example of normal-fault earthquake for which several records in the fault vicinityare available for comparison with synthetics. We show that impulsive records are sensitive to the rupturevelocity, to the hypocenter depth, and to the station location, whether it is on the hanging wall or on thefootwall. The pulse duration was also shown to be proportional to the risetime, and it scales with thesource-receiver distance and inversely with the rupture velocity. We model these results as an effectof the coupled along-strike and updip directivity
    Description: Published
    Description: 7707-7721
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall meeting 2019, San Francisco, CA, 2019-12-09-2019-12-13USA, American Geophysical Union
    Publication Date: 2021-08-16
    Description: Deciduous larch is a weak competitor when growing in mixed stands with evergreen taxa but is dominant in many boreal forest areas of Eastern Siberia. However, it is hypothesized that certain factors such as a shallow active layer thickness and high fire frequency favor larch dominance. Our aim is to understand how thermohydrological interactions between vegetation, permafrost, and atmosphere stabilize the larch forests and the underlying permafrost in Eastern Siberia. A tailored version of a one-dimensional land surface model (CryoGrid) is adapted for the application in vegetated areas and used to reproduce the energy transfer and thermal regime of permafrost ground in typical boreal larch stands. In order to simulate the responds of Arctic trees to local climate and permafrost conditions we have implemented a multilayer canopy parameterization originally developed for the Community Land Model (CLM-ml_v0). The coupled model is capable of calculating the full energy balance above, within and below the canopy including the radiation budget, the turbulent fluxes and the heat budget of the permafrost ground under several forcing scenarios. We will present first results of simulations performed for different study sites in larch-dominated forests of Eastern Siberia and Mongolia under current and future climate conditions. Model performance is thoroughly evaluated based on comprehensive in-situ soil temperature and radiation measurements at our study sites.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-01-07
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Noble gases in deepwater oils of the U.S. Gulf of Mexico. Geochemistry, Geophysics, Geosystems , 19, 4218 – 4235.(2018): doi:10.1029/2018GC007654.
    Description: Hydrocarbon migration and emplacement processes remain underconstrained despite the vast potential economic value associated with oil and gas. Noble gases provide information about hydrocarbon generation, fluid migration pathways, reservoir conditions, and the relative volumes of oil versus water in the subsurface. Produced gas He-Ne-Ar-Kr-Xe data from two distinct oil fields in the Gulf of Mexico (Genesis and Hoover-Diana) are used to calibrate a model that takes into account both water-oil solubility exchange and subsequent gas cap formation. Reconstructed noble gas signatures in oils reflect simple (two-phase) oil-water exchange imparted during migration from the source rock to the trap, which are subsequently modified by gas cap formation at current reservoir conditions. Calculated, oil to water volume ratios (Vo/Vw) in Tertiary-sourced oils from the Hoover-Diana system are 2–3 times greater on average than those in the Jurassic sourced oils from the Genesis reservoirs. Higher Vo/Vw in Hoover-Diana versus Genesis can be interpreted in two ways: either (1) the Hoover reservoir interval has 2–3 times more oil than any of the individual Genesis reservoirs, which is consistent with independent estimates of oil in place for the respective reservoirs, or (2) Genesis oils have experienced longer migration pathways than Hoover-Diana oils and thus have interacted with more water. The ability to determine a robust Vo/Vw , despite gas cap formation and possible gas cap loss, is extremely powerful. For example, when volumetric hydrocarbon ratios are combined with independent estimates of hydrocarbon migration distance and/or formation fluid volumes, this technique has the potential to differentiate between large and small oil accumulations.
    Description: We thank ExxonMobil for funding and providing the samples. In addition, we thank James Scott and two anonymous reviewers for their comprehensive and constructive reviews, as well as Janne Blichert-Toft for editorial handling.
    Description: 2019-04-10
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 123(12), (2018): 8674-8687, doi:10.1002/2018JC013766.
    Description: A large collaborative program has studied the coupled air‐ice‐ocean‐wave processes occurring in the Arctic during the autumn ice advance. The program included a field campaign in the western Arctic during the autumn of 2015, with in situ data collection and both aerial and satellite remote sensing. Many of the analyses have focused on using and improving forecast models. Summarizing and synthesizing the results from a series of separate papers, the overall view is of an Arctic shifting to a more seasonal system. The dramatic increase in open water extent and duration in the autumn means that large surface waves and significant surface heat fluxes are now common. When refreezing finally does occur, it is a highly variable process in space and time. Wind and wave events drive episodic advances and retreats of the ice edge, with associated variations in sea ice formation types (e.g., pancakes, nilas). This variability becomes imprinted on the winter ice cover, which in turn affects the melt season the following year.
    Description: This program was supported by the Office of Naval Research, Code 32, under Program Managers Scott Harper and Martin Jeffries. The crew of R/V Sikuliaq provide outstanding support in collecting the field data, and the US National Ice Center, German Aerospace Center (DLR), and European Space Agency facilitated the remote sensing collections and daily analysis products. RADARSAT‐2 Data and Products are from MacDonald, Dettwiler, and Associates Ltd., courtesy of the U.S. National Ice Center. Data, supporting information, and a cruise report can be found at http://www.apl.uw.edu/arcticseastate
    Keywords: Arctic ; waves ; autumn ; sea ice ; Beaufort ; flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 123(12), (2018): 8887-8901, doi:10.1029/2018JC013797.
    Description: Sea ice is one of the determining parameters of the climate system. The presence of melt ponds on the surface of Arctic sea ice plays a critical role in the mass balance of sea ice. A total of nine cores was collected from multiyear ice refrozen melt ponds and adjacent hummocks during the 2015 Arctic Sea State research cruise. The depth profiles of water isotopes, salinity, and ice texture for these sea ice cores were examined to provide information about the development of refrozen melt ponds and water balance generation processes, which are otherwise difficult to acquire. The presence of meteoric water with low oxygen isotope values as relatively thin layers indicates melt pond water stability and little mixing during formation and refreezing. The hydrochemical characteristics of refrozen melt pond and seawater depth profiles indicate little snowmelt enters the upper ocean during melt pond refreezing. Due to the seasonal characters of deuterium excess for Arctic precipitation, water balance calculations utilizing two isotopic tracers (oxygen isotope and deuterium excess) suggest that besides the melt of snow cover, the precipitation input in the melt season may also play a role in the evolution of melt ponds. The dual‐isotope mixing model developed here may become more valuable in a future scenario of increasing Arctic precipitation. The layers of meteoric origin were found at different depths in the refrozen melt pond ice cores. Surface topography information collected at several core sites was examined for possible explanations of different structures of refrozen melt ponds.
    Description: The coauthors (S. F. A., S. S., T. M., and B. W.) wish to thank the other DRI participants and the Captain and crew of the Sikuliaq's October 2015 cruise for their assistance in the sample collections analyzed in the paper. Jim Thomson (Chief Scientist), Scott Harper (ONR Program Manager), and Martin Jeffries (ONR Program Manager) are particularly acknowledged for their unwavering assistance and leadership during the 5 years of the SeaState DRI. We thank Guy Williams for production of the aerial photo mosaic. Funding from the Office of Naval Research N00014‐13‐1‐0435 (S. F. A. and B. W.), N00014‐13‐1‐0434 (S. S.), and N00014‐13‐1‐0446 (T. M.) supported this research through grants to UTSA, UColorado, and WHOI, respectively. This project was also funded (in part) by the University of Texas at San Antonio, Office of the Vice President for Research (Y. G. and S. F. A.). Data for the stable isotope mixing models used in this study are shown in supporting information Tables S1–S3.
    Description: 2019-05-15
    Keywords: Arctic ; sea ice ; isotope tracer ; melt pond ; oxygen isotope ; deuterium excess
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Freymond, C. V., Lupker, M., Peterse, F., Haghipour, N., Wacker, L., Filip, F., et al. (2018). Constraining instantaneous fluxes and integrated compositions of fluvially discharged organic matter. Geochemistry, Geophysics, Geosystems, 19, 2453 2462. doi: 10.1029/2018GC007539.
    Description: Fluvial export of organic carbon (OC) and burial in ocean sediments comprises an important carbon sink, but fluxes remain poorly constrained, particularly for specific organic components. Here OC and lipid biomarker contents and isotopic characteristics of suspended matter determined in depth profiles across an active channel close to the terminus of the Danube River are used to constrain instantaneous OC and biomarker fluxes and integrated compositions during high to moderate discharges. During high (moderate) discharge, the total Danube exports 8 (7) kg/s OC, 7 (3) g/s higher plant‐derived long‐chain fatty acids (LCFA), 34 (21) g/s short‐chain fatty acids (SCFA), and 0.5 (0.2) g/s soil bacterial membrane lipids (brGDGTs). Integrated stable carbon isotopic compositions were TOC: −28.0 (−27.6)‰, LCFA: −33.5 (−32.8)‰ and Δ14C TOC: −129 (−38)‰, LCFA: −134 (−143)‰, respectively. Such estimates will aid in establishing quantitative links between production, export, and burial of OC from the terrestrial biosphere.
    Description: This project was funded by the Swiss National Science Foundation SNF. Grant Number: 200021_140850. F.P. acknowledges funding from NWO‐VENI grant 863.13.016. We thank the sampling crews from both field campaigns (Björn Buggle, James Saenz, Alissa Zuijdgeest, Marilu Tavagna, Stefan Eugen Filip, Silvia Lavinia Filip, Mihai, Clayton Magill, Thomas Blattmann, and Michael Albani), Daniel Montluçon for lab support and Hannah Gies for PCGC work. Figures, tables, and equations can be found in supporting information.
    Keywords: Danube River ; organic carbon ; biomarker ; radiocarbon ; ADCP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans, 123(11), (2018): 7877-7895. doi: 10.1029/2018JC014290.
    Description: A three‐dimensional, primitive‐equation, ocean circulation model coupled with a Lagrangian particle‐tracking algorithm is used to investigate the dispersal and settlement of planktonic larvae released from discrete hydrothermal habitats on the East Pacific Rise segment at 9–10°N. Model outputs show that mean circulation is anticyclonic around the ridge segment, which consists of a northward flow along the western flank and a southward flow along the eastern flank. Those flank jets are dispersal expressways for the along‐ridge larval transport and strongly affect its overall direction and spatial‐temporal variations. It is evident from model results that the transform faults bounding the ridge segment and off axis topography (the Lamont Seamount Chain) act as topographic barriers to larval dispersal in the along‐ridge direction. Furthermore, the presence of an overlapping spreading center and an adjacent local topographic high impedes the southward along‐ridge larval transport. The model results suggest that larval recolonization within ridge‐crest habitats is enhanced by the anticyclonic circulation around the ridge segment, and the overall recolonization rate is higher for larvae having a short precompetency period and an altitude above the bottom sufficient to avoid influence by the near‐bottom currents Surprisingly, for larvae having a long precompetency period (〉10 days), the prolonged travel time allowed some of those larvae to return to their natal vent clusters, which results in an unexpected increase in connectivity among natal and neighboring sites. Overall, model‐based predictions of connectivity are highly sensitive to the larval precompetency period and vertical position in the water column.
    Description: The sediment‐trap data presented in this paper are included in Table S1. The bathymetric data used in the model can be downloaded from the Global Multi‐Resolution Topography (GMRT) Synthesis of Marine Geoscience Data System (MGDS) (https://www.gmrt.org/GMRTMapTool). The ocean current time series data used in this work were acquired in 2006‐2007 by Andreas Thurnherr at the Earth Institute of Columbia University. Those data can be accessed in the supporting information. D.J. McGillicuddy gratefully acknowledges support from the National Science Foundation and the Holger W. Jannasch and Columbus O'Donnell Iselin Shared Chairs for Excellence in Oceanography. L.S. Mullineaux acknowledges with gratitude support from the National Science Foundation and the Woods Hole Oceanographic Institution (WHOI) Ocean life fellowship. We appreciate the operation support from the Captain and crew of R/V Atlantis and the Alvin submersible group. We are thankful to V.K. Kosnyrev for developing the coupling interface between the ocean‐circulation and particle‐tracking models. We are grateful to J.W. Lavelle for his intellectual support for the modeling work presented in this paper. We thank Houshuo Jiang for sponsoring our use of the cluster computer at WHOI.
    Description: 2019-05-06
    Keywords: larva ; dispersal ; hydrothermal vent ; EPR ; connectivity ; supply
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans, 123(11), (2018): 7983-8003. doi:10.1029/2018JC014298.
    Description: A melt pond (MP) distribution equation has been developed and incorporated into the Marginal Ice‐Zone Modeling and Assimilation System to simulate Arctic MPs and sea ice over 1979–2016. The equation differs from previous MP models and yet benefits from previous studies for MP parameterizations as well as a range of observations for model calibration. Model results show higher magnitude of MP volume per unit ice area and area fraction in most of the Canada Basin and the East Siberian Sea and lower magnitude in the central Arctic. This is consistent with Moderate Resolution Imaging Spectroradiometer observations, evaluated with Measurements of Earth Data for Environmental Analysis (MEDEA) data, and closely related to top ice melt per unit ice area. The model simulates a decrease in the total Arctic sea ice volume and area, owing to a strong increase in bottom and lateral ice melt. The sea ice decline leads to a strong decrease in the total MP volume and area. However, the Arctic‐averaged MP volume per unit ice area and area fraction show weak, statistically insignificant downward trends, which is linked to the fact that MP water drainage per unit ice area is increasing. It is also linked to the fact that MP volume and area decrease relatively faster than ice area. This suggests that overall the actual MP conditions on ice have changed little in the past decades as the ice cover is retreating in response to Arctic warming, thus consistent with the Moderate Resolution Imaging Spectroradiometer observations that show no clear trend in MP area fraction over 2000–2011.
    Description: We gratefully acknowledge the support of the NASA Cryosphere Program (grants NNX15AG68G, NNX17AD27G, and NNX14AH61G), the Office of Naval Research (N00014‐12‐1‐0112), the NSF Office of Polar Programs (PLR‐1416920, PLR‐1603259, PLR‐1602521, and ARC‐1203425), and the Department of Homeland Security (DHS, 2014‐ST‐061‐ML‐0002). The DHS grant is coordinated through the Arctic Domain Awareness Center (ADAC), a DHS Center of Excellence, which conducts maritime research and development for the Arctic region. The views and conclusions in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the DHS. MODIS‐derived MP area data are available at https://icdc.cen.uni‐hamburg.de/1/daten/cryosphere/arctic‐meltponds.html. MP area fraction statistics derived from MEDEA images are available from http://psc.apl.uw.edu/melt‐pond‐data/. Sea ice thickness and snow observations are available at http://psc.apl.washington.edu/sea_ice_cdr. CFS forcing data used to drive MIZMAS are available at https://www.ncdc.noaa.gov/data‐access/model‐data/model‐datasets/climate‐forecast‐system‐version2‐cfsv2.
    Description: 2019-04-18
    Keywords: Arctic Ocean ; sea ice ; melt ponds ; numerical modeling ; climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union
    Publication Date: 2020-05-14
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-08-31
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 19(11), (2018): 4218-4235. doi: 10.1029/2018GC007654
    Description: Hydrocarbon migration and emplacement processes remain underconstrained despite the vast potential economic value associated with oil and gas. Noble gases provide information about hydrocarbon generation, fluid migration pathways, reservoir conditions, and the relative volumes of oil versus water in the subsurface. Produced gas He‐Ne‐Ar‐Kr‐Xe data from two distinct oil fields in the Gulf of Mexico (Genesis and Hoover‐Diana) are used to calibrate a model that takes into account both water‐oil solubility exchange and subsequent gas cap formation. Reconstructed noble gas signatures in oils reflect simple (two‐phase) oil‐water exchange imparted during migration from the source rock to the trap, which are subsequently modified by gas cap formation at current reservoir conditions. Calculated, oil to water volume ratios (Vo/Vw) in Tertiary‐sourced oils from the Hoover‐Diana system are 2–3 times greater on average than those in the Jurassic sourced oils from the Genesis reservoirs. Higher Vo/Vw in Hoover‐Diana versus Genesis can be interpreted in two ways: either (1) the Hoover reservoir interval has 2–3 times more oil than any of the individual Genesis reservoirs, which is consistent with independent estimates of oil in place for the respective reservoirs, or (2) Genesis oils have experienced longer migration pathways than Hoover‐Diana oils and thus have interacted with more water. The ability to determine a robust Vo/Vw, despite gas cap formation and possible gas cap loss, is extremely powerful. For example, when volumetric hydrocarbon ratios are combined with independent estimates of hydrocarbon migration distance and/or formation fluid volumes, this technique has the potential to differentiate between large and small oil accumulations.
    Description: We thank ExxonMobil for funding and providing the samples. In addition, we thank James Scott and two anonymous reviewers for their comprehensive and constructive reviews, as well as Janne Blichert‐Toft for editorial handling.
    Description: 2019-04-10
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 20(5), (2019):2462-2472, doi:10.1029/2019GC008250.
    Description: Methane hydrate occurs naturally under pressure and temperature conditions that are not straightforward to replicate experimentally. Xenon has emerged as an attractive laboratory alternative to methane for studying hydrate formation and dissociation in multiphase systems, given that it forms hydrates under milder conditions. However, building reliable analogies between the two hydrates requires systematic comparisons, which are currently lacking. We address this gap by developing a theoretical and computational model of gas hydrates under equilibrium and nonequilibrium conditions. We first compare equilibrium phase behaviors of the Xe·H2O and CH4·H2O systems by calculating their isobaric phase diagram, and then study the nonequilibrium kinetics of interfacial hydrate growth using a phase field model. Our results show that Xe·H2O is a good experimental analog to CH4·H2O, but there are key differences to consider. In particular, the aqueous solubility of xenon is altered by the presence of hydrate, similar to what is observed for methane; but xenon is consistently less soluble than methane. Xenon hydrate has a wider nonstoichiometry region, which could lead to a thicker hydrate layer at the gas‐liquid interface when grown under similar kinetic forcing conditions. For both systems, our numerical calculations reveal that hydrate nonstoichiometry coupled with hydrate formation dynamics leads to a compositional gradient across the hydrate layer, where the stoichiometric ratio increases from the gas‐facing side to the liquid‐facing side. Our analysis suggests that accurate composition measurements could be used to infer the kinetic history of hydrate formation in natural settings where gas is abundant.
    Description: This work was funded in part by the U.S. Department of Energy, DOE [awards DE‐FE0013999 and DE‐SC0018357 (to R. J.) and DOE Interagency Agreement DE‐FE0023495 (to W. F. W.)]. X. F. acknowledges support by the Miller Research Fellowship at the University of California Berkeley. W. F. W. acknowledges support from the U.S. Geological Survey's Gas Hydrate Project and the Survey's Coastal, Marine Hazards and Resources Program. L. C. F. acknowledges funding from the Spanish Ministry of Economy and Competitiveness (grants RYC‐2012‐11704 and CTM2014‐54312‐P). L. C. F. and R. J. acknowledge funding from the MIT International Science and Technology Initiatives, through a Seed Fund grant. The simulation data are available on the UC Berkeley Dash repository at https://doi.org/10.6078/D1G67B.
    Description: 2019-11-06
    Keywords: Methane hydrates ; Xenon hydrates ; Phase behavior ; Growth kinetics ; Nonstoichiometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Biogeosciences, 124(6), (2019): 1591-1603, doi:10.1029/2018JG004803.
    Description: Tropical dry forests in eastern and southern Africa cover 2.5 × 106 km2, support wildlife habitat and livelihoods of more than 150 million people, and face threats from land use and climate change. To inform conservation, we need better understanding of ecosystem processes like nutrient cycling that regulate forest productivity and biomass accumulation. Here we report on patterns in nitrogen (N) cycling across a 100‐year forest regrowth chronosequence in the Tanzanian Miombo woodlands. Soil and vegetation indicators showed that low ecosystem N availability for trees persisted across young to mature forests. Ammonium dominated soil mineral N pools from 0‐ to 15‐cm depth. Laboratory‐measured soil N mineralization rates across 3‐ to 40‐year regrowth sites showed no significant trends and were lower than mature forest rates. Aboveground tree N pools increased at 6 to 7 kg N·ha−1·yr−1, accounting for the majority of ecosystem N accumulation. Foliar δ15N 〈0‰ in an N‐fixing canopy tree across all sites suggested that N fixation may contribute to ecosystem N cycle recovery. These results contrast N cycling in wetter tropical and Neotropical dry forests, where indicators of N scarcity diminish after several decades of regrowth. Our findings suggest that minimizing woody biomass removal, litter layer, and topsoil disturbance may be important to promote N cycle recovery and natural regeneration in Miombo woodlands. Higher rates of N mineralization in the wet season indicated a potential that climate change‐altered rainfall leading to extended dry periods may lower N availability through soil moisture‐dependent N mineralization pathways, particularly for mature forests.
    Description: This study depended on the knowledge, insights, and cooperation of many people and institutions. We thank the Millennium Villages Project‐Mbola site for providing introductions to the landscape and village headmen in many regions. We thank the ARI‐Tumbi staff (now TARI‐Tumbi) in Tabora, Tanzania for providing invaluable logistical support in identifying forest regrowth sites and help with labwork in Tabora, Tanzania. We thank other key local organizations, including Tabora Development Foundation Trust (Dick Mlimuka, Oscar Kisanji) and Tanzania Forest Service (Bw. Relingo), for logistical support and transportation. We thank many village headmen and farmers for access to forest sites within their lands for sampling. Finally, we would like to thank the MBL Stable Isotope laboratory and Dr. Marshall Otter for his expertise with producing and interpreting soil and leaf C, N and stable isotope data. This study was funded in part by NSF PIRE Grant OISE 0968211, a Dissertation Support Grant to Marc Mayes from Brown University (2015–2016), and completed with permission and cooperation from the Tanzania Commission on Science and Technology (COSTECH permits 2013‐261‐NA‐2014‐199 and 2015‐183‐ER‐2014‐199). Data and code for analyses can be accessed at a Github repository: https://github.com/mtm17/MiomboN.git.
    Description: 2019-11-08
    Keywords: Nitrogen ; Africa ; Miombo ; Tropical dry forest ; Carbon ; Secondary forest regrowth
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: The cumulative Greenland freshwater flux anomaly has exceeded 5,000 km3 since the 1990s. The volume of this surplus freshwater is expected to cause substantial freshening in the North Atlantic. Analysis of hydrographic observations in the subpolar seas reveals freshening signals in the 2010s. The sources of this freshening are yet to be determined. In this study, the relationship between the surplus Greenland freshwater flux and this freshening is tested by analyzing the propagation of the Greenland freshwater anomaly and its impact on salinity in the subpolar North Atlantic based on observational data and numerical experiments with and without the Greenland runoff. A passive tracer is continuously released during the simulations at freshwater sources along the coast of Greenland to track the Greenland freshwater anomaly. Tracer budget analysis shows that 44% of the volume of the Greenland freshwater anomaly is retained in the subpolar North Atlantic by the end of the simulation. This volume is sufficient to cause strong freshening in the subpolar seas if it stays in the upper 50–100 m. However, in the model the anomaly is mixed down to several hundred meters of the water column resulting in smaller magnitudes of freshening compared to the observations. Therefore, the simulations suggest that the accelerated Greenland melting would not be sufficient to cause the observed freshening in the subpolar seas and other sources of freshwater have contributed to the freshening. Impacts on salinity in the subpolar seas of the freshwater transport through Fram Strait and precipitation are discussed.
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dukhovskoy, D. S., Yashayaev, I., Proshutinsky, A., Bamber, J. L., Bashmachnikov, I. L., Chassignet, E. P., Lee, C. M., & Tedstone, A. J. Role of Greenland freshwater anomaly in the recent freshening of the subpolar North Atlantic. Journal of Geophysical Research-Oceans, 124(5), (2019): 3333-3360, doi:10.1029/2018JC014686.
    Keywords: Greenland ice sheet melting ; freshwater anomaly ; subpolar North Atlantic ; subpolar gyre ; passive tracer numerical experiment ; freshwater budget
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4416-4432, doi: 10.1029/2019JC015185.
    Description: Synoptic and historical shipboard data, spanning the period 1981–2017, are used to investigate the seasonal evolution of water masses on the northeastern Chukchi shelf and quantify the circulation patterns and their impact on nutrient distributions. We find that Alaskan coastal water extends to Barrow Canyon along the coastal pathway, with peak presence in September, while the Pacific Winter Water (WW) continually drains off the shelf through the summer. The depth‐averaged circulation under light winds is characterized by a strong Alaskan Coastal Current (ACC) and northward flow through Central Channel. A portion of the Central Channel flow recirculates anticyclonically to join the ACC, while the remainder progresses northeastward to Hanna Shoal where it bifurcates around both sides of the shoal. All of the branches converge southeast of the shoal and eventually join the ACC. The wind‐forced response has two regimes: In the coastal region the circulation depends on wind direction, while on the interior shelf the circulation is sensitive to wind stress curl. In the most common wind‐forced state—northeasterly winds and anticyclonic wind stress curl—the ACC reverses, the Central Channel flow penetrates farther north, and there is mass exchange between the interior and coastal regions. In September and October, the region southeast of Hanna Shoal is characterized by elevated amounts of WW, a shallower pycnocline, and higher concentrations of nitrate. Sustained late‐season phytoplankton growth spurred by this pooling of nutrients could result in enhanced vertical export of carbon to the seafloor, contributing to the maintenance of benthic hotspots in this region.
    Description: The authors acknowledge the hard work and dedication of the many crew members who sailed on the different cruises of the USCGC Healy and the R/V Palmer. This study would not have been possible without their ongoing efforts to carry out successful science operations. Seth Danielson performed the quality control of the Barrow wind data. Funding was provided by the following sources: National Oceanic and Atmospheric Administration (NOAA) Grant NA14‐OAR4320158 (P. L., R. P., and L. M.), National Science Foundation (NSF) Grants OPP‐1702371 and OPP‐1733564 (R. P. and F. B.) and PLR‐1303617 (R. P., K. A., and K. L.), NSF Graduate Research Fellowship Program DGE‐0645962 (K. L.), National Aeronautics and Space Administration award NNX10AF42G (R. P., K. A., and K. L.), and NOAA's Ocean Observing and Monitoring Division, Climate Program Office Fund 100007298 (C. M.). This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063 and is contribution EcoFOCI‐0924 to the Ecosystems and Fisheries‐Oceanography Coordinated Investigations, 4944 to PMEL. The CTD and shipboard ADCP data of the eight cruises are available from http://www.rvdata.us/, and the nutrients data can be accessed from https://arcticdata.io/.
    Description: 2019-12-07
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(6), (2019): 3490-3507, doi:10.1029/2018JC014675.
    Description: Offshore permafrost plays a role in the global climate system, but observations of permafrost thickness, state, and composition are limited to specific regions. The current global permafrost map shows potential offshore permafrost distribution based on bathymetry and global sea level rise. As a first‐order estimate, we employ a heat transfer model to calculate the subsurface temperature field. Our model uses dynamic upper boundary conditions that synthesize Earth System Model air temperature, ice mass distribution and thickness, and global sea level reconstruction and applies globally distributed geothermal heat flux as a lower boundary condition. Sea level reconstruction accounts for differences between marine and terrestrial sedimentation history. Sediment composition and pore water salinity are integrated in the model. Model runs for 450 ka for cross‐shelf transects were used to initialize the model for circumarctic modeling for the past 50 ka. Preindustrial submarine permafrost (i.e., cryotic sediment), modeled at 12.5‐km spatial resolution, lies beneath almost 2.5 ×106km2 of the Arctic shelf. Our simple modeling approach results in estimates of distribution of cryotic sediment that are similar to the current global map and recent seismically delineated permafrost distributions for the Beaufort and Kara seas, suggesting that sea level is a first‐order determinant for submarine permafrost distribution. Ice content and sediment thermal conductivity are also important for determining rates of permafrost thickness change. The model provides a consistent circumarctic approach to map submarine permafrost and to estimate the dynamics of permafrost in the past.
    Description: Boundary condition data are available online via the sources referenced in the manuscript. This work was partially funded by a Helmholtz Association of Research Centres (HGF) Joint Russian‐German Research Group (HGF JRG 100). This study is part of a project that has received funding from the European Unions Horizon 2020 research and innovation program under grant agreement 773421. Submarine permafrost studies in the Kara and Laptev Seas were supported by Russian Foundation for Basic Research (RFBR/RFFI) grants 18‐05‐60004 and 18‐05‐70091, respectively. The International Permafrost Association (IPA) and the Association for Polar Early Career Scientists (APECS) supported research coordination that led to this study. We acknowledge coordination support of the World Climate Research Programme (WCRP) through their core project on Climate and Cryosphere (CliC). Thanks to Martin Jakobsson for providing a digitized version of the preliminary IHO delineation of the Arctic seas and to Guy Masters for access to the observational geothermal database. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Description: 2019-10-17
    Keywords: Submarine permafrost ; Arctic ; Cryosphere ; Sea level
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46 (2019): 10484–10494, doi:10.1029/2019GL083719.
    Description: Tropical cyclones (hurricanes) generate intense surface ocean cooling and vertical mixing resulting in nutrient upwelling into the photic zone and episodic phytoplankton blooms. However, their influence on the deep ocean remains unknown. Here we present evidence that hurricanes also impact the ocean's biological pump by enhancing export of labile organic material to the deep ocean. In October 2016, Category 3 Hurricane Nicole passed over the Bermuda Time Series site in the oligotrophic NW Atlantic Ocean. Following Nicole's passage, particulate fluxes of lipids diagnostic of fresh phytodetritus, zooplankton, and microbial biomass increased by 30–300% at 1,500 m depth and 30–800% at 3,200 m depth. Mesopelagic suspended particles following Nicole were also enriched in phytodetrital material and in zooplankton and bacteria lipids, indicating particle disaggregation and a deepwater ecosystem response. Predicted climate‐induced increases in hurricane frequency and/or intensity may significantly alter ocean biogeochemical cycles by increasing the strength of the biological pump.
    Description: This work and the Oceanic Flux Program time series were supported by the National Science Foundation Chemical Oceanography Program Grant OCE 1536644. The Bermuda Atlantic Time Series and Hydrostation S time series were supported by NSF Grants OCE 1756105 and OCE 1633125, respectively. We acknowledge the contributions of BATS technicians with CTD and pigment analyses. We sincerely thank the officers and crew of R/V Atlantic Explorer (Bermuda Institute of Ocean Sciences) for their expert assistance on the cruises. The data used in this study are listed in the figures, tables, and references, and are also available in the NSF's Biological and Chemical Oceanography Data Management Office (BCO‐DMO, https://doi.org/10.1575/1912/bco‐dmo.775902.1).
    Description: 2020-02-16
    Keywords: Hurricanes ; Carbon cycle ; North Atlantic Ocean ; Deep ocean ; Particle fluxes ; Lipid biomarkers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(5), (2019): 2943-2968, doi:10.1029/2019JC015071.
    Description: In the Southern Ocean, polynyas exhibit enhanced rates of primary productivity and represent large seasonal sinks for atmospheric CO2. Three contrasting east Antarctic polynyas were visited in late December to early January 2017: the Dalton, Mertz, and Ninnis polynyas. In the Mertz and Ninnis polynyas, phytoplankton biomass (average of 322 and 354 mg chlorophyll a (Chl a)/m2, respectively) and net community production (5.3 and 4.6 mol C/m2, respectively) were approximately 3 times those measured in the Dalton polynya (average of 122 mg Chl a/m2 and 1.8 mol C/m2). Phytoplankton communities also differed between the polynyas. Diatoms were thriving in the Mertz and Ninnis polynyas but not in the Dalton polynya, where Phaeocystis antarctica dominated. These strong regional differences were explored using physiological, biological, and physical parameters. The most likely drivers of the observed higher productivity in the Mertz and Ninnis were the relatively shallow inflow of iron‐rich modified Circumpolar Deep Water onto the shelf as well as a very large sea ice meltwater contribution. The productivity contrast between the three polynyas could not be explained by (1) the input of glacial meltwater, (2) the presence of Ice Shelf Water, or (3) stratification of the mixed layer. Our results show that physical drivers regulate the productivity of polynyas, suggesting that the response of biological productivity and carbon export to future change will vary among polynyas.
    Description: This work was cofunded by the Australian Antarctic Division research projects AAS 4131 and 4291. This project was also supported by the Australian Government Cooperative Research Centres Programme through the Antarctic Climate & Ecosystems (ACE CRC). S. Moreau and C. Genovese were supported by the Australian Research Council's Special Research Initiative for Antarctic Gateway Partnership (project ID SR140300001). V. Puigcorbé and M. Roca‐Martí are grateful for the support from Pere Masque and Edith Cowan University. M.C. Arroyo was supported by the Dickhut Fellowship, administered by the Virginia Institute of Marine Science. The authors would like to thank the officers and crew of the R/V Aurora Australis for their logistic support, the CSIRO hydrochemists for their analyses of nutrient concentrations, and E. J. Yang for her microscope analysis of phytoplankton species. We also want to thank two anonymous reviewers for their very good comments on this study. The data presented in this paper are available on the Australian Antarctic Division (AAD) Data Centre at https://data.aad.gov.au/aadc/metadata/metadata_by_parameter.cfm.
    Description: 2019-09-28
    Keywords: Polynyas ; Primary productivity ; Phytoplankton biomass ; Ice shelves ; Sea ice ; Iron
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019): 1778-1794, doi:10.1029/2018JC014775.
    Description: Abyssal ocean warming contributed substantially to anthropogenic ocean heat uptake and global sea level rise between 1990 and 2010. In the 2010s, several hydrographic sections crossing the South Pacific Ocean were occupied for a third or fourth time since the 1990s, allowing for an assessment of the decadal variability in the local abyssal ocean properties among the 1990s, 2000s, and 2010s. These observations from three decades reveal steady to accelerated bottom water warming since the 1990s. Strong abyssal (z 〉 4,000 m) warming of 3.5 (±1.4) m°C/year (m°C = 10−3 °C) is observed in the Ross Sea, directly downstream from bottom water formation sites, with warming rates of 2.5 (±0.4) m°C/year to the east in the Amundsen‐Bellingshausen Basin and 1.3 (±0.2) m°C/year to the north in the Southwest Pacific Basin, all associated with a bottom‐intensified descent of the deepest isotherms. Warming is consistently found across all sections and their occupations within each basin, demonstrating that the abyssal warming is monotonic, basin‐wide, and multidecadal. In addition, bottom water freshening was strongest in the Ross Sea, with smaller amplitude in the Amundsen‐Bellingshausen Basin in the 2000s, but is discernible in portions of the Southwest Pacific Basin by the 2010s. These results indicate that bottom water freshening, stemming from strong freshening of Ross Shelf Waters, is being advected along deep isopycnals and mixed into deep basins, albeit on longer timescales than the dynamically driven, wave‐propagated warming signal. We quantify the contribution of the warming to local sea level and heat budgets.
    Description: S. G. P. was supported by a U.S. GO‐SHIP postdoctoral fellowship through NSF grant OCE‐1437015, which also supported L. D. T. and S. M. and collection of U.S. GO‐SHIP data since 2014 on P06, S4P, P16, and P18. G. C. J. is supported by the Global Ocean Monitoring and Observation Program, National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce and NOAA Research. B. M. S and S. E. W. were supported by the Australian Government Department of the Environment and CSIRO through the Australian Climate Change Science Programme and by the National Environmental Science Program. We are grateful for the hard work of the science parties, officers, and crew of all the research cruises on which these CTD data were collected. We also thank the two anonymous reviewers for their helpful comments that improve the manuscript. This is PMEL contribution 4870. All CTD data sets used in this analysis are publicly available at the website (https://cchdo.ucsd.edu).
    Description: 2019-08-20
    Keywords: Abyssal warming ; Pacific deep circulation ; Deep steric sea level ; Deep warming variability ; Antarctic Bottom Water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019): 2088-2109, doi:10.1029/2018JC014583.
    Description: As observations and models improve their resolution of oceanic motions at ever finer horizontal scales, interest has grown in characterizing the transition from the geostrophically balanced flows that dominate at large‐scale to submesoscale turbulence and waves that dominate at small scales. In this study we examine the mesoscale‐to‐submesoscale (100 to 10 km) transition in an eastern boundary current, the southern California Current System (CCS), using repeated acoustic Doppler current profiler transects, sea surface height from high‐resolution nadir altimetry and output from a (1/48)° global model simulation. In the CCS, the submesoscale is as energetic as in western boundary current regions, but the mesoscale is much weaker, and as a result the transition lacks the change in kinetic energy (KE) spectral slope observed for western boundary currents. Helmholtz and vortex‐wave decompositions of the KE spectra are used to identify balanced and unbalanced contributions. At horizontal scales greater than 70 km, we find that observed KE is dominated by balanced geostrophic motions. At scales from 40 to 10 km, unbalanced contributions such as inertia‐gravity waves contribute as much as balanced motions. The model KE transition occurs at longer scales, around 125 km. The altimeter spectra are consistent with acoustic Doppler current profiler/model spectra at scales longer than 70/125 km, respectively. Observed seasonality is weak. Taken together, our results suggest that geostrophic velocities can be diagnosed from sea surface height on scales larger than about 70 km in the southern CCS.
    Description: This research was funded by NASA (NNX13AE44G, NNX13AE85G, NNX16AH67G, NNX16AO5OH, and NNX17AH53G). We thank Sung Yong Kim for providing the high‐frequency radar spectral estimates and the two anonymous reviewers for providing useful comments and suggestions that greatly improved the manuscript. High‐frequency ALES data for Jason‐1 and Jason‐2 altimeters are available upon request (https://openadb.dgfi.tum.de/en/contact/ALES). Both AltiKa and Sentinel‐3 altimeter products were produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS; http://www.marine.copernicus.eu). D. M. worked on the modeling component of this study at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). High‐end computing resources were provided by the NASA Advanced Supercomputing (NAS) Division of the Ames Research Center. The LLC output can be obtained from the ECCO project (ftp://ecco.jpl.nasa.gov/ECCO2/LLC4320/). The ADCP data are available at the Joint Archive for Shipboard ADCP data (JASADCP; http://ilikai.soest.hawaii.edu/sadcp).
    Description: 2019-08-21
    Keywords: Mesoscale ; Submesoscale ; Internal gravity waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 20(3), (2019): 1485-1507, doi:10.1029/2018GC007985.
    Description: In 2015 a geothermal exploration well was drilled on the island of Tutuila, American Samoa. The sample suite from the drill core provides 645 m of volcanic stratigraphy from a Samoan volcano, spanning 1.45 million years of volcanic history. In the Tutuila drill core, shield lavas with an EM2 (enriched mantle 2) signature are observed at depth, spanning 1.46 to 1.44 Ma. These are overlain by younger (1.35 to 1.17 Ma) shield lavas with a primordial “common” (focus zone) component interlayered with lavas that sample a depleted mantle component. Following ~1.15 Myr of volcanic quiescence, rejuvenated volcanism initiated at 24.3 ka and samples an EM1 (enriched mantle 1) component. The timing of the initiation of rejuvenated volcanism on Tutuila suggests that rejuvenated volcanism may be tectonically driven, as Samoan hotspot volcanoes approach the northern terminus of the Tonga Trench. This is consistent with a model where the timing of rejuvenated volcanism at Tutuila and at other Samoan volcanoes relates to their distance from the Tonga Trench. Notably, the Samoan rejuvenated lavas have EM1 isotopic compositions distinct from shield lavas that are geochemically similar to “petit spot” lavas erupted outboard of the Japan Trench and late stage lavas erupted at Christmas Island located outboard of the Sunda Trench. Therefore, like the Samoan rejuvenated lavas, petit spot volcanism in general appears to be related to tectonic uplift outboard of subduction zones, and existing geochemical data suggest that petit spots share similar EM1 isotopic signatures.
    Description: Reviews from Kaj Hoernle and three anonymous reviewers are gratefully acknowledged. M. G. J. acknowledges support from the American Samoa Power Authority and National Science Foundation grants OCE‐1736984 and EAR‐1624840. The Tutuila drill core was the brainchild of Tim Bodell, without whom we would still have no stratigraphic record of Tutuila volcanism. The support of Utu Abe Malae and Matamua Katrina Mariner was instrumental to the project's success. We dedicate this paper to the memory of Abe Malae and his efforts to support science and education in American Samoa. Images of the entire drill core are available online (escholarship.org/uc/item/6gg6p61w). All data presented are either part of this study or previously published and are referenced in text.
    Description: 2019-08-13
    Keywords: Samoa ; Mantle geochemistry ; Petit spot ; EM1 ; Rejuvenated volcanism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4618-4630, doi: 10.1029/2019JC014940.
    Description: The Arctic Ocean mixed layer interacts with the ice cover above and warmer, nutrient‐rich waters below. Ice‐Tethered Profiler observations in the Canada Basin of the Arctic Ocean over 2006–2017 are used to investigate changes in mixed layer properties. In contrast to decades of shoaling since at least the 1980s, the mixed layer deepened by 9 m from 2006–2012 to 2013–2017. Deepening resulted from an increase in mixed layer salinity that also weakened stratification at the base of the mixed layer. Vertical mixing alone can explain less than half of the observed change in mixed layer salinity, and so the observed increase in salinity is inferred to result from changes in freshwater accumulation via changes to ice‐ocean circulation or ice melt/growth and river runoff. Even though salinity increased, the shallowest density surfaces deepened by 5 m on average suggesting that Ekman pumping over this time period remained downward. A deeper mixed layer with weaker stratification has implications for the accessibility of heat and nutrients stored in the upper halocline. The extent to which the mixed layer will continue to deepen appears to depend primarily on the complex set of processes influencing freshwater accumulation.
    Description: We gratefully acknowledge J. Toole for helpful conversations. S. Cole was supported by the National Science Foundation under grant PLR‐1602926 and J. Stadler by the Woods Hole Oceanographic Institution Summer Student Fellowship program. Profile data are available via the Ice‐Tethered Profiler program website: http://whoi.edu/itp. SSM/I ice concentration data were downloaded from the National Snow and Ice Data Center.
    Description: 2019-12-22
    Keywords: Arctic Ocean ; Mixed layer ; Freshwater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Druffel, E. R. M., Griffin, S., Wang, N., Garcia, N. G., McNichol, A. P., Key, R. M., & Walker, B. D. Dissolved organic radiocarbon in the central Pacific Ocean. Geophysical Research Letters, 46(10), (2019):5396-5403, doi:10.1029/2019GL083149.
    Description: We report marine dissolved organic carbon (DOC) concentrations, and DOC ∆14C and δ13C values in seawater collected from the central Pacific. Surface ∆14C values are low in equatorial and polar regions where upwelling occurs and high in subtropical regions dominated by downwelling. A core feature of these data is that 14C aging of DOC (682 ± 86 14C years) and dissolved inorganic carbon (643 ± 40 14C years) in Antarctic Bottom Water between 54.0°S and 53.5°N are similar. These estimates of aging are minimum values due to mixing with deep waters. We also observe minimum ∆14C values (−550‰ to −570‰) between the depths of 2,000 and 3,500 m in the North Pacific, though the source of the low values cannot be determined at this time.
    Description: We thank Jennifer Walker, Xiaomei Xu, and Dachun Zhang for their help with the stable carbon isotope measurements; John Southon and staff of the Keck Carbon Cycle AMS Laboratory for their assistance and advice; the support of chief scientists Samantha Siedlecki, Molly Baringer, Alison Macdonald, and Sabine Mecking; the guidance of Jim Swift and Dennis Hansell for shared ship time; and Sarah Bercovici for collecting water on the GoA cruise. We appreciate the comments of Christian Lewis and Niels Hauksson on this manuscript. This work was supported by NSF (OCE‐141458941 to E. R. M. D. and OCE‐0824864, OCE‐1558654, and Cooperative Agreement OCE1239667 to R. M. K. and A. P. M.), the Fred Kavli Foundation, the Keck Carbon Cycle AMS Laboratory, and the NSF/NOAA‐funded GO‐SHIP Program. This research was undertaken, in part, thanks to funding from the Canada Research Chairs program (to B. D. W.) and an American Chemical Society Petroleum Research Fund New Directions grant (55430‐ND2 to E. R. M. D. and B. D. W.). Data from the P16N cruises are available in Table S2 in the Supporting Information and at the Repeat Hydrography Data Center at the CCHDO website (http://cdiac.esd.ornl.gov/oceans/index.html) using the expo codes 3RO20150329, 3RO20150410, and 3RO20150525. There are no real or perceived financial conflicts of interests for any author.
    Description: 2019-11-02
    Keywords: Dissolved organic carbon ; Radiocarbon ; Pacific Ocean ; Dissolved inorganic carbon ; Deep ocean circulation ; AABW
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans, 123(11), (2018): 7795-7818. doi: 10.1029/2018JC013794.
    Description: This work studies the subduction of the shelf water along the onshore edge of a warm‐core ring that impinges on the edge of the Mid‐Atlantic Bight continental shelf. The dynamical analysis is based on observations by satellites and from the Ocean Observatories Initiative Pioneer Array observatory as well as idealized numerical model simulations. They together show that frontogenesis‐induced submesoscale frontal subduction with order‐one Rossby and Froude numbers occurs on the onshore edge of the ring. The subduction flow results from the onshore migration of the warm‐core ring that intensifies the density front on the interface of the ring and shelf waters. The subduction is a part of the cross‐front secondary circulation trying to relax the intensifying density front. The dramatically different physical and biogeochemical properties of the ring and shelf waters provide a great opportunity to visualize the subduction phenomenon. Entrained by the ring‐edge current, the subducted shelf water is subsequently transported offshore below a surface layer of ring water and alongside of the surface‐visible shelf‐water streamer. It explains the historical observations of isolated subsurface packets of shelf water along the ring periphery in the slope sea. Model‐based estimate suggests that this type of subduction‐associated subsurface cross‐shelfbreak transport of the shelf water could be substantial relative to other major forms of shelfbreak water exchange. This study also proposes that outward spreading of the ring‐edge front by the frontal subduction may facilitate entrainment of the shelf water by the ring‐edge current and enhances the shelf‐water streamer transport at the shelf edge.
    Description: W. G. Z. was supported by the National Science Foundation under grants OCE‐1657853, OCE‐1657803, and OCE 1634965. JP is grateful for the support of the Woods Hole Oceanographic Institution Summer Student Fellow Program in 2016 and 2017. W. G. Z. thanks Kenneth Brink, Glen Gawarkiewicz, Rocky Geyer, Steven Lentz, Dennis McGillicuddy, Robert Todd, and John Trowbridge for helpful discussions during the course of the study or useful comments on earlier versions of the manuscript. The satellite sea surface temperature data were obtained from the University of Delaware Ocean Exploration, Remote Sensing, Biogeography Lab (led by Matthew Oliver), through the Mid‐Atlantic Coastal Ocean Observing System (MARACOOS) data server (http://tds.maracoos.org/thredds/catalog.html). The OOI Pioneer Array mooring and glider data presented in this paper were downloaded from the National Science Foundation OOI data portal (http://ooinet.oceanobservatories.org) in July–August 2016.
    Description: 2019-04-15
    Keywords: Frontal subduction ; Warm‐core ring ; Mid‐Atlantic Bight ; Shelf‐water streamer ; Cross‐shelf exchange ; OOI Pioneer Array
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 1123(11), (2018): 8568-8580. doi: 10.1029/2018JC014352.
    Description: In the past decades, in the context of a changing ocean submitted to an increasing human activity, a progressive decrease in the frequencies (pitch) of blue whale vocalizations has been observed worldwide. Its causes, of natural or anthropogenic nature, are still unclear. Based on 7 years of continuous acoustic recordings at widespread sites in the southern Indian Ocean, we show that this observation stands for five populations of large whales. The frequency of selected units of vocalizations of fin, Antarctic, and pygmy blue whales has steadily decreased at a rate of a few tenths of hertz per year since 2002. In addition to this interannual frequency decrease, blue whale vocalizations display seasonal frequency shifts. We show that these intra‐annual shifts correlate with seasonal changes in the ambient noise near their call frequency. This ambient noise level, in turn, shows a strong correlation with the seasonal presence of icebergs, which are one of the main sources of oceanic noise in the Southern Hemisphere. Although cause‐and‐effect relationships are difficult to ascertain, wide‐ranging changes in the acoustic environment seem to have a strong impact on the vocal behavior of large baleen whales. Seasonal frequency shifts may be due to short‐term changes in the ambient noise, and the interannual frequency decline to long‐term changes in the acoustic properties of the ocean and/or in postwhaling changes in whale abundances.
    Description: The authors wish to thank the Captains and crews of RV Marion Dufresne for the successful deployments and recoveries of the hydrophones of the DEFLOHYDRO (Royer, 2008) and OHASISBIO (Royer, 2009) experiments. French cruises were funded by the French Polar Institute (IPEV) with additional support from INSU‐CNRS. NOAA/PMEL also contributed to the DEFLOHYDRO project. E. C. L. was supported by a PhD fellowship from the University of Brest and from the Regional Council of Brittany (Conseil Régional de Bretagne). The contribution of Mickael Beauverger at LGO to the logistics and deployment of the OHASISBIO cruises is greatly appreciated. The data underlying this analysis (weekly averaged frequencies of Antarctic blue whales, pygmy blue whales, and fin whales and daily averaged noise levels at each site) are accessible at http://doi.org/10.17882/51007.
    Description: 2019-05-27
    Keywords: Large baleen whales ; Blue whale calls ; Frequency decrease ; Bioacoustics ; Frequency shifts ; Ambient noise
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123(11), (2018): 8411-8429, doi: 10.1029/2018JC014178.
    Description: A method for estimating gross primary production (GPP) is presented and validated against a numerical model of Chesapeake Bay that includes realistic physical and biological forcing. The method statistically fits a photosynthesis‐irradiance response curve using the observed near‐surface time rate of change of dissolved oxygen and the incoming solar radiation, yielding estimates of the light‐saturated photosynthetic rate and the initial slope of the photosynthesis‐irradiance response curve. This allows estimation of GPP with 15‐day temporal resolution. The method is applied to the output from a numerical model that has high skill at reproducing both surface and near‐bottom dissolved oxygen variations observed in Chesapeake Bay in 2013. The rate of GPP predicted by the numerical model is known, as are the contributions from physical processes, allowing the proposed diel method to be rigorously assessed. At locations throughout the main stem of the Bay, the method accurately extracts the underlying rate of GPP, including pronounced seasonal variability and spatial variability. Errors associated with the method are primarily the result of contributions by the divergence in turbulent oxygen flux, which changes sign over the surface mixed layer. As a result, there is an optimal vertical location with minimal bias where application of the method is most accurate.
    Description: This paper is the result of research funded in part by NOAA's U.S. Integrated Ocean Observing System (IOOS) Program Office as a subcontract to the Woods Hole Oceanographic Institution under award NA13NOS120139 to the Southeastern University Research Association. All of the model output, as well as both the CBIBS data (2010–2016) and the bottom oxygen data of Scully (2016b), are publicly available through the THREDDS server associated with the IOOS Coastal Modeling Testbed site: https://comt.ioos.us/projects/cb_hypoxia.
    Description: 2019-05-24
    Keywords: Gross primary production ; Vertical mixing ; Numerical model ; Chesapeake Bay
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Theoretical considerations on factors confounding the interpretation of the oceanic carbon export ratio. Global Biogeochemical Cycles, 32(11), (2018); 1644-1658, doi:10.1029/2018GB006003.
    Description: The fraction of primary production exported out of the surface ocean, known as the export ratio (ef ratio), is often used to assess how various factors, including temperature, primary production, phytoplankton size, and community structure, affect the export efficiency of an ecosystem. To investigate possible causes for reported discrepancies in the dominant factors influencing the export efficiency, we develop a metabolism‐based mechanistic model of the ef ratio. Consistent with earlier studies, we find based on theoretical considerations that the ef ratio is a negative function of temperature. We show that the ef ratio depends on the optical depth, defined as the physical depth times the light attenuation coefficient. As a result, varying light attenuation may confound the interpretation of ef ratio when measured at a fixed depth (e.g., 100 m) or at the base of the mixed layer. Finally, we decompose the contribution of individual factors on the seasonality of the ef ratio. Our results show that at high latitudes, the ef ratio at the base of mixed layer is strongly influenced by mixed layer depth and surface irradiation on seasonal time scales. Future studies should report the ef ratio at the base of the euphotic layer or account for the effect of varying light attenuation if measured at a different depth. Overall, our modeling study highlights the large number of factors confounding the interpretation of field observations of the ef ratio.
    Description: Z. L was supported by a NASA Earth and Space Science Fellowship (Grant NNX13AN85H) and the Postdoctoral Scholarship Program at Woods Hole Oceanographic Institution. N. C. was supported by NASA Grant 5109296. Satellite data, nutrient concentration, and monthly MLD climatology are downloaded from NASA ocean color (http://oceancolor.gsfc.nasa.gov/cms/), World Ocean Atlas (https://www.nodc.noaa.gov/OC5/woa13/), and http://www.ifremer.fr/cerweb/deboyer/mld/home.php, respectively.
    Description: 2019-04-13
    Keywords: Oceanic carbon export ratio ; Net community production ; Export production ; Net primary production
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124 (2019): 196-211, doi:10.1029/2018JC014313.
    Description: Since the late nineteenth century, channel depths have more than doubled in parts of New York Harbor and the tidal Hudson River, wetlands have been reclaimed and navigational channels widened, and river flow has been regulated. To quantify the effects of these modifications, observations and numerical simulations using historical and modern bathymetry are used to analyze changes in the barotropic dynamics. Model results and water level records for Albany (1868 to present) and New York Harbor (1844 to present) recovered from archives show that the tidal amplitude has more than doubled near the head of tides, whereas increases in the lower estuary have been slight (〈10%). Channel deepening has reduced the effective drag in the upper tidal river, shifting the system from hyposynchronous (tide decaying landward) to hypersynchronous (tide amplifying). Similarly, modeling shows that coastal storm effects propagate farther landward, with a 20% increase in amplitude for a major event. In contrast, the decrease in friction with channel deepening has lowered the tidally averaged water level during discharge events, more than compensating for increased surge amplitude. Combined with river regulation that reduced peak discharges, the overall risk of extreme water levels in the upper tidal river decreased after channel construction, reducing the water level for the 10‐year recurrence interval event by almost 3 m. Mean water level decreased sharply with channel modifications around 1930, and subsequent decadal variability has depended both on river discharge and sea level rise. Channel construction has only slightly altered tidal and storm surge amplitudes in the lower estuary.
    Description: Funding for D. K. R., W. R. G., and C. K. S. was provided by NSF Coastal SEES awards OCE-1325136 and OCE-1325102. Funding for S.T. and H. Z. was provided by the U.S. Army Corps of Engineers (award W1927 N-14-2-0015), and NSF (Career Award 1455350). Data supporting this study are posted to Zenodo (https://doi.org/10.5281/zenodo.1298636).
    Description: 2019-06-11
    Keywords: Barotropic tides ; Flood frequency ; Storm surge ; Dredging ; Estuary ; Tidal river
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Wave generation, dissipation, and disequilibrium in an embayment with complex bathymetry. Journal of Geophysical Research-Oceans, 123(11), (2018): 7856-7876, doi:10.1029/2018JC014381.
    Description: Heterogeneous, sharply varying bathymetry is common in estuaries and embayments, and complex interactions between the bathymetry and wave processes fundamentally alter the distribution of wave energy. The mechanisms that control the generation and dissipation of wind waves in an embayment with heterogeneous, sharply varying bathymetry are evaluated with an observational and numerical study of the Delaware Estuary. Waves in the lower bay depend on both local wind forcing and remote wave forcing from offshore, but elsewhere in the estuary waves are controlled by the local winds and the response of the wavefield to bathymetric variability. Differences in the wavefield with wind direction highlight the impacts of heterogeneous bathymetry and limited fetch. Under the typical winter northwest wind conditions waves are fetch‐limited in the middle estuary and reach equilibrium with local water depth only in the lower bay. During southerly wind conditions typical of storms, wave energy is near equilibrium in the lower bay, and midestuary waves are attenuated by the combination of whitecapping and bottom friction, particularly over the steep, longitudinal shoals. Although the energy dissipation due to bottom friction is generally small relative to whitecapping, it becomes significant where the waves shoal abruptly due to steep bottom topography. In contrast, directional spreading keeps wave heights in the main channel significantly less than local equilibrium. The wave disequilibrium in the deep navigational channel explains why the marked increase in depth by dredging of the modern channel has had little impact on wave conditions.
    Description: Funding was provided by National Science Foundation Coastal SEES: Toward Sustainable Urban Estuaries in the Anthropocene (OCE 1325136) and Ministry of Science and Technology (MOST 107‐2611‐M‐006‐004). We thank James Kirby, Fengyan Shi, and the two anonymous reviewers for their careful reading of our manuscript and their insightful comments. We thank Tracy Quirk for providing wave measurements in Bombay Hook, DE and Stow Creek, NJ. We thank Katie Pijanowski for compiling historical and modern bathymetric data for the estuary. Data supporting this study are posted to Zenodo (http://doi.org/10.5281/zenodo.1433055).
    Description: 2019-04-04
    Keywords: Estuarine hydrodynamics ; Wave energy ; Equilibrium wave ; Anthropogenic impact
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Using carbon isotope fractionation to constrain the extent of methane dissolution into the water column surrounding a natural hydrocarbon gas seep in the northern gulf of Mexico. Geochemistry Geophysics Geosystems, 19(11), (2018); 4459-4475., doi:10.1029/2018GC007705.
    Description: A gas bubble seep located in the northern Gulf of Mexico was investigated over several days to determine whether changes in the stable carbon isotopic ratio of methane can be used as a tracer for methane dissolution through the water column. Gas bubble and water samples were collected at the seafloor and throughout the water column for isotopic ratio analysis of methane. Our results show that changes in methane isotopic ratios are consistent with laboratory experiments that measured the isotopic fractionation from methane dissolution. A Rayleigh isotope model was applied to the isotope data to determine the fraction of methane dissolved at each depth. On average, the fraction of methane dissolved surpasses 90% past an altitude of 400 m above the seafloor. Methane dissolution was also investigated using a modified version of the Texas A&M Oil spill (Outfall) Calculator (TAMOC) where changes in methane isotopic ratios could be calculated. The TAMOC model results show that dissolution depends on depth and bubble size, explaining the spread in measured isotopic ratios during our investigations. Both the Rayleigh and TAMOC models show that methane bubbles quickly dissolve following emission from the seafloor. Together, these results show that it is possible to use measurements of natural methane isotopes to constrain the extent of methane dissolution following seafloor emission.
    Description: This research was made possible by two grants from the Gulf of Mexico Research Initiative: Gulf Integrated Spill Response (GISR) Consortium (awarded to J. D. K. and S. A. S.) and Center for Integrated Modeling and Assessment of the Gulf Ecosystem (C‐IMAGE) II (awarded to S. A. S.). Additional support was provided by the U.S. Department of Energy (DE‐FE0028980; awarded to J. D. K.). Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC). Methane concentration and isotopic ratio data can be found at https://data.gulfresearchinitiative.org/data/R1.x137.000:0025, and TAMOC model scripts and results are found at https://data.gulfresearchinitiative.org/data/R1.x137.000:0026. The coversion of methane isotopic ratio data used in this manuscript can be found at https://data.gulfresearchinitiative.org/data/R1.x137.000:0028. We want to thank the captain and crew of the E/V Nautilus and the operators of ROV Hercules and Argus during the GISR G08 cruise and Nicole Raineault for their outstanding support at sea. Acoustically identifying the bubble flare was managed by Andone Lavery, and support for collecting gas and water samples was provided by John Bailey. We also want to thank Sean Sylva for analytical assistance on shore, Inok Jun for helping create the sampling schematics, and David Brink‐Roby for helping create the sample site map.
    Description: 2019-04-20
    Keywords: Methane ; Bubble ; Hydrate ; Dissolution ; Isotope
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123(11), (2018): 8430-8443, doi: 10.1029/2018JC014179.
    Description: A diel method for estimating gross primary production (GPP) is applied to nearly continuous measurements of near‐surface dissolved oxygen collected at seven locations throughout the main stem of Chesapeake Bay. The data were collected through the Chesapeake Bay Interpretive Buoy System and span the period 2010–2016. At all locations, GPP exhibits pronounced seasonal variability consistent temperature‐dependent phytoplankton growth. At the Susquehanna Buoy, which is located within the estuarine turbidity maximum, rates of GPP are negatively correlated with uncalibrated turbidity data consistent with light limitation at this location. The highest rates of GPP are located immediately down Bay from the estuarine turbidity maximum and decrease moving seaward consistent with nutrient limitation. Rates of GPP at the mouth (First Landing Buoy) are roughly a factor of 3 lower than the rates in the upper Bay (Patapsco). At interannual time scales, the summer (June–July) rate of GPP averaged over all stations is positively correlated (r2 = 0.62) with the March Susquehanna River discharge and a multiple regression model that includes spring river discharge, and summer water temperature can explain most (r2 = 0.88) of the interannual variance in the observed rate of GPP. The correlation with river discharge is consistent with an increase in productivity fueled by increased nutrient loading. More generally, the spatial and temporal patterns inferred using this method are consistent with our current understanding of primary production in the Bay, demonstrating the potential this method has for making highly resolved measurements in less well studied estuarine systems.
    Description: This paper is the result of research funded in part by NOAA's U.S. Integrated Ocean Observing System (IOOS) Program Office as a subcontract to the Woods Hole Oceanographic Institution under award NA13NOS120139 to the Southeastern University Research Association. All of the data analyzed in this paper are publicly available including the CBIBS data (http://buoybay.noaa.gov), the NCEP NARR data (https://www.esrl.noaa.gov/psd), and the Kd‐490 MODIS data (ftp://ftp.star.nesdis.noaa.gov/pub/socd1/ecn/data/modis/k490noaa/monthly/cd/). Model output analyzed in this paper is publicly available through the THREDDS server associated with the IOOS Coastal and Ocean Modeling Testbed (COMT) site (https://comt.ioos.us/projects/cb_hypoxia). Postprocessed and compiled data for all seven CBIBS locations including the interpolated values of incoming solar radiation and satellite‐derived Kd‐490 can also be download from the COMT site.
    Description: 2019-05-25
    Keywords: Gross primary production ; Chesapeake Bay ; Observing system ; Diel variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(2), (2019):1005-1028, doi:10.1029/2018JC014585.
    Description: A numerical model with a vortex force formalism is used to study the role of wind waves in the momentum budget and subtidal exchange of a shallow coastal plain estuary, Delaware Bay. Wave height and age in the bay have a spatial distribution that is controlled by bathymetry and fetch, with implications for the surface drag coefficient in young, underdeveloped seas. Inclusion of waves in the model leads to increases in the surface drag coefficient by up to 30% with respect to parameterizations in which surface drag is only a function of wind speed, in agreement with recent observations of air‐sea fluxes in estuaries. The model was modified to prevent whitecapping wave dissipation from generating breaking forces since that contribution is integrally equivalent to the wind stress. The proposed adjustment is consistent with previous studies of wave‐induced nearshore currents and with additional parameterizations for breaking forces in the model. The mean momentum balance during a simulated wind event was mainly between the pressure gradient force and surface stress, with negligible contributions by vortex, wave breaking (i.e., depth‐induced), and Stokes‐Coriolis forces. Modeled scenarios with realistic Delaware bathymetry suggest that the subtidal bay‐ocean exchange at storm time scales is sensitive to wave‐induced surface drag coefficient, wind direction, and mass transport due to the Stokes drift. Results herein are applicable to shallow coastal systems where the typical wave field is young (i.e., wind seas) and modulated by bathymetry.
    Description: This work was supported by National Science Foundation Coastal SEES grant 1325136. We acknowledge Christopher Sommerfield's Group, Jia‐Lin Chen, and Julia Levin who provided assistance with the model configuration. We also thank Nirnimesh Kumar, Greg Gerbi, Melissa Moulton, and the Rutgers Ocean Modeling group for constructive feedback. Insightful comments by two anonymous reviewers helped improve the manuscript. Model files are available in an open access repository (https://doi.org/10.5281/zenodo.1695900).
    Description: 2019-07-28
    Keywords: Bathymetry ; Vortex forces ; Subtidal exchange ; Wind waves ; Surface drag
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4784-4802, doi: 10.1029/2019JC015006.
    Description: Modifications for navigation since the late 1800s have increased channel depth (H) in the lower Hudson River estuary by 10–30%, and at the mouth the depth has more than doubled. Observations along the lower estuary show that both salinity and stratification have increased over the past century. Model results comparing predredging bathymetry from the 1860s with modern conditions indicate an increase in the salinity intrusion of about 30%, which is roughly consistent with the H5/3 scaling expected from theory for salt flux dominated by steady exchange. While modifications including a recent deepening project have been concentrated near the mouth, the changes increase salinity and threaten drinking water supplies more than 100 km landward. The deepening has not changed the responses to river discharge (Qr) of the salinity intrusion (~Qr−1/3) or mean stratification (Qr2/3). Surprisingly, the increase in salinity intrusion with channel deepening results in almost no change in the estuarine circulation. This contrasts sharply with local scaling based on local dynamics of an H2 dependence, but it is consistent with a steady state salt balance that allows scaling of the estuarine circulation based on external forcing factors and is independent of depth. In contrast, the observed and modeled increases in stratification are opposite of expectations from the steady state balance, which could be due to reduction in mixing with loss of shallow subtidal regions. Overall, the mean shift in estuarine parameter space due to channel deepening has been modest compared with the monthly‐to‐seasonal variability due to tides and river discharge.
    Description: Funding was provided by NSF Coastal SEES (OCE 1325136). Data supporting this study are posted to Zenodo (https://doi.org/10.5281/zenodo.2551285) or are available by contacting the author.
    Description: 2019-12-07
    Keywords: Estuarine circulation ; Salinity intrusion ; Stratification ; Dredging ; Hudson River
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial‐NoDerivs License. The definitive version was published in Van Dam, B. R., Edson, J. B., & Tobias, C. Parameterizing air-water gas exchange in the shallow, microtidal New River estuary. Journal of Geophysical Research-Biogeosciences, 124(7), (2019): 2351-2363, doi: 10.1029/2018JG004908.
    Description: Estuarine CO2 emissions are important components of regional and global carbon budgets, but assessments of this flux are plagued by uncertainties associated with gas transfer velocity (k) parameterization. We combined direct eddy covariance measurements of CO2 flux with waterside pCO2 determinations to generate more reliable k parameterizations for use in small estuaries. When all data were aggregated, k was described well by a linear relationship with wind speed (U10), in a manner consistent with prior open ocean and estuarine k parameterizations. However, k was significantly greater at night and under low wind speed, and nighttime k was best predicted by a parabolic, rather than linear, relationship with U10. We explored the effect of waterside thermal convection but found only a weak correlation between convective scale and k. Hence, while convective forcing may be important at times, it appears that factors besides waterside thermal convection were likely responsible for the bulk of the observed nighttime enhancement in k. Regardless of source, we show that these day‐night differences in k should be accounted for when CO2 emissions are assessed over short time scales or when pCO2 is constant and U10 varies. On the other hand, when temporal variability in pCO2 is large, it exerts greater control over CO2 fluxes than does k parameterization. In these cases, the use of a single k value or a simple linear relationship with U10 is often sufficient. This study provides important guidance for k parameterization in shallow or microtidal estuaries, especially when diel processes are considered.
    Description: We thank SERDP and DCERP for funding and support. Dennis Arbige assisted with EC tower construction, and Susan Cohen provided invaluable logistical support. I also thank Marc Alperin (UNC Chapel Hill) for his thoughtful guidance and encouragement with this project. All data sets for this manuscript are available at FigShare (https://doi.org/10.6084/m9.figshare.7276877.v1). Additional funding for this project was provided by DAAD (57429828) from funds of the German Federal Ministry of Education and Research (BMBF).
    Keywords: Air‐water CO2 exchange ; Gas transfer velocity ; Convective ; Eddy covariance ; Estuary ; Gas exchange
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(3), (2019):1505-1512, doi:10.1029/2018GL080006.
    Description: Mesoscale eddies, energetic vortices covering nearly a third of the ocean surface at any one time, modulate the spatial and temporal evolution of the mixed layer. We present a global analysis of concurrent satellite observations of mesoscale eddies with hydrographic profiles by autonomous Argo floats, revealing rich geographic and seasonal variability in the influence of eddies on mixed layer depth. Anticyclones deepen the mixed layer depth, whereas cyclones thin it, with the magnitude of these eddy‐induced mixed layer depth anomalies being largest in winter. Eddy‐centric composite averages reveal that the largest anomalies occur at the eddy center and decrease with distance from the center. Furthermore, the extent to which eddies modulate mixed layer depth is linearly related to the sea surface height amplitude of the eddies. Finally, large eddy‐mediated mixed layer depth anomalies are more common in anticyclones when compared to cyclones. We present candidate mechanisms for this observed asymmetry.
    Description: This project was supported by NASA grants NNX13AE47G and NNX16AH9G. This manuscript was improved as a result of helpful discussions with Jeffery Early, Johnathan Lilly, and Eric Kunze of Northwest Research Associates. D. J. M. also gratefully acknowledges support of the National Science Foundation. The eddy data set used here is distributed by AVISO at https://www.aviso.altimetry.fr/en/data/products/value-added-products/global-mesoscale-eddy-trajectoryproduct.html. The MLD data can be accessed at http://mixedlayer.ucsd.edu.
    Description: 2019-06-06
    Keywords: Mesoscale eddies ; Ocean mixing ; Satellite ; Floats ; Mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(3), (2019):1531-1536, doi:10.1029/2018GL081106.
    Description: Low‐frequency surf zone eddies disperse material between the shoreline and the continental shelf, and velocity fluctuations with frequencies as low as a few mHz have been observed previously on several beaches. Here spectral estimates of surf zone currents are extended to an order of magnitude lower frequency, resolving an extremely low frequency peak of approximately 0.5 mHz that is observed for a range of beaches and wave conditions. The magnitude of the 0.5‐mHz peak increases with increasing wave energy and with spatial inhomogeneity of bathymetry or currents. The 0.5‐mHz peak may indicate the frequency for which nonlinear energy transfers from higher‐frequency, smaller‐scale motions are balanced by dissipative processes and thus may be the low‐frequency limit of the hypothesized 2‐D cascade of energy from breaking waves to lower frequency motions.
    Description: We thank R. Guza, T. Herbers, and T. Lippmann for their leadership roles during the SandyDuck and NCEX projects and the CCS (SIO), PVLAB (WHOI), and FRF (USACE) field teams for deploying, maintaining, and recovering sensors in harsh conditions over many years. Funding was provided by ASD(R&E), NSF, and ONR. The data can be obtained via https://chlthredds.erdc.dren.mil/thredds/catalog/frf/catalog.html and https://pv‐lab.org.
    Description: 2019-07-02
    Keywords: Surf zone currents ; Nearshore processes ; Breaking waves ; Vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial‐NoDerivs License. The definitive version was published in Clayson, C. A., & Edson, J. B. Diurnal surface flux variability over western boundary currents. Geophysical Research Letters, 46(15), (2019): 9174-9182, doi:10.1029/2019GL082826.
    Description: An analysis of a satellite ocean surface turbulent flux product demonstrated that, as expected, the western boundary current regions dominate the seasonal cycle amplitude. Surprisingly, our analysis of the global ocean diurnal flux variability also demonstrated a regional maximum in the winter over the western boundary current regions. We conducted comparisons with in situ data from several buoys located in these regions. The buoy data were in general agreement with the relative magnitude, timing, and importance of each of the bulk parameters driving the latent and sensible heat fluxes. Further analysis demonstrated that the strength and timing of the diurnal signal is related to the location of the buoy relative to the region of maximum heat flux and sea surface temperature gradient. In both regions, the timing of the higher winds coincides with the moistest surface layer, indicating that surface fluxes rather than entrainment mixing play a key role in this phenomenon.
    Description: CAC gratefully acknowledges funding from the NASA MAP and NEWS programs (NNX13AN48G and NNX15AI47A). CLIMODE data were funded by the U.S. National Science Foundation (http://uop.whoi.edu/projects/CLIMODE/climodedata.html). KEO data are provided by the OCS Project Office of NOAA/PMEL (https://www.pmel.noaa.gov/ocs/data/disdel/). JKEO data are provided by RIGC/JAMSTEC and PMEL/NOAA (http://www.jamstec.go.jp/iorgc/ocorp/ktsfg/data/jkeo/). SeaFlux data are provided by the U.S. NOAA Climate Data Record Program (https://www.ncdc.noaa.gov/cdr).
    Keywords: Diurnal variability ; Western boundary currents ; Surface fluxes ; Atmospheric boundary layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 123(11), (2018): 9376-9406. doi: 10.1029/2018JB015985.
    Description: Improved constraints on the mechanical behavior of magma chambers is essential for understanding volcanic processes; however, the role of crystal mush on the mechanical evolution of magma chambers has not yet been systematically studied. Existing magma chamber models typically consider magma chambers to be isolated melt bodies surrounded by elastic crust. In this study, we develop a physical model to account for the presence and properties of crystal mush in magma chambers and investigate its impact on the mechanical processes during and after injection of new magma. Our model assumes the magma chamber to be a spherical body consisting of a liquid core of fluid magma within a shell of crystal mush that behaves primarily as a poroelastic material. We investigate the characteristics of time‐dependent evolution in the magma chamber, both during and after the injection, and find that quantities such as overpressure and tensile stress continue to evolve after the injection has stopped, a feature that is absent in elastic (mushless) models. The time scales relevant to the postinjection evolution vary from hours to thousands of years, depending on the micromechanical properties of the mush, the viscosity of magma, and chamber size. We compare our poroelastic results to the behavior of a magma chamber with an effectively viscoelastic shell and find that only the poroelastic model displays a time scale dependence on the size of the chamber for any fixed mush volume fraction. This study demonstrates that crystal mush can significantly influence the mechanical behaviors of crustal magmatic reservoirs.
    Description: We thank James Rice, Tushar Mittal, Chris Huber and Helge Gonnerman for useful discussions in the early stages of this work. S. Adam Soule was supported by National Science Foundation Grant OCE‐1333492. Meghan Jones was supported by the U.S. Department of Defense through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program. The numerical codes used for computing the results in the work can be found at https://github.com/YangVol/MushyChamber.
    Description: 2019-03-30
    Keywords: Magma chamber ; Crystal mush ; Poroelasticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 123(12), (2018): 8994-9009, doi:10.1029/2018JC013800.
    Description: The North Icelandic Irminger Current (NIIC) is an important component of the Atlantic Water (AW) inflow to the Nordic Seas. In this study, both observations and a high‐resolution (1/12°) numerical model are used to investigate the seasonal to interannual variability of the NIIC and its forcing mechanisms. The model‐simulated velocity and hydrographic fields compare well with the available observations. The water mass over the entire north Icelandic shelf exhibits strong seasonal variations in both temperature and salinity, and such variations are closely tied to the AW seasonality in the NIIC. In addition to seasonal variability, there is considerable variation on interannual time scales, including a prominent event in 2003 when the AW volume transport increased by about 0.5 Sv. To identify and examine key forcing mechanisms for this event, we analyzed outputs from two additional numerical experiments: using only the seasonal climatology for buoyancy flux (the momentum case) and using only the seasonal climatology for wind stress (the buoyancy case). It is found that changes in the wind stress are predominantly responsible for the interannual variations in the AW volume transport, AW fraction in the NIIC water, and salinity. Temperature changes on the shelf, however, are equally attributable to the buoyancy flux and wind forcing. Correlational analyses indicate that the AW volume transport is most sensitive to the wind stress southwest of Iceland.
    Description: This work is supported by the U.S. National Science Foundation (NSF) under grants OCE‐1634886 (J. Zhao and J. Yang) and OCE‐1558742 (R. Pickart), and by the Bergen Research Foundation grant BFS2016REK01 (K. Våge and S. Semper). We thank Xiaobiao Xu at Florida State University for providing the initial model configuration. Comments from anonymous reviewers help to improve the manuscript. The altimeter products are produced and distributed by the Copernicus Marine and Environment Monitoring Service (CMEMS, http://www.marine.copernicus.eu). The hydrographic maps along the Hornbanki section are available at http://www.hafro.is/Sjora/.
    Description: 2019-04-11
    Keywords: Irminger Current ; Interannual ; Wind ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 33(1), (2019): 15-36, doi:10.1029/2018GB005985.
    Description: Better constraints on the magnitude of particulate export and the residence times of trace elements are required to understand marine food web dynamics, track the transport of anthropogenic trace metals in the ocean, and improve global climate models. While prior studies have been successful in constructing basin‐scale budgets of elements like carbon in the upper ocean, the cycling of particulate trace metals is poorly understood. The 238U‐234Th method is used here with data from the GP‐16 GEOTRACES transect to investigate the upper ocean processes controlling the particulate export of cadmium, cobalt, and manganese in the southeastern Pacific. Patterns in the flux data indicated that particulate cadmium and cobalt behave similarly to particulate phosphorus and organic carbon, with the highest export in the productive coastal region and decreasing flux with depth due to remineralization. The export of manganese was influenced by redox conditions at the low oxygen coastal stations and by precipitation and/or scavenging elsewhere. Residence times with respect to export (total inventory divided by particulate flux) for phosphorus, cadmium, cobalt, and manganese in the upper 100 and 200 m were determined to be on the order of months to years. These GEOTRACES‐based synthesis efforts, combining a host of concentration and tracer data with unprecedented resolution, will help to close the oceanic budgets of trace metals.
    Description: This work was supported by the National Science Foundation (OCE‐1232669 and OCE‐1518110), and Erin Black was also funded by a NASA Earth and Space Science Graduate Fellowship (NNX13AP31H). The authors would like to thank the captain, crew, and scientists aboard the R/V Thomas G. Thompson. A special thanks to two anonymous reviewers and Virginie Sanial for providing the additional 228Ra‐based estimates for Cd. All original data have been made available in either the supporting information or through BCO‐DMO (see Website and Database References).
    Description: 2019-06-10
    Keywords: Tthorium ; Export ; Trace metals ; Residence time
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in in Geophysical Research Letters, 45(22), (2018): 12350-12358. doi: 10.1029/2018GL080763.
    Description: Recent acceleration of Greenland's ocean‐terminating glaciers has substantially amplified the ice sheet's contribution to global sea level. Increased oceanic melting of these tidewater glaciers is widely cited as the likely trigger, and is thought to be highest within vigorous plumes driven by freshwater drainage from beneath glaciers. Yet melting of the larger part of calving fronts outside of plumes remains largely unstudied. Here we combine ocean observations collected within 100 m of a tidewater glacier with a numerical model to show that unlike previously assumed, plumes drive an energetic fjord‐wide circulation which enhances melting along the entire calving front. Compared to estimates of melting within plumes alone, this fjord‐wide circulation effectively doubles the glacier‐wide melt rate, and through shaping the calving front has a potential dynamic impact on calving. Our results suggest that melting driven by fjord‐scale circulation should be considered in process‐based projections of Greenland's sea level contribution.
    Description: Support was provided by the National Science Foundation (NSF) through PLR‐1418256 and PLR‐1744835, and through Woods Hole Oceanographic Institution (WHOI) Ocean and Climate Change Institute (OCCI) and the Clark Foundation. This work was also supported by a UK Natural Environmental Research Council (NERC) PhD studentship (NE/L501566/1) and Scottish Alliance for Geoscience, Environment & Society (SAGES) early career research exchange funding to D. A. S. We thank Hanumant Singh, Laura Stevens, Ken Mankoff, Rebecca Jackson, and Jeff Pietro for useful discussions and data collection.
    Description: 2019-05-15
    Keywords: Tidewater glaciers ; Ice‐ocean interactions ; Submarine melting ; Greenland ice sheet ; Fjords ; Plumes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Crustal magmatic system beneath the East Pacific Rise (8°200 to 10°100N): Implications for tectonomagmatic segmentation and crustal melt transport at fast-spreading ridges. Geochemistry, Geophysics, Geosystems, 19, (2018): 4584–4611, doi: 10.1029/2018GC007590 .
    Description: Detailed images of the midcrustal magmatic system beneath the East Pacific Rise (8°20′–10°10′N) are obtained from 2‐D and 3‐D‐swath processing of along axis seismic data and are used to characterize properties of the axial crust, cross‐axis variations, and relationships with structural segmentation of the axial zone. Axial magma lens (AML) reflections are imaged beneath much of the ridge axis (mean depth 1,640 ± 185 m), as are deeper sub‐AML (SAML) reflections (brightest events ~100–800 m below AML). Local shallow regions in the AML underlie two regions of shallow seafloor depth from 9°40′–55′N and 8°26′–33′N. Enhanced magma replenishment at present beneath both sites is inferred and may be linked to nearby off‐axis volcanic chains. SAML reflections, which are observed primarily from 9°20′ to 10°05′N, indicate a finely segmented magma reservoir similar to the AML above, composed of subhorizontal, 2‐ to 7 km‐long AML segments, often with stepwise changes in reflector depth from one segment to the next. We infer that these melt bodies are related to short‐lived melt instability zones. In many locations including where seismic constraints are strongest the intermediate scale (~15–40 km) structural segmentation of the ridge axis identified in this region coincides with (1) changes in average thickness of layer 2A (by 10%–15%), (2) changes in average depth of AML (〈100 m), and (3) with the spacing of punctuated low velocity zones mapped in the uppermost mantle. The ~6 km dominant length of multiple AML segments within each of the larger structural segments may reflect the spacing of local sites of ascending magma from discrete melt reservoirs pooled beneath the crust.
    Description: We thank the crew of the MGL0812 expedition aboard R/V Marcus G. Langseth. Special thanks to the Captain M. Landow and technical staff led by R. Steinhaus and Science Officer A. Johnson for their efforts that led to a successful research cruise. We are grateful to D. J. Fornari, D.R. Toomey, and an anonymous reviewer for their comments and suggestions that significantly improved the manuscript. Seismic data from this study are archived with the IEDA MGDS (Mutter et al., 2008) and Academic Suport Portal (ASP) at UTIG (Marjanović et al., 2018). We would also like to thank Vicki Ferrini for Matlab code for manipulating data grids. Software packages Focus and VoxelGeo by Paradigm Geophysical were used for seismic data processing and interpretation. This research was supported by NSF awards OCE0327872 to J. C. M. and S. M. C., OCE‐0327885 to J. P. C., and OCE0624401 to M. R. N.
    Description: 2019-05-06
    Keywords: Mid‐ocean ridges ; Multichannel seismic data ; Tectonomagmatic segmentation ; Melt transport ; East Pacific Rise
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(1), (2018): 293-302, doi:10.1029/2018GL080956.
    Description: Ground‐breaking measurements from the ocean observatories initiative Irminger Sea surface mooring (60°N, 39°30′W) are presented that provide the first in situ characterization of multiwinter surface heat exchange at a high latitude North Atlantic site. They reveal strong variability (December 2014 net heat loss nearly 50% greater than December 2015) due primarily to variations in frequency of intense short timescale (1–3 days) forcing. Combining the observations with the new high resolution European Centre for Medium Range Weather Forecasts Reanalysis 5 (ERA5) atmospheric reanalysis, the main source of multiwinter variability is shown to be changes in the frequency of Greenland tip jets (present on 15 days in December 2014 and 3 days in December 2015) that can result in hourly mean heat loss exceeding 800 W/m2. Furthermore, a new picture for atmospheric mode influence on Irminger Sea heat loss is developed whereby strongly positive North Atlantic Oscillation conditions favor increased losses only when not outweighed by the East Atlantic Pattern.
    Description: We are grateful to Meric Srokosz and the two reviewers for helpful comments on this work. S. J. acknowledges the U.K. Natural Environment Research Council ACSIS programme funding (Ref. NE/N018044/1). M. O. acknowledges support from EU Horizon 2020 projects AtlantOS (grant 633211) and Blue Action (grant 727852). G. W. K. M. acknowledges support from the Natural Sciences and Engineering Research Council of Canada. Support for the Irminger Sea array of the ocean observatories initiative (OOI) came from the U.S. National Science Foundation. Thanks to the WHOI team and ships' officers and crew for the field deployments and to Nan Galbraith for processing the data and computing the air‐sea fluxes. Support for this processing, and making available and sharing the OOI data, came from the National Science Foundation under a Collaborative Research: Science Across Virtual Institutes grant (82164000) to R. A. W. Data used are available from the following sites: NOAA Climate Prediction Center NAO and EAP indices ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/tele_index.nh, ECMWF Reanalysis 5 (ERA5) https://www.ecmwf.int/en/forecasts/datasets/archive‐datasets/reanalysis/datasets/era5, and ocean observatories initiative Irminger Mooring https://ooinet.oceanobservatories.org/.
    Description: 2019-06-18
    Keywords: Irminger Sea ; Air-sea interaction ; Surface heat flux ; Atmospheric modes ; Surface flux mooring ; Atmospheric reanalysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(1), (2019): 631-657, doi:10.1029/2018JB016598.
    Description: Lithospheric seismic anisotropy illuminates mid‐ocean ridge dynamics and the thermal evolution of oceanic plates. We utilize short‐period (5–7.5 s) ambient‐noise surface waves and 15‐ to 150‐s Rayleigh waves measured across the NoMelt ocean‐bottom array to invert for the complete radial and azimuthal anisotropy in the upper ∼35 km of ∼70‐Ma Pacific lithospheric mantle, and azimuthal anisotropy through the underlying asthenosphere. Strong azimuthal variations in Rayleigh‐ and Love‐wave velocity are observed, including the first clearly measured Love‐wave 2θ and 4θ variations. Inversion of averaged dispersion requires radial anisotropy in the shallow mantle (2‐3%) and the lower crust (4‐5%), with horizontal velocities (VSH) faster than vertical velocities (VSV). Azimuthal anisotropy is strong in the mantle, with 4.5–6% 2θ variation in VSV with fast propagation parallel to the fossil‐spreading direction (FSD), and 2–2.5% 4θ variation in VSH with a fast direction 45° from FSD. The relative behavior of 2θ, 4θ, and radial anisotropy in the mantle are consistent with ophiolite petrofabrics, linking outcrop and surface‐wave length scales. VSV remains fast parallel to FSD to ∼80 km depth where the direction changes, suggesting spreading‐dominated deformation at the ridge. The transition at ∼80 km perhaps marks the dehydration boundary and base of the lithosphere. Azimuthal anisotropy strength increases from the Moho to ∼30 km depth, consistent with flow models of passive upwelling at the ridge. Strong azimuthal anisotropy suggests extremely coherent olivine fabric. Weaker radial anisotropy implies slightly nonhorizontal fabric or the presence of alternative (so‐called E‐type) peridotite fabric. Presence of radial anisotropy in the crust suggests subhorizontal layering and/or shearing during crustal accretion.
    Description: We thank the captain, crew, and engineers of the R/V Marcus G. Langseth for making the data collection possible. OBS were provided by Scripps Institution of Oceanography via the Ocean Bottom Seismograph Instrument Pool (http://www.obsip.org), which is funded by the National Science Foundation. All waveform data used in this study are archived at the IRIS Data Management Center (http://www.iris.edu) with network code ZA for 2011–2013, and all OBS orientations are included in Table S1. The 1‐D transversely isotropic and azimuthally anisotropic models and their uncertainties from this study can be found in the supporting information. This work was supported by NSF grants OCE‐0928270 and OCE‐1538229 (J. B. Gaherty), EAR‐1361487 (G. Hirth), and OCE‐0938663 (D. Lizarralde, J. A. Collins, and R. L. Evans), and an NSF Graduate Research Fellowship DGE‐16‐44869 to J. B. Russell. The authors thank the editor as well as reviewers Donald Forsyth, Hitoshi Kawakatsu, and Thorsten Becker for their constructive comments, which significantly improved this manuscript. J. B. Russell thanks Natalie J. Accardo for kindly sharing codes and expertise that contributed greatly to the analysis.
    Description: 2019-06-26
    Keywords: Seismic anisotropy ; Ambient‐noise tomography ; Oceanic lithosphere ; Love‐wave anisotropy ; Surface waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 20(1), (2019): 46-66, doi: 10.1029/2018GC007512.
    Description: This study reports the composition of the oceanic crust from the 16.5°N region of the Mid‐Atlantic Ridge, a spreading ridge segment characterized by a complex detachment fault system and three main oceanic core complexes (southern, central, and northern OCCs). Lithologies recovered from the core complexes include both greenschist facies and weathered pillow basalt, diabase, peridotite, and gabbro, while only weathered and fresh pillow basalt was dredged from the rift valley floor. The gabbros are compositionally bimodal, with the magmatic crust in the region formed by scattered intrusions of chemically primitive plutonic rocks (i.e., dunites and troctolites), associated with evolved oxide‐bearing gabbros. We use thermodynamic models to infer that this distribution is expected in regions where small gabbroic bodies are intruded into mantle peridotites. The occurrence of ephemeral magma chambers located in the lithospheric mantle enables large proportions of the melt to be erupted after relatively low degrees of fractionation. A large proportion of the dredged gabbros reveal evidence for deformation at high‐temperature conditions. In particular, chemical changes in response to deformation and the occurrence of very high‐temperature ultramylonites (〉1000 °C) suggest that the deformation related to the oceanic detachment commenced at near‐solidus conditions. This event was likely associated with the expulsion of interstitial, evolved magmas from the crystal mush, a mechanism that enhanced the formation of disconnected oxide‐gabbro seams or layers often associated with crystal‐plastic fabrics in the host gabbros. This granulite‐grade event was soon followed by hydrothermal alteration revealed by the formation of amphibole‐rich veins at high‐temperature conditions (~900 °C).
    Description: The geochemical data used in this study and the parameters of the model are included as Tables in the supporting information. The data published will be contributed to the Petrological Database (www.earthchem.org/petdb). We thank the captain and crew of the R/V Knorr for their help and enthusiasm during our cruise to the 16.5° core complexes. Deborah Smith served as best chief scientist ever. Hans Schouten and Joe Cann kept H. J. B. D. in line and together with Vincent Salters, Ross Parnell‐Turner, Fuwu Ji, Dana Yoerger, Camilla Palmiotto, A. Zheleznov, H. L. Bai, and Will Junkin interpreted the geophysical data and described the rock samples on which this paper is based. A. S. was financially supported with an InterRidge fellowship and by the Societa' Italiana di Minerlogia e Petrografia. H. R. M. acknowledges support from the Wilhelm und Else Heraeus Stiftung. H. J. B. D. acknowledges support from the National Science Foundation grants MG&G 1155650 and MG&G 1434452, and discussions and assistance in the laboratory from Ma Qiang. Fuwu Ji, Joe Cann, Deborah Smith, Hans Schouten, and Ross Parnell‐Turner assisted in dredging, sample description, and provide the authors with considerable insight into the geologic and geophysical data collected during the Knorr cruise 210 Leg 5. Comments by E. Rampone, G Ceuleneer, and an anonymous reviewer improved the quality of the manuscript.
    Description: 2019-06-05
    Keywords: Gabbro ; Detachment ; Oceanic core complex ; Melt‐rock reactions ; Lower oceanic crust
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 53(3), (2019): 1639-1649, doi:10.1029/2018JC014454.
    Description: Circulation patterns over the inner continental shelf can be spatially complex and highly variable in time. However, few studies have examined alongshore variability over short scales of kilometers or less. To observe inner‐shelf bottom temperatures with high (5‐m) horizontal resolution, a fiber‐optic distributed temperature sensing system was deployed along a 5‐km‐long portion of the 15‐m isobath within a larger‐scale mooring array south of Martha's Vineyard, MA. Over the span of 4 months, variability at a range of scales was observed along the cable over time periods of less than a day. Notably, rapid cooling events propagated down the cable away from a tidal mixing front, showing that propagating fronts on the inner shelf can be generated locally near shallow bathymetric features in addition to remote offshore locations. Propagation velocities of observed fronts were influenced by background tidal currents in the alongshore component and show a weak correlation with theoretical gravity current speeds in the cross‐shore component. These events provide a source of cold, dense water into the inner shelf. However, differences in the magnitude and frequency of cooling events at sites separated by a few kilometers in the alongshore direction suggest that the characteristics of small‐scale variability can vary dramatically and can result in differential fluxes of water, heat, and other tracers. Thus, under stratified conditions, prolonged subsurface observations with high spatial and temporal resolution are needed to characterize the implications of three‐dimensional circulation patterns on exchange, especially in regions where the coastline and isobaths are not straight.
    Description: Deployment of the DTS system was made possible by the Center for Transformative Environmental Monitoring Programs (CTEMPS), with input, assistance, and software provided by John Selker, Scott Tyler, Paul Wetzel, Mark Hausner, and Scott Kobs. The authors thank Hugh Popenoe, Jared Schwartz, and Brian Guest for their technical expertise and effort with setup, deployment, and recovery of the DTS system, as well as the captains and crew of the R/V Discovery and R/V Tioga. Janet Fredericks assisted with integrating the DTS measurements with Martha's Vineyard Coastal Observatory infrastructure. Steve Lentz was instrumental in the design and deployment of the ISLE mooring array. Craig Marquette provided invaluable expertise and effort in the deployment of the ISLE mooring array. The authors thank Greg Gerbi for providing velocity data at site H and Malcolm Scully for providing velocity and near‐bottom temperature data at site E. Kenneth Brink and two anonymous reviewers provided valuable comments on the manuscript. DTS measurements were supported by the Woods Hole Oceanographic Institution. The ISLE project is supported by NSF (OCE‐83264600). T. Connolly acknowledges support from NSF (OCE‐1433716) and a WHOI postdoctoral scholarship funded by the U.S. Geological Survey and the WHOI Coastal Ocean Institute. DTS data are available on Zenodo (Connolly & Kirincich, 2018, https://doi.org/10.5281/zenodo.1136113). ISLE mooring data are available on the WHOI Open Access Data Server (Kirincich & Lentz, 2017b, https://doi.org/10.1575/1912/8740).
    Description: 2019-06-28
    Keywords: Inner shelf ; Alongshore variability ; Fronts ; Distributed temperature sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(2), (2019): 1322-1330, doi:10.1029/2018JC014106.
    Description: A Lagrangian model is constructed for a surface column of initial height h(0) that propagates at an average speed u and is subject to excess (i.e., net) evaporation of q m/year. It is shown that these parameters combine to form an evaporation length, L = uh(0)/q, which provides an estimate for the distance the column must travel before evaporating completely. While these changes in the surface water level due to evaporation are compensated by entrainment of water into the overall column, the changes in either near‐surface salinity or isotopic compositions are retained and can be measured. Observations of surface salinity and isotopic compositions of δ18O and δD along 1,000‐ to 3,500‐km long transects are used to estimate values of L in the Red Sea, Mediterranean Sea, Indian Ocean, and Gulf Stream. The variations of salinity, δ18O and δD in all four basins are linear. As anticipated, the estimated value of L is smallest in the slowly moving and arid Red Sea and is greatest in the fast‐moving Gulf Stream.
    Description: The salinity and δ18O data collected aboard the Indian Ocean cruise described in Srivastava et al. (2007) can be accessed at this website (https://www.nodc.noaa.gov). The salinity, δ18O and δD data collected during the Red Sea cruise of the Interuniversity Institute for Marine Sciences, Eilat, described in Steiner et al. (2014) and can be accessed in the supporting information section of doi: 10.1073/pnas.1414323111. H. B. acknowledges the support provided by the Eshkol Foundation of the Israel Ministry of Science.
    Description: 2019-07-26
    Keywords: Air-sea interaction ; Evaporation ; Semienclosed basins ; Salinity ; Stable isotopes ; Thermohaline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(5), (2019):2434-2448, doi:10.1029/2018GL080997.
    Description: Deep earthquakes exhibit strong variabilities in their rupture and aftershock characteristics, yet their physical failure mechanisms remain elusive. The 2018 Mw 8.2 and Mw 7.9 Tonga‐Fiji deep earthquakes, the two largest ever recorded in this subduction zone, occurred within days of each other. We investigate these events by performing waveform analysis, teleseismic P wave backprojection, and aftershock relocation. Our results show that the Mw 8.2 earthquake ruptured fast (4.1 km/s) and excited frequency‐dependent seismic radiation, whereas the Mw 7.9 earthquake ruptured slowly (2.5 km/s). Both events lasted ∼35 s. The Mw 8.2 earthquake initiated in the highly seismogenic, cold core of the slab and likely ruptured into the surrounding warmer materials, whereas the Mw 7.9 earthquake likely ruptured through a dissipative process in a previously aseismic region. The contrasts in earthquake kinematics and aftershock productivity argue for a combination of at least two primary mechanisms enabling rupture in the region.
    Description: We thank the Editor Gavin Hayes and two anonymous reviewers for their helpful comments that improved the quality of the manuscript. The seismic data were provided by Data Management Center (DMC) of the Incorporated Research Institutions for Seismology (IRIS). The facilities of IRIS Data Services, and specifically the IRIS Data Management Center, were used for access to waveforms, related metadata, and/or derived products used in this study. IRIS Data Services are funded through the Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE) Proposal of the National Science Foundation under Cooperative Agreement EAR‐1261681. W. F. acknowledges supports from the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Postdoctoral Scholarship. S. S. W. and D. T. are supported by the MSU Geological Sciences Endowment.
    Description: 2019-08-20
    Keywords: Deep earthquakes ; Tonga ; Backprojection ; Source imaging
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Tectonics, 38(2), (2019):666-686. doi:10.1029/2018TC005246.
    Description: A magnetotelluric survey in the Barotse Basin of western Zambia shows clear evidence for thinned lithosphere beneath an orogenic belt. The uppermost asthenosphere, at a depth of 60–70 km, is highly conductive, suggestive of the presence of a small amount of partial melt, despite the fact that there is no surface expression of volcanism in the region. Although the data support the presence of thicker cratonic lithosphere to the southeast of the basin, the lithospheric thickness is not well resolved and models show variations ranging from ~80 to 150 km in this region. Similarly variable is the conductivity of the mantle beneath the basin and immediately beneath the cratonic lithosphere to the southeast, although the conductivity is required to be elevated compared to normal lithospheric mantle. In a general sense, two classes of model are compatible with the magnetotelluric data: one with a moderately conductive mantle and one with more elevated conductivities. This latter class would be consistent with the impingement of a stringer of plume‐fed melt beneath the cratonic lithosphere, with the melt migrating upslope to thermally erode lithosphere beneath the orogenic belt that is overlain by the Barotse Basin. Such processes are potentially important for intraplate volcanism and also for development or propagation of rifting as lithosphere is thinned and weakened by melt. Both models show clear evidence for thinning of the lithosphere beneath the orogenic belt, consistent with elevated heat flow data in the region.
    Description: Funding for MT acquisition and analysis was provided by the National Science Foundation grant EAR‐1010432 through the Continental Dynamics Program. The data used in this study are available for download at the IRIS Data Management Center through the DOI links cited in Jones et al. (2003–2008; https://doi.org/10.17611/DP/EMTF/SAMTEX) and Evans et al. (2012; https://doi.org/10.17611/DP/EMTF/PRIDE/ZAM). We would like to thank the field crew from the Geological Survey Department, Zambia, for their assistance in collecting data. Matthew Chamberlain, David Margolius, and Colin Skinner, formerly of Northeastern University, are also thanked for their field assistance. Data are available from the corresponding author pending their submission to the IRIS DMC repository at which point they will be publically available. This is Oklahoma State University, Boone Pickens School of Geology contribution number 2019‐99.
    Description: 2019-07-30
    Keywords: Magnetotellurics ; Resistivity ; Lithosphere ; Mobile belt
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(6), (2019): 3628-3644, doi:10.1029/2018JC014805.
    Description: The Arctic Ocean is experiencing profound environmental changes as the climate warms. Understanding how these changes will affect Arctic biological productivity is key for predicting future Arctic ecosystems and the global CO2 balance. Here we use in situ gas measurements to quantify rates of gross oxygen production (GOP, total photosynthesis) and net community production (NCP, net CO2 drawdown by the biological pump) in the mixed layer in summer or fall from 2011 to 2016 in the Beaufort Gyre. NCP and GOP show spatial and temporal variations with higher values linked with lower concentrations of sea ice and increased upper ocean stratification. Mean rates of GOP range from 8 ± 1 to 54 ± 9 mmol O2·m−2·d−1 with the highest mean rates occurring in summer of 2012. Mean rates of NCP ranged from 1.3 ± 0.2 to 2.9 ± 0.5 mmol O2·m−2·d−1. The mean ratio of NCP/GOP, a measure of how efficiently the ecosystem is recycling its nutrients, ranged from 0.04 to 0.17, similar to ratios observed at lower latitudes. Additionally, a large increase in total photosynthesis that occurred in 2012, a year of historically low sea ice coverage, persisted for many years. Taken together, these data provide one of the most complete characterizations of interannual variations of biological productivity in this climatically important region, can serve as a baseline for future changes in rates of production, and give an intriguing glimpse of how this region of the Arctic may respond to future lack of sea ice.
    Description: We sincerely thank the scientific teams of Fisheries and Oceans Canada's Joint Ocean Ice Studies expedition and Woods Hole Oceanographic Institution's Beaufort Gyre Observing System. The hydrographic, nutrient, and chlorophyll data were collected and made available by the Beaufort Gyre Exploration Program based at the Woods Hole Oceanographic Institution (http://www.whoi.edu/beaufortgyre) in collaboration with researchers from Fisheries and Oceans Canada at the Institute of Ocean Sciences. We thank the captains and crews of the Canadian icebreaker CCGS Louis S. St‐Laurent and Mike Dempsey for sample collection. This paper was improved by the suggestions of Michael DeGrandpre and one anonymous reviewer. We are grateful to Qing Wang at Wellesley College for her assistance with statistics. We thank our funding sources: the National Science Foundation (NSF 1547011, NSF 1302884, NSF 1719280, NSF 1643735) and the support of Fisheries and Oceans Canada. Data presented and discussed in this paper can be found in the Arctic Data Center (http://10.18739/A2W389).
    Description: 2019-10-30
    Keywords: Oxygen ; Argon ; Gross primary production ; Net community production ; Sea ice ; Triple oxygen isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters, 46(12), (2019): 6644-6652, doi:10.1029/2019GL082842.
    Description: Understanding deformation in ice shelves is necessary to evaluate the response of ice shelves to thinning. We study microseismicity associated with ice shelf deformation using nine broadband seismographs deployed near a rift on the Ross Ice Shelf. From December 2014 to November 2016, we detect 5,948 icequakes generated by rift deformation. Locations were determined for 2,515 events using a least squares grid‐search and double‐difference algorithms. Ocean swell, infragravity waves, and a significant tsunami arrival do not affect seismicity. Instead, seismicity correlates with tidal phase on diurnal time scales and inversely correlates with air temperature on multiday and seasonal time scales. Spatial variability in tidal elevation tilts the ice shelf, and seismicity is concentrated while the shelf slopes downward toward the ice front. During especially cold periods, thermal stress and embrittlement enhance fracture along the rift. We propose that thermal stress and tidally driven gravitational stress produce rift seismicity with peak activity in the winter.
    Description: NSF grants PLR‐1142518, 1141916, and 1142126 supported S. D. Olinger and D. A. Wiens, R. C. Aster, and A. A. Nyblade respectively. NSF grant PLR‐1246151 supported P. D. Bromirski, P. Gerstoft, and Z. Chen. NSF grant OPP‐1744856 and CAL‐DPR‐C1670002 also supported P. D. Bromirski. NSF grant PLR‐1246416 supported R. A. Stephen. The Incorporated Research Institutions for Seismology (IRIS) and the PASSCAL Instrument Center at New Mexico Tech provided seismic instruments and deployment support. The RIS seismic data (network code XH) are archived at the IRIS Data Management Center (http://ds.iris.edu/ds/nodes/dmc/). S. D. Olinger catalogued and located icequakes, analyzed seismicity and environmental forcing, and drafted the manuscript. D. A. Wiens and B. P. Lipovsky provided significant contributions to the analysis and interpretation of results and to the manuscript text. D. A. Wiens, R. C. Aster, A. A. Nyblade, R. A. Stephen, P. Gerstoft, and P. D. Bromirski collaborated to design and obtain funding for the deployment. D. A. Wiens, R. C. Aster, R. A. Stephen, P. Gerstoft, P. D. Bromirski, and Z. Chen deployed and serviced seismographs in Antarctica. All authors provided valuable feedback, comments, and edits to the manuscript text. Special thanks to Patrick Shore for guidance throughout the research process.
    Description: 2019-11-23
    Keywords: Ross Ice Shelf ; Glacial seismology ; Glaciology ; Ice shelf rifting ; Antarctica
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mulholland, M. R., Bernhardt, P. W., Widner, B. N., Selden, C. R., Chappell, P. D., Clayton, S., Mannino, A., & Hyde, K. High rates of N-2 fixation in temperate, western North Atlantic coastal waters expand the realm of marine diazotrophy. Global Biogeochemical Cycles, 33(7), (2019): 826-840, doi:10.1029/2018GB006130.
    Description: Dinitrogen (N2) fixation can alleviate N limitation of primary productivity by introducing fixed nitrogen (N) to the world's oceans. Although measurements of pelagic marine N2 fixation are predominantly from oligotrophic oceanic regions, where N limitation is thought to favor growth of diazotrophic microbes, here we report high rates of N2 fixation from seven cruises spanning four seasons in temperate, western North Atlantic coastal waters along the North American continental shelf between Cape Hatteras and Nova Scotia, an area representing 6.4% of the North Atlantic continental shelf area. Integrating average areal rates of N2 fixation during each season and for each domain in the study area, the estimated N input from N2 fixation to this temperate shelf system is 0.02 Tmol N/year, an amount equivalent to that previously estimated for the entire North Atlantic continental shelf. Unicellular group A cyanobacteria (UCYN‐A) were most often the dominant diazotrophic group expressing nifH, a gene encoding the nitrogenase enzyme, throughout the study area during all seasons. This expands the domain of these diazotrophs to include coastal waters where dissolved N concentrations are not always depleted. Further, the high rates of N2 fixation and diazotroph diversity along the western North Atlantic continental shelf underscore the need to reexamine the biogeography and the activity of diazotrophs along continental margins. Accounting for this substantial but previously overlooked source of new N to marine systems necessitates revisions to global marine N budgets.
    Description: Data presented in the body and supporting information of this manuscript have been deposited in the National Aeronautics and Space Administration (NASA) repository, SeaBASS and is publicly available at the following DOI address: 10.5067/SeaBASS/CLIVEC/DATA 001. This work was supported by a grant from NASA Grant Number: NNX09AE45G to M. R. M., A. M., and K. H.; a grant from NSF to P. D. C; and the Jacques S. Zaneveld and Neil and Susan Kelley Endowed Scholarships to C. S. We thank NOAA for ship time and the captain and crew of NOAA vessels Delaware II and Henry Bigelow for assistance during field sampling. Data have been submitted to SeaBASS (https://seabass.gsfc.nasa.gov/), NASA's preferred archival repository.
    Keywords: Nitrogen fixation ; Diazotrophy ; North American continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial‐NoDerivs License. The definitive version was published in Rodriguez, L. G., Cohen, A. L., Ramirez, W., Oppo, D. W., Pourmand, A., Edwards, R. L., Alpert, A. E., & Mollica, N. Mid-Holocene, coral-based sea surface temperatures in the western tropical Atlantic. Paleoceanography and Paleoclimatology, 34(7), (2019): 1234-1245, doi:10.1029/2019PA003571.
    Description: The Holocene is considered a period of relative climatic stability, but significant proxy data‐model discrepancies exist that preclude consensus regarding the postglacial global temperature trajectory. In particular, a mid‐Holocene Climatic Optimum, ~9,000 to ~5,000 years BP, is evident in Northern Hemisphere marine sediment records, but its absence from model simulations raises key questions about the ability of the models to accurately simulate climate and seasonal biases that may be present in the proxy records. Here we present new mid‐Holocene sea surface temperature (SST) data from the western tropical Atlantic, where twentieth‐century temperature variability and amplitude of warming track the twentieth‐century global ocean. Using a new coral thermometer Sr‐U, we first developed a temporal Sr‐U SST calibration from three modern Atlantic corals and validated the calibration against Sr‐U time series from a fourth modern coral. Two fossil corals from the Enriquillo Valley, Dominican Republic, were screened for diagenesis, U‐series dated to 5,199 ± 26 and 6,427 ± 81 years BP, respectively, and analyzed for Sr/Ca and U/Ca, generating two annually resolved Sr‐U SST records, 27 and 17 years long, respectively. Average SSTs from both corals were significantly cooler than in early instrumental (1870–1920) and late instrumental (1965–2016) periods at this site, by ~0.5 and ~0.75 °C, respectively, a result inconsistent with the extended mid‐Holocene warm period inferred from sediment records. A more complete sampling of Atlantic Holocene corals can resolve this issue with confidence and address questions related to multidecadal and longer‐term variability in Holocene Atlantic climate.
    Description: This study was supported by NSF OCE 1747746 to Anne Cohen and by NSF OCE 1805618 to Anne Cohen and Delia Oppo. Eric Loss and his crew on Pangaea Exploration's Sea Dragon enabled fieldwork in Martinique, and George P. Lohman, Thomas DeCarlo, and Hanny Rivera assisted with coral coring. Kathryn Pietro and Julia Middleton assisted in the laboratory, and Louis Kerr provided technical support on the SEM at MBL. Gretchen Swarr provided technical support on the Element and iCap ICPMS at WHOI. We also thank Edwin Hernandez, Jose Morales, and Amos Winter for discussion. All data generated in this study will be made publicly available at http://www.ncdc.noaa.gov/data‐ access/paleoclimatology‐data/datasets
    Keywords: Mid‐Holocene ; Proxy SST ; Sr‐U thermometer ; Tropical Atlantic ; Climatic Optimum ; Coral
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(14), (2019): 8252-8260, doi: 10.1029/2019GL083517.
    Description: Brothers volcano is the most hydrothermally active volcano along the Kermadec arc, with distinct hydrothermal fields located on the caldera walls and on the postcollapse volcanic cones. These sites display very different styles of hydrothermal activity in terms of temperature, gas content, fluid chemistry, and associated mineralization. Here we show the results of a systematic heat flow survey integrated with near‐seafloor magnetic data acquired using remotely operated vehicles and autonomous underwater vehicles. Large‐scale circulation is structurally controlled, with a deep (~1‐ to 2‐km depth) central recharge through the caldera floor and lateral discharge along the caldera walls and at the summits of the postcollapse cones. Shallow (~ 0.1‐0.2 km depth) circulation is characterized by small‐scale recharge zones located at a distance of ~ 0.1–0.2 km from the active vent sites.
    Description: We thank the Captains and crews of the R/V Sonne, Thompson, and Tangaroa and the engineers from Wood Hole Oceanographic Institution and MARUM for the successful operation of ABE, Sentry, Quest 4000, and Jason. The heat flow data surveys were funded by NSF grant OCE‐1558356 (PI Susan Humphris) and a grant from the German Ministry for Education and Research BMBF, project no. 03G0253A (PI Andrea Koschinsky). Funding from the New Zealand Government (Ministry of Business, Innovation and Employment) helped enable this study. This paper was significantly improved by the comments from the Editor Rebecca Carey and from two unknown reviewers. The data used in this paper can be downloaded from the U.S. Lamont‐Doherty MGDS database.
    Description: 2020-01-18
    Keywords: Brothers volcano ; IODP Expedition 376 ; Subduction‐related hydrothermal systems ; Hydrothermal circulation ; Heat flow ; Magnetic anomalies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(15), (2019): 8893-8902, doi:10.1029/2019GL084123.
    Description: Gravity waves impacting ice shelves illicit a suite of responses that can affect ice shelf integrity. Broadband seismometers deployed on the Ross Ice Shelf, complemented by a near‐icefront seafloor hydrophone, establish the association of strong icequake activity with ocean gravity wave amplitudes (AG) below 0.04 Hz. The Ross Ice Shelf‐front seismic vertical displacement amplitudes (ASV) are well correlated with AG, allowing estimating the frequency‐dependent transfer function from gravity wave amplitude to icefront vertical displacement amplitude (TGSV(f)). TGSV(f) is 0.6–0.7 at 0.001–0.01 Hz but decreases rapidly at higher frequencies. Seismicity of strong icequakes exhibits spatial and seasonal associations with different gravity wave frequency bands, with the strongest icequakes observed at the icefront primarily during the austral summer when sea ice is minimal and swell impacts are strongest.
    Description: Bromirski, Gerstoft, and Chen were supported by NSF grant PLR‐1246151. Bromirski also received support from NSF grant OPP‐1744856 and CAL‐DPR‐C1670002. Stephen, Wiens, Aster, and Nyblade were supported under NSF grants PLR‐1246416, 1142518, 1141916, and 1142126, respectively. Lee and Yun were support by a research grant from the Korean Ministry of Oceans and Fisheries (KIMST20190361; PM19020). Seismic instruments and on‐ice support were provided by the Incorporated Research Institutions for Seismology (IRIS) through the PASSCAL Instrument Center at New Mexico Tech. The RIS and KPDR seismic data are archived at the IRIS Data Management Center, http://ds.iris.edu/ds/nodes/dmc/, with network codes XH and KP, respectively. The facilities of the IRIS Consortium are supported by the National Science Foundation under Cooperative Agreement EAR‐1261681 and the DOE National Nuclear Security Administration. We thank Patrick Shore, Michael Baker, Cai Chen, Robert Anthony, Reinhard Flick, Jerry Wanetick, Weisen Shen, Tsitsi Madziwa Nussinov, and Laura Stevens for their help with field operations. Logistical support from the U.S. Antarctica Program and staff at McMurdo Station was critical and is much appreciated.
    Description: 2020-02-01
    Keywords: Icequake ; Ice shelf ; Gravity wave ; Transfer function
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Biogeosciences 124 (2019): 2823-2850, doi:10.1029/2019JG005113.
    Description: Microscopy techniques have been widely applied to observe cellular ultrastructure. Most of these techniques, such as transmission electron microscopy, produce high‐resolution images, but they may require extensive preparation, hampering their application for in vivo examination. Other approaches, such as fluorescent and fluorogenic probes, can be applied not only to fixed specimens but also to living cells when the probes are nontoxic. Fluorescence‐based methods, which are generally relatively easy to use, allow visual and (semi)quantitative studies of the ultrastructural organization and processes of the cell under natural as well as manipulated conditions. To date, there are relatively few published studies on the nearly ubiquitous marine protistan group Foraminifera that have used fluorescent and fluorogenic probes, despite their huge potential. The aim of the present contribution is to document the feasible application of a wide array of these probes to foraminiferal biology. More specifically, we applied fluorescence‐based probes to study esterase activity, cell viability, calcium signaling, pH variation, reactive oxygen species, neutral and polar lipids, lipid droplets, cytoskeleton structures, Golgi complex, acidic vesicles, nuclei, and mitochondria in selected foraminiferal species.
    Description: The authors are very grateful to the Editor‐in‐Chief Miguel Goni and two anonymous reviewers for their thoughtful and valuable comments that have greatly improved the paper. Markus Raitzsch and Karina Kaczmarek from the AWI, Jakub Kordas from the ZOO Wrocław sp. z o. o. (Poland), and Max Janse from The Royal Burgers' Zoo (Arnhem, the Netherlands) are gratefully acknowledged. The authors declare that no competing interests exist. All the data are included within the paper or the supporting information accompanying it. The research for this paper was partially supported by the Ministero dell'Istruzione, dell'Università e della Ricerca (PRIN 2010‐2011 protocollo 2010RMTLYR) to R.C., the Japan Society for the Promotion of Science KAKENHI Grant (Numbers: JP18H06074, JP17H02978, JP19H02009, JP19H03045) to T.T. and Y.N., the WHOI Investment in Science Program to J.M.B, the Polish National Science Center (Grant DEC‐2015/19/B/ST10/01944) J.T. and J.G. and the Kuwait Foundation for the Advancement of Sciences (EM084C) to E.A‐E.
    Description: 2020-02-22
    Keywords: Protist ; Organelles ; Confocal laser scanning microscopy ; Probes ; Foraminifera
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(5), (2019): 3279-3297, doi: 10.1029/2019JC014988.
    Description: Radium isotopes are produced through the decay of thorium in sediments and are soluble in seawater; thus, they are useful for tracing ocean boundary‐derived inputs to the ocean. Here we apply radium isotopes to study continental inputs and water residence times in the Arctic Ocean, where land‐ocean interactions are currently changing in response to rising air and sea temperatures. We present the distributions of radium isotopes measured on the 2015 U.S. GEOTRACES transect in the Western Arctic Ocean and combine this data set with historical radium observations in the Chukchi Sea and Canada Basin. The highest activities of radium‐228 were observed in the Transpolar Drift and the Chukchi shelfbreak jet, signaling that these currents are heavily influenced by interactions with shelf sediments. The ventilation of the halocline with respect to inputs from the Chukchi shelf occurs on time scales of ≤19–23 years. Intermediate water ventilation time scales for the Makarov and Canada Basins were determined to be ~20 and 〉30 years, respectively, while deep water residence times in these basins were on the order of centuries. The radium distributions and residence times described in this study serve as a baseline for future studies investigating the impacts of climate change on the Arctic Ocean.
    Description: We thank the captain and crew of the USCGC Healy (HLY1502) and the chief scientists D. Kadko and W. Landing for coordinating a safe and successful expedition. We thank the members of the pump team, P. Lam, E. Black, S. Pike, X. Yang, and M. Heller for their assistance with sample collection and for their unfailingly positive attitudes during this 65‐day expedition. We also appreciate sampling assistance from P. Aguilar and M. Stephens, and MATLAB assistance from B. Corlett, A. Pacini, P. Lin, and M. Li. The radium data from the HLY1502 expedition are available through the Biological & Chemical Oceanography Data Management Office (https://www.bco‐dmo.org/dataset/718440) and the radium measurements from the SHEBA, AWS‐2000, and SBI expeditions can be found in the supporting information. This work was funded by NSF awards OCE‐1458305 to M.A.C., OCE‐1458424 to W.S.M., and PLR‐1504333 to R.S.P. This research was conducted with Government support under and awarded by a DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship awarded to L.E.K., 32 CFR 168a.
    Description: 2019-10-26
    Keywords: Radium ; Arctic Ocean ; GEOTRACES ; Chukchi shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carter, B. R., Feely, R. A., Wanninkhof, R., Kouketsu, S., Sonnerup, R. E., Pardo, P. C., Sabine, C. L., Johnson, G. C., Sloyan, B. M., Murata, A., Mecking, S., Tilbrook, B., Speer, K., Talley, L. D., Millero, F. J., Wijffels, S. E., Macdonald, A. M., Gruber, N., & Bullister, J. L. Pacific anthropogenic carbon between 1991 and 2017. Global Biogeochemical Cycles, 33(5), (2019):597-617, doi:10.1029/2018GB006154.
    Description: We estimate anthropogenic carbon (Canth) accumulation rates in the Pacific Ocean between 1991 and 2017 from 14 hydrographic sections that have been occupied two to four times over the past few decades, with most sections having been recently measured as part of the Global Ocean Ship‐based Hydrographic Investigations Program. The rate of change of Canth is estimated using a new method that combines the extended multiple linear regression method with improvements to address the challenges of analyzing multiple occupations of sections spaced irregularly in time. The Canth accumulation rate over the top 1,500 m of the Pacific increased from 8.8 (±1.1, 1σ) Pg of carbon per decade between 1995 and 2005 to 11.7 (±1.1) PgC per decade between 2005 and 2015. For the entire Pacific, about half of this decadal increase in the accumulation rate is attributable to the increase in atmospheric CO2, while in the South Pacific subtropical gyre this fraction is closer to one fifth. This suggests a substantial enhancement of the accumulation of Canth in the South Pacific by circulation variability and implies that a meaningful portion of the reinvigoration of the global CO2 sink that occurred between ~2000 and ~2010 could be driven by enhanced ocean Canth uptake and advection into this gyre. Our assessment suggests that the accuracy of Canth accumulation rate reconstructions along survey lines is limited by the accuracy of the full suite of hydrographic data and that a continuation of repeated surveys is a critical component of future carbon cycle monitoring.
    Description: The data we use can be accessed at CCHDO website (https://cchdo.ucsd.edu/) and GLODAP website (https://www.glodap.info/). This research would not be possible without the hard work of the scientists and crew aboard the many repeated hydrographic cruises coordinated by GO‐SHIP, which is funded by NSF OCE and NOAA OAR. We thank funding agencies and program managers as follows: U.S., Australian, Japanese national science funding agencies that support data collection, data QA/QC, and data centers. Contributions from B. R. C., R. A. F., and R. W. are supported by the National Oceanic and Atmospheric Administration Global Ocean Monitoring and Observing Program (Data Management and Synthesis Grant: N8R3CEA‐PDM managed by Kathy Tedesco and David Legler). G. C. J. is supported by the Climate Observation Division, Climate Program Office, National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce and NOAA Research (fund reference 100007298), grant (N8R1SE3‐PGC). B. M. S was supported by the Australian Government Department of the Environment and CSIRO through the Australian Climate Change Science Programme and by the National Environmental Science Program. N. G. acknowledges support by ETH Zurich. This is JISAO contribution 2018‐0149 and PMEL contribution 4786. We fondly remember John Bullister as a treasured friend, valued colleague, and dedicated mentor, and we thank him for sharing his days with us. He is and will be dearly missed.
    Keywords: Anthropogenic carbon ; Pacific ; Decadal variability ; EMLR ; Ocean acidification ; Repeat hydrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Atmospheres, 124(9), (2019): CP3-4861, doi: 10.1029/2018JD028853.
    Description: We investigate the impacts of westward wind events on the Red Sea evaporation using the 35‐year second Modern‐Era Retrospective analysis for Research and Applications reanalysis and a 2‐year‐long record of in situ observations from a heavily instrumented air‐sea interaction mooring. These events are common during boreal winter, and their effects are similar to cold‐air outbreaks that occur in midpolar and subpolar latitudes. They cause extreme heat loss from the sea, which is dominated by latent heat fluxes. Different from cold‐air outbreaks, the intensified heat loss is due to the low relative humidity as we show through latent heat flux decomposition. Rainfall is negligible during these events, and we refer to them as dry‐air outbreaks. We also investigate the general atmospheric circulation pattern that favors their occurrence, which is associated with an intensified Arabian High at the north‐central portion of the Arabian Peninsula—a feature that seems to be an extension of the Siberian High. The analyses reveal that the westward winds over the northern Red Sea and the winter Shamal winds in the Persian Gulf are very likely to be part of the same subsynoptic‐scale feature. The second Modern‐Era Retrospective analysis for Research and Applications reanalysis indicates that the occurrence of westward wind events over the northern Red Sea has grown from 1980 to 2015, especially the frequency of large‐scale events, the cause of which is to be investigated. We hypothesize that dry‐air outbreaks may induce surface water mass transformation in the surface Red Sea Eastern Boundary Current and could represent a significant process for the oceanic thermohaline‐driven overturning circulation.
    Description: We thank the three anonymous reviewers and the associated editor who provided valuable comments that contributed to the improvement of the present paper. We wish to acknowledge the use of the Ferret program (NOAA/PMEL) and NCL (doi: 10.5065/D6WD3XH5) for analysis and graphics in this paper. We thanks Julie Hildebrandt for helping with the final manuscript version, Marcio Vianna for fruitful discussion about this work, and Stephen Swift for pointing out the long time series from Yenbo and Wejh at the National Climatic Data Center (NCDC/NOAA). We acknowledge the Global Modeling and Assimilation Office (GMAO) and the Goddard Earth Sciences Data and Information Services Center (GESDISC) for the dissemination of MERRA‐2 reanalysis and the NCDC/NOAA for making the Global Surface Summary of the Day freely and easily available on the internet. MERRA‐2 and QuikSCAT winds at 25 and 12.5 km data are available online (https://disc.gsfc.nasa.gov/datareleases/merra_2_data_release; www.remss.com/missions/qscat/; and https://podaac.jpl.nasa.gov, respectively). The in situ data from the WHOI/KAUST mooring is available at a WHOI repository (http://uop.whoi.edu/projects/kaust/form.php) and provided solely for academic and research purposes. The mooring data collected during the WHOI‐KAUST collaboration was made possible by award USA00001, USA00002, and KSA00011 to the WHOI by the KAUST in the Kingdom of Saudi Arabia. This work was supported by NSF grant OCE‐1435665 and NASA grant NNX14AM71G.
    Description: 2019-10-01
    Keywords: Latent heat flux ; Heat loss ; Outbreak ; Saudi Arabian High ; MERRA‐2 ; Shamal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters, 46(9), (2019):4790-4798, doi:10.1029/2019GL081939.
    Description: The East Asian Monsoon (EAM) impacts storms, freshwater availability, wind energy production, coal consumption, and subsequent air quality for billions of people across Asia. Despite its importance, the EAM's long‐term behavior is poorly understood. Here we present an annually resolved record of EAM variance from 1584 to 1950 based on radiocarbon content in a coral from the coast of Vietnam. The coral record reveals previously undocumented centennial scale changes in EAM variance during both the summer and winter seasons, with an overall decline from 1600 to the present. Such long‐term variations in monsoon variance appear to reflect independent seasonal mechanisms that are a combination of changes in continental temperature, the strength of the Siberian High, and El Niño–Southern Oscillation behavior. We conclude that the EAM is an important conduit for propagating climate signals from the tropics to higher latitudes.
    Description: Thanks go to G. Williams, W. Tak‐Cheung, and J. Ossolinski. Thanks also go to V. Lee, S. H. Ng for coral sampling, and B. Buckley for conversations. This research was supported by the National Research Foundation Singapore NRF Fellowship scheme awarded to N. Goodkin (National Research Fellowship award NRFF‐2012‐03) and administered by the Earth Observatory of Singapore and the Singapore Ministry of Education under the Research Centers of Excellence initiative. The research was also supported by the Singapore Ministry of Education Academic Research Fund Tier 2 (award MOE2016‐T2‐1‐016). Data are available in Table S1 and the NOAA paleoclimate database.
    Keywords: East Asian Monsoon ; Coral ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-06-10
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Isotopic constraints on nitrogen transformation rates in the deep sedimentary marine biosphere. Global Biogeochemical Cycles, 32, (2018):1688–1702., doi: 10.1029/2018GB005948.
    Description: Little is known about the nature of microbial community activity contributing to the cycling of nitrogen in organic-poor sediments underlying the expansive oligotrophic ocean gyres. Here we use pore water concentrations and stable N and O isotope measurements of nitrate and nitrite to constrain rates of nitrogen cycling processes over a 34-m profile from the deep North Atlantic spanning fully oxic to anoxic conditions. Using a 1-D reaction-diffusion model to predict the distribution of nitrogen cycling rates, results converge on two distinct scenarios: (1) an exceptionally high degree of coupling between nitrite oxidation and nitrate reduction near the top of the anoxic zone or (2) an unusually large N isotope effect (~60‰) for nitrate reduction that is decoupled from the corresponding O isotope effect, which is possibly explained by enzyme-level interconversion between nitrite and nitrate.
    Description: Samples analyzed for this study were collected during the final expedition of the RV Knorr, KN223. The expedition would not have been possible without the captain and crew of the RV Knorr and the efforts of the shipboard science party. We would like to acknowledge Robert Pockalny for planning and facilitating the expedition. Inorganic geochemistry sample collection, processing, and analysis were performed shipboard by Arthur Spivack,Dennis Graham, Chloe Anderson, Emily Estes, Kira Homola, Claire McKinley, Theodore Present, and Justine Sauvage. Coring capabilities were provided by the Oregon State University and Woods Hole Oceanographic Institute Coring Facilities, directed and funded by the U. S. National Science Foundation (NSF) Ship Facilities Program. The cored materials and discrete samples from the expedition are curated and stored by the Marine Geological Samples Laboratory at the University of Rhode Island, codirected by Rebecca Robinson and Katherine Kelly and funded by the NSF Ocean Sciences Division. The nutrient and isotope data from pore waters in this study will be available at The Biological and Chemical Data Management Office (https://www.bcodmo.org/project/567401). This project was partially funded by an NSF CDEBI postdoctoral fellowship to C. Buchwald. Portions of this material are based upon work supported while R. W. M. was serving at the National Science Foundation.
    Description: 2019-04-18
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(12), (2019): 6786-6795, doi:10.1029/2019GL082075.
    Description: Denitrification in the anoxic sediments of the Santa Barbara Basin has been well documented in the historic and modern record, but the regulation of and frequency with which denitrification occurs in the overlying water column are less understood. Since 2004, the magnitude and speciation of redox active nitrogen species in bottom waters have changed markedly. Most notable are periods of decreased nitrate and increased nitrite concentrations. Here we examine these changes in nitrogen cycling as recorded by the stable isotopes of dissolved nitrate from 2010–2016. When compared to previous studies, our data identify an increase in water column denitrification in the bottom waters of the basin. Observations from inside the basin as well as data from the wider California Current Ecosystem implicate a long‐term trend of decreasing oxygen concentrations as the driver for these observed changes, with ramifications for local benthic communities and regional nitrogen loss.
    Description: We thank CalCOFI and Shonna Dovel for sample collection and two anonymous reviewers for improving the manuscript. Thanks also to Daniel Sigman for useful discussions, and Zoe Sandwith and Jen Karolewski for help with sample analysis. Data sets presented here were supported in part by CCE‐LTER augmented funding (NSF grant OCE‐1026607). Additional funding came from the Edna Bailey Sussman Foundation and the San Diego Foundation Blasker Environment grant. All data can be accessed at http://calcofi.org and https://oceaninformatics.ucsd.edu/datazoo/catalogs/ccelter/datasets. SDW acknowledges the support of a fellowship through the Hanse‐Wissenschaftskolleg (Institute for Advanced Studies).
    Description: 2019-12-11
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 57(2), (2019): 316-375, doi:10.1029/2019RG000644.
    Description: By synthesizing recent studies employing a wide range of approaches (modern observations, paleo reconstructions, and climate model simulations), this paper provides a comprehensive review of the linkage between multidecadal Atlantic Meridional Overturning Circulation (AMOC) variability and Atlantic Multidecadal Variability (AMV) and associated climate impacts. There is strong observational and modeling evidence that multidecadal AMOC variability is a crucial driver of the observed AMV and associated climate impacts and an important source of enhanced decadal predictability and prediction skill. The AMOC‐AMV linkage is consistent with observed key elements of AMV. Furthermore, this synthesis also points to a leading role of the AMOC in a range of AMV‐related climate phenomena having enormous societal and economic implications, for example, Intertropical Convergence Zone shifts; Sahel and Indian monsoons; Atlantic hurricanes; El Niño–Southern Oscillation; Pacific Decadal Variability; North Atlantic Oscillation; climate over Europe, North America, and Asia; Arctic sea ice and surface air temperature; and hemispheric‐scale surface temperature. Paleoclimate evidence indicates that a similar linkage between multidecadal AMOC variability and AMV and many associated climate impacts may also have existed in the preindustrial era, that AMV has enhanced multidecadal power significantly above a red noise background, and that AMV is not primarily driven by external forcing. The role of the AMOC in AMV and associated climate impacts has been underestimated in most state‐of‐the‐art climate models, posing significant challenges but also great opportunities for substantial future improvements in understanding and predicting AMV and associated climate impacts.
    Description: We thank the joint support from the US AMOC Science Team and the U.K.‐U.S. RAPID program for this review paper. The HADISST data set used in Figure 2 can be downloaded from https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html. Y. ‐O. K. is supported by the National Science Foundation (NSF; OCE‐1242989) and Department of Energy (DE‐SC0019492). S. G. Y. is partially supported by the NSF Collaborative Research EaSM2 grant OCE‐1243015. G. D. and S. G. Y. are supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement 1852977. D. E. A. was supported by an NSF postdoctoral fellowship. We would like to thank Ulysses Ninnemann and Nil Irvali for providing Figure 19. We thank Mike Winton and Xiaoqin Yan for the internal review of the manuscript.
    Keywords: Atlantic Meridional Overturning Circulation ; Atlantic Multidecadal Variability ; Decadal Predictability ; Climate Impacts ; Paleo Reconstructions ; Climate Model Biases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 5067-5084, doi: 10.1029/2018JC014688.
    Description: Changes in the rate of ocean‐driven basal melting of Antarctica's ice shelves can alter the rate at which the grounded ice sheet loses mass and contributes to sea level change. Melt rates depend on the inflow of ocean heat, which occurs through steady circulation and eddy fluxes. Previous studies have demonstrated the importance of eddy fluxes for ice shelves affected by relatively warm intrusions of Circumpolar Deep Water. However, ice shelves on cold water continental shelves primarily melt from dense shelf water near the grounding line and from light surface water at the ice shelf front. Eddy effects on basal melt of these ice shelves have not been studied. We investigate where and when a regional ocean model of the Ross Sea resolves eddies and determine the effect of eddy processes on basal melt. The size of the eddies formed depends on water column stratification and latitude. We use simulations at horizontal grid resolutions of 5 and 1.5 km and, in the 1.5‐km model, vary the degree of topography smoothing. The higher‐resolution models generate about 2–2.5 times as many eddies as the low‐resolution model. In all simulations, eddies cross the ice shelf front in both directions. However, there is no significant change in basal melt between low‐ and high‐resolution simulations. We conclude that higher‐resolution models (〈1 km) are required to better represent eddies in the Ross Sea but hypothesize that basal melt of the Ross Ice Shelf is relatively insensitive to our ability to fully resolve the eddy field.
    Description: This research was funded by NSF's Antarctic Research Program (ANT‐0944174, ANT‐0944165, and ANT‐1443677), Ocean Sciences Program (OCE‐1357522), and by the Future of Ice Initiative at the University of Washington. It was supported by the Turing High Performance Computing Cluster at Old Dominion University. S. M. acknowledges the support of her dissertation committee. Portions of this work appear in S. M.'s PhD thesis. The eddy tracking code and specific version of ROMS are on S. M.'s github (https://github.com/mnemoniko). Forcing files to run the simulations described are in three separate records on zenodo.org under DOIs 10.5281/zenodo.2649541, 10.5281/zenodo.2649547, and 10.5281/zenodo.2650294. We thank three anonymous reviewers for their helpful suggestions.
    Description: 2020-01-04
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(7), (2019): 6625-6652, doi: 10.1029/2019JB017611.
    Description: The Southeastern United States is an ideal location to understand the interactions between mountain building, rifting, and magmatism. Line 2 of the Suwannee suture and Georgia Rift basin refraction seismic experiment in eastern Georgia extends 420 km from the Inner Piedmont to the Georgia coast. We model crustal and upper mantle VP and upper crustal VS. The most dramatic model transition occurs at the Higgins‐Zietz magnetic boundary, north of which we observe higher upper crustal VP and VS and lower VP/VS. These observations support the interpretation of the Higgins‐Zietz boundary as the Alleghanian suture. North of this boundary, we observe a low‐velocity zone less than 2 km thick at ~5‐km depth, consistent with a layer of sheared metasedimentary rocks that forms the Appalachian detachment. To the southeast, we interpret synrift sediments and decreasing crustal thickness to represent crustal thinning associated with the South Georgia Rift Basin and subsequent continental breakup. The correspondence of the northern limit of thinning with the interpreted suture location suggests that the orogenic suture zone and/or the Gondwanan crust to the south of the suture helped localize subsequent extension. Lower crustal VP and VP/VS preclude volumetrically significant mafic magmatic addition during rifting or associated with the Central Atlantic Magmatic Province. Structures formed during orogenesis and/or extension appear to influence seismicity in Georgia today; earthquakes localize along a steeply dipping zone that coincides with the northern edge of the South Georgia Basin and the change in upper crustal velocities at the Higgins‐Zietz boundary.
    Description: The SUGAR experiment would not have been possible without the help of local landowners, county and state officials, the University of Texas El Paso seismic source facility, IRIS PASSCAL instrument center, and the team of students who scouted, deployed, and recovered the geophones. We thank Jim Knapp, Susie Boote, and Ross Cao for helpful discussion and providing the sonic log data from GGS‐3080; Lindsay Worthington for discussion and sharing codes; Bradley Hacker and Mark Behn for sharing their lower crust velocity constraints; Emily Hopper and Karen Fischer for discussions; and Fred Cook for an image of processed COCORP data. We used the PyVM toolbox from Nathan Miller, the VMTomo code from Alistair Harding for tomographic inversions, VMTomo code from Harm van Avendonk for resolution tests, and the Upicker package of MATLAB scripts maintained by W. Wilcock to pick arrivals. Seismic Unix was used for data processing (Cohen & Stockwell, 2002). This project was funded by an NSF GRFP fellowship DGE 16‐44869 and a grant from the National Science Foundation's Division of Earth Sciences (NSF‐EAR) EarthScope program through the collaborative awards EAR‐1144534, EAR‐1144829, and EAR‐1144391. Robert Hawman and two anonymous reviewers provided thorough feedback that improved this manuscript. The refraction seismic data set analyzed in the current study is available on request through the IRIS Data Management Center, report number 14‐023 (http://ds.iris.edu/ds/nodes/dmc/forms/assembled‐data/). The velocity model grid files and arrival picks are available in the supporting information.
    Description: 2019-12-24
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019):2072-2087, doi:10.1029/2018JC014586.
    Description: Infragravity waves have received the least study of any class of waves in the deep ocean. This paper analyzes a 389‐day‐long deep ocean pressure record from the Hawaii Ocean Mixing Experiment for the presence of narrowband (≲2 μHz) components and nonstationarity over 400–4,000 μHz using a combination of fitting a mixture noncentral/central χ2 model to spectral estimates, high‐resolution multitaper spectral estimation, and computation of the offset coherence between distinct frequencies for a given data segment. In the frequency band 400–1,000 μHz there is a noncentral fraction of 0.67 ± 0.07 that decreases with increasing frequency. Evidence is presented for the presence of tidal harmonics in the data over the 400‐ to 1,400‐μHz bands. Above ~2,000 μHz the noncentral fraction rises with frequency, comprising about one third of the spectral estimates over 3,000–4,000 μHz. The power spectrum exhibits frequent narrowband peaks at 6–11 standard deviations above the noise level. The widths of the peaks correspond to a Q of at least 1,000, vastly exceeding that of any oceanic or atmospheric process. The offset coherence shows that the spectral peaks have substantial (p = 0.99–0.9999) interfrequency correlation, both locally and between distinct peaks within a given analysis band. Many of the peak frequencies correspond to the known values for solar pressure modes that have previously been observed in solar wind and terrestrial data, while others are the result of nonstationarity that distributes power across frequency. Overall, this paper documents the existence of two previously unrecognized sources of infragravity wave variability in the deep ocean.
    Description: This work was supported at WHOI by an Independent Research and Development award and the Walter A. and Hope Noyes Smith Chair for Excellence in Oceanography. At the University of Hawaii, Martin Guiles provided a number of consequential data analyses, and work was supported by NSF‐OCE1460022. D. J. T. acknowledges support from Queen's University and NSERC. The data used in this study are available from the supporting information.
    Description: 2019-08-20
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters, 46(9), (2019):4894-4903, doi:10.1029/2019GL082015.
    Description: The largest contributor to the planetary energy imbalance is well‐mixed greenhouse gases (GHGs), which are partially offset by poorly mixed (and thus northern midlatitude dominated) anthropogenic aerosols (AAs). To isolate the effects of GHGs and AAs, we analyze data from the CMIP5 historical (i.e., all natural and anthropogenic forcing) and single forcing (GHG‐only and AA‐only) experiments. Over the duration of the historical experiment (1861–2005) excess heat uptake at the top of the atmosphere and ocean surface occurs almost exclusively in the Southern Hemisphere, with AAs canceling the influence of GHGs in the Northern Hemisphere. This interhemispheric asymmetry in surface heat uptake is eliminated by a northward oceanic transport of excess heat, as there is little hemispheric difference in historical ocean heat storage after accounting for ocean volume. Data from the 1pctCO2 and RCP 8.5 experiments suggests that the future storage of excess heat will be skewed toward the Northern Hemisphere oceans.
    Description: We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. CMIP data can be accessed at the ESGF website (https://esgfnode.llnl.gov/projects/esgfllnl/). For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We also thank Paola Petrelli from the ARC Centre of Excellence for Climate Extremes, for her assistance with downloading/managing the CMIP5 data archive at the National Computational Infrastructure.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters, 46(10), (2019): 5351-5360, doi: 10.1029/2019GL083073.
    Description: Monthly observations are used to study the relationship between the Atlantic meridional overturning circulation (AMOC) at 26° N and sea level (ζ) on the New England coast (northeastern United States) over nonseasonal timescales during 2004–2017. Variability in ζ is anticorrelated with AMOC on intraseasonal and interannual timescales. This anticorrelation reflects the stronger underlying antiphase relationship between ageostrophic Ekman‐related AMOC transports due to local zonal winds across 26° N and ζ changes arising from local wind and pressure forcing along the coast. These distinct local atmospheric variations across 26° N and along coastal New England are temporally correlated with one another on account of large‐scale atmospheric teleconnection patterns. Geostrophic AMOC contributions from the Gulf Stream through the Florida Straits and upper‐mid‐ocean transport across the basin are together uncorrelated with ζ. This interpretation contrasts with past studies that understood ζ and AMOC as being in geostrophic balance with one another.
    Description: This work was supported by NSF awards OCE‐1558966, OCE‐1834739, and OCE‐1805029; NASA contract NNH16CT01C; and the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists at the Woods Hole Oceanographic Institution. Helpful comments from Magdalena Andres and two anonymous reviewers are acknowledged. Tide‐gauge sea level data were provided by the Permanent Service for Mean Sea Level (www.psmsl.org). Observations of the overturning circulation were taken from the RAPID data download page (www.rapid.ac.uk/data.php). Time series of the North Atlantic Oscillation and Arctic Oscillation were downloaded from the National Oceanic and Atmospheric Administration Earth System Research Laboratory Physical Sciences Division website (www.esrl.noaa.gov/psd/). Reanalysis wind stress and air pressure fields were provided by the Community Storage Server at Woods Hole Oceanographic Institution (http://cmip5.whoi.edu/).
    Description: 2019-11-01
    Keywords: Coastal sea level ; Atlantic meridional overturning circulation ; Large‐scale ocean circulation ; North Atlantic Ocean ; North Atlantic Oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(2), (2019):1889-1909, doi:10.1029/2018JB016451.
    Description: Plate formation and evolution processes are predicted to generate upper mantle seismic anisotropy and negative vertical velocity gradients in oceanic lithosphere. However, predictions for upper mantle seismic velocity structure do not fully agree with the results of seismic experiments. The strength of anisotropy observed in the upper mantle varies widely. Further, many refraction studies observe a fast direction of anisotropy rotated several degrees with respect to the paleospreading direction, suggesting that upper mantle anisotropy records processes other than 2‐D corner flow and plate‐driven shear near mid‐ocean ridges. We measure 6.0 ± 0.3% anisotropy at the Moho in 70‐Ma lithosphere in the central Pacific with a fast direction parallel to paleospreading, consistent with mineral alignment by 2‐D mantle flow near a mid‐ocean ridge. We also find an increase in the strength of anisotropy with depth, with vertical velocity gradients estimated at 0.02 km/s/km in the fast direction and 0 km/s/km in the slow direction. The increase in anisotropy with depth can be explained by mechanisms for producing anisotropy other than intrinsic effects from mineral fabric, such as aligned cracks or other structures. This measurement of seismic anisotropy and gradients reflects the effects of both plate formation and evolution processes on seismic velocity structure in mature oceanic lithosphere, and can serve as a reference for future studies to investigate the processes involved in lithospheric formation and evolution.
    Description: We thank the Captain and crew of the R/V Marcus G. Langseth and the engineers and technicians from the Scripps Institution of Oceanography and the Woods Hole Oceanographic Institution, who provided the instruments through the National Science Foundation's Ocean Bottom Seismograph Instrument Pool (OBSIP). The professionalism and expertise of these individuals were key to the success of this experiment. We also thank Donna Blackman, Tom Brocher, Philip Skemer, and an anonymous reviewer for their thoughtful comments which greatly improved this paper. The OBS data described here are archived at the IRIS Data Management Center (http://www.iris.edu) under network code ZA 2011–2013. The travel time picks are archived in the Marine‐Geo Digital Library (http://www.marine‐geo.org/library/) with the DOI 10.1594/IEDA/324643. This work was supported by NSF grant OCE‐0928663 to D. Lizarralde, J. Collins, and R. Evans; NSF grant OCE‐0927172 to G. Hirth; NSF grant OCE‐0928270 to J. Gaherty; and an NSF Graduate Research Fellowship to H. Mark.
    Description: 2019-07-28
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 142(2), (2019):1430-1442, doi:10.1029/2018JB016899.
    Description: We report an experimental investigation of the electrical properties of natural polycrystalline lawsonite from Reed Station, CA. Lawsonite represents a particularly efficient water reservoir in subduction contexts, as it can carry about 12 wt % water and is stable over a wide pressure range. Experiments were performed from 300 to about 1325 °C and under pressure from 1 to 10 GPa using a multi‐anvil apparatus. We observe that temperature increases lawsonite conductivity until fluids escape the cell after dehydration occurs. At a fixed temperature of 500 °C, conductivity measurements during compression indicate electrical transitions at about 4.0 and 9.7 GPa that are consistent with crystallographic transitions from orthorhombic C to P and from orthorhombic to monoclinic systems, respectively. Comparison with lawsonite structure studies indicates an insignificant temperature dependence of these crystallographic transitions. We suggest that lawsonite dehydration could contribute to (but not solely explain) high conductivity anomalies observed in the Cascades by releasing aqueous fluid at a depth (~50 km) consistent with the basalt‐eclogite transition. In subduction settings where the incoming plate is older and cooler (e.g., Japan), lawsonite remains stable to great depth. In these cooler settings, lawsonite could represent a vehicle for deep water transport and the subsequent triggering of melt that would appear electrically conductive, though it is difficult to uniquely identify the contributions from lawsonite on field electrical profiles in these more deep‐seated domains.
    Description: A. P. acknowledges financial support from UCSD‐SIO startup funds, NSF‐EAR Petrology and Geochemistry (grant 1551200), and NSF‐COMPRES IV EOID subaward. The use of the COMPRES Cell Assembly Project was also supported by COMPRES under NSF Cooperative Agreement EAR 1661511. Q. W. acknowledges support from NSF EAR‐1620423. We thank Kurt Leinenweber for fruitful discussion, Jake Perez for technical help in the lab, and Sabine Faulhaber (UCSD Nano‐Engineering Department) for technical assistance with SEM images and EDS analyses. We also thank two reviewers for detailed comments that improved the manuscript. All the electrical data used for Figures 4 and 5 are available in the supporting information.
    Description: 2019-08-27
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(3), (2019): 1679-1698, doi:10.1029/2018JC014759.
    Description: The characteristics and seasonality of the Svalbard branch of the Atlantic Water (AW) boundary current in the Eurasian Basin are investigated using data from a six‐mooring array deployed near 30°E between September 2012 and September 2013. The instrument coverage extended to 1,200‐m depth and approximately 50 km offshore of the shelf break, which laterally bracketed the flow. Averaged over the year, the transport of the current over this depth range was 3.96 ± 0.32 Sv (1 Sv = 106 m3/s). The transport within the AW layer was 2.08 ± 0.24 Sv. The current was typically subsurface intensified, and its dominant variability was associated with pulsing rather than meandering. From late summer to early winter the AW was warmest and saltiest, and its eastward transport was strongest (2.44 ± 0.12 Sv), while from midspring to midsummer the AW was coldest and freshest and its transport was weakest (1.10 ± 0.06 Sv). Deep mixed layers developed through the winter, extending to 400‐ to 500‐m depth in early spring until the pack ice encroached the area from the north shutting off the air‐sea buoyancy forcing. This vertical mixing modified a significant portion of the AW layer, suggesting that, as the ice cover continues to decrease in the southern Eurasian Basin, the AW will be more extensively transformed via local ventilation.
    Description: We are grateful to the crew of the R/V Lance for the collection of the data. The U.S. component of A‐TWAIN was funded by the National Science Foundation under grant ARC‐1264098 as well as a grant from the Steven Grossman Family Foundation. The Norwegian component of A‐TWAIN was funded by the “Arctic Ocean” flagship program at the Fram Centre. The data used in this study are available at http://atwain.whoi.edu and data.npolar.no (Sundfjord et al., 2017). The data from Fram Strait are available at https://doi.pangaea.de/10.1594/PANGAEA.853902
    Description: 2019-08-15
    Keywords: Atlantic Water ; Svalbard branch ; A‐TWAIN ; seasonality ; Arctic Ocean ; Fram Strait branch
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(2), (2019):863-881, doi:10.1029/2018JC014604.
    Description: Pacific Winter Water (PWW) enters the western Arctic Ocean from the Chukchi Sea; however, the physical mechanisms that regulate its circulation within the deep basin are still not clear. Here, we investigate the interannual variability of PWW with a comprehensive data set over a decade. We quantify the thickening and expansion of the PWW layer during 2002–2016, as well as its changing pathway. The total volume of PWW in the Beaufort Gyre (BG) region is estimated to have increased from 3.48 ± 0.04 × 1014 m3 during 2002–2006 to 4.11 ± 0.02 × 1014 m3 during 2011–2016, an increase of 18%. We find that the deepening rate of the lower bound of PWW is almost double that of its upper bound in the northern Canada Basin, a result of lateral flux convergence of PWW (via lateral advection of PWW from the Chukchi Borderland) in addition to the Ekman pumping. In particular, of the 70‐m deepening of PWW at its lower bound observed over 2003–2011 in the northwestern basin, 43% resulted from lateral flux convergence. We also find a redistribution of PWW in recent years toward the Chukchi Borderland associated with the wind‐driven spin‐up and westward shift of the BG. Finally, we hypothesize that a recently observed increase of lower halocline eddies in the BG might be explained by this redistribution, through a compression mechanism over the Chukchi Borderland.
    Description: Three anonymous reviewers provided helpful comments and suggestions, which greatly improved this manuscript. We thank John Marshall (MIT) and Georgy Manucharyan (Caltech) for valuable discussions and inputs. We thank Peigen Lin (WHOI), Qinyu Liu, and Jinping Zhao (OUC) for helpful discussions. The Matlab wind rose toolbox is written by Daniel Pereira. This study is supported by the National Key Basic Research Program of China (Program 973) (2015CB953900; 2018YFA0605901), the Key Project of Chinese Natural Science Foundation (41330960), and the National Natural Science Foundation of China (41706211 and 41776192), the Office of Naval Research (grant N00014‐12‐1‐0112), the NSF Office of Polar Programs (PLR‐1416920, PLR‐1503298, PLR‐1602985, PLR‐1603259, ARC‐1203425, and NSF‐1602926). Wenli Zhong (201606335011) is supported by the China Scholarship Council for his studies in APL. We appreciate Andrey Proshutinsky and Rick Krishfield (WHOI) for providing the Beaufort Gyre Exploration Project data publicly at http://www.whoi.edu/website/beaufortgyre/. The Ice‐Tethered Profiler data were collected and made available by the Ice‐Tethered Profiler Program (Krishfield et al., 2008; Toole et al., 2011) based at the Woods Hole Oceanographic Institution (http://www.whoi.edu/itp). The Monthly Isopycnal/Mixed‐layer Ocean Climatology (MIMOC) data are available at https://www.pmel.noaa.gov/mimoc/. The monthly Arctic Dynamic Ocean Topography data are distributed by CPOM (http://www.cpom.ucl.ac.uk/dynamic_topography/). The IBCAO Bathymetry data are available from NASA (http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html). The Data‐Interpolating Variational Analysis method is publicly available at http://modb.oce.ulg.ac.be/mediawiki/index.php/DIVA.
    Description: 2019-07-16
    Keywords: Beaufort Gyre ; Pacific Winter Water ; PWW pathway ; lower halocline eddies ; western Arctic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(2), (2019):821-843, doi:10.1029/2018JC014568.
    Description: Shifting baselines in the Arctic atmosphere‐sea ice‐ocean system have significant potential to alter biogeochemical cycling and ecosystem dynamics. In particular, the impact of increased open water duration on lower trophic level productivity and biological CO2 sequestration is poorly understood. Using high‐resolution observations of surface seawater dissolved O2/Ar and pCO2 collected in the Pacific Arctic in October 2011 and 2012, we evaluate spatial variability in biological metabolic status (autotrophy vs heterotrophy) as constrained by O2/Ar saturation (∆O2/Ar) as well as the relationship between net biological production and the sea‐air gradient of pCO2 (∆pCO2). We find a robust relationship between ∆pCO2 and ∆O2/Ar (correlation coefficient of −0.74 and −0.61 for 2011 and 2012, respectively), which suggests that biological production in the late open water season is an important determinant of the air‐sea CO2 gradient at a timeframe of maximal ocean uptake for CO2 in this region. Patchiness in biological production as indicated by ∆O2/Ar suggests spatially variable nutrient supply mechanisms supporting late season growth amidst a generally strongly stratified and nutrient‐limited condition.
    Description: We thank the Captain, crew, and marine technicians of the USCGC Healy for their shipboard support. We also thank anonymous reviewers for providing useful feedback that improved this manuscript. This work was supported by NSF awards 1232856 and 1504394 to L.W.J. T.T. was supported by a grant NA150AR4320064 from Climate Program Office/NOAA and R.P. by NSF PLR‐1504333 and OPP‐1702371. All O2 and O2/Ar data and metadata are available at Arcticdata.io, doi:10.18739/A21G22, and pCO2 data are available at www.ldeo.columbia.edu/CO2 as well as from the NOAA National Centers for Environmental Information Ocean Carbon Data System at https://www.nodc.noaa.gov/ocads/.
    Description: 2019-07-10
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 33(2), (2019): 181-199. doi:10.1029/2018GB005983.
    Description: One pathway of the biological pump that remains largely unquantified in many export models is the active transport of carbon from the surface ocean to the mesopelagic by zooplankton diel vertical migration (DVM). Here, we develop a simple representation of zooplankton DVM and implement it in a global export model as a thought experiment to illustrate the effects of DVM on carbon export and mesopelagic biogeochemistry. The model is driven by diagnostic satellite measurements of net primary production, algal biomass, and phytoplankton size structure. Due to constraints on available satellite data, the results are restricted to the latitude range from 60°N to 60°S. The modeled global export flux from the base of the euphotic zone was 6.5 PgC/year, which represents a 14% increase over the export flux in model runs without DVM. The mean (± standard deviation, SD) proportional contribution of the DVM‐mediated export flux to total carbon export, averaged over the global domain and the climatological seasonal cycle, was 0.16 ± 0.04 and the proportional contribution of DVM activity to total respiration within the twilight zone was 0.16 ± 0.06. Adding DVM activity to the model also resulted in a deep local maximum in the oxygen utilization profile. The model results were most sensitive to the assumptions for the fraction of individuals participating in DVM, the fraction of fecal pellets produced in the euphotic zone, and the fraction of grazed carbon that is metabolized.
    Description: Support for this work came from the National Science Foundation (OCE‐1434000 and OCE‐1657803) and the National Aeronautics and Space Administration (NASA) as part of the EXport Processes in the global Ocean from RemoTe Sensing (EXPORTS) field campaign (grant 80NSSC17K0692) and the North Atlantic Aerosol and Marine Ecosystems Study (NAAMES, grants NNX15AE72G and 80NSSC18K0018). The satellite data used as drivers for the model are available as supporting information. The World Ocean Atlas data (World Ocean Atlas 2009, Annual Climatology, 1 degree, Temperature, Salinity, Oxygen) containing temperature and oxygen measurements can be downloaded from the ERDAPP data server (https://coastwatch.pfeg.noaa.gov/erddap/index.html).
    Description: 2019-07-19
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(4), (2019): 3320-3334, doi:10.1029/2018JB017236.
    Description: We present a method to calculate landslide hazard curves along offshore margins based on size distributions of submarine landslides. The method utilizes 10 different continental margins that were mapped by high‐resolution multibeam sonar with landslide scar areas measured by a consistent Geographic Information System procedure. Statistical tests of several different probability distribution models indicate that the lognormal model is most appropriate for these siliciclastic environments, consistent with an earlier study of the U.S. Atlantic margin (Chaytor et al., 2009, https://doi.org/10.1016/j.margeo.2008.08.007). Parameter estimation is performed using the maximum likelihood technique, and confidence intervals are determined using likelihood profiles. Pairwise comparison of size distributions for the 10 margins indicates that the U.S. Atlantic and Queen Charlotte margins are different than most other margins. These margins represent end‐members, with the U.S. Atlantic margin having the highest mean scar area and the Queen Charlotte margin the lowest. We demonstrate that empirical, offshore landslide hazard curves can be developed from the landslide size distributions, if the duration of mapped landslide activity is known. This study indicates that the shape parameter of the size distribution is similar among all 10 margins, and thus, the shape of the hazard curves is also similar. Significant differences in hazard curves among the margins are therefore related to differences in mean sizes and, potentially, differences in the duration of landslide activity.
    Description: The authors gratefully acknowledge the constructive comments of this manuscript by Joshu Mountjoy, Tom Parsons, and anonymous reviewer. We also thank Yehuda Ben Zion for managing this manuscript and the scientists who provided the bathymetry data. Margin and landslide polygon shape files and information on bathymetry data sources are available at GSA Repository item number 2016187.
    Description: 2019-10-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters, 46(9), (2019):4664-4673, doi:10.1029/2019GL082201.
    Description: Accretion of the lower crust at mid‐ocean ridges is a debated topic, with modern seismic observations pointing to a complex magmatic system that includes an axial multisill system of middle‐ and lower‐crustal melt lenses and near‐ and off‐axis melt bodies. Here we revisit the hot spot‐influenced section of the western Galápagos Spreading Centre and reprocess multichannel seismic reflection data using a wide‐angle seismic tomography model. Our new images show that the magma reservoir in the lower crust at this ridge section is intruded with partially molten melt lenses. The images also show evidence for off‐axis melt lenses, magmatic‐hydrothermal interactions and Moho reflections in this region. We conclude that the similarities between the axial crustal structure of this hot spot‐influenced mid‐ocean ridge and the multisill magmatic structure imaged at the East Pacific Rise indicate that these features are common along the global mid‐ocean ridge system where seafloor spreading is dominated by magmatic accretion.
    Description: Seismic data used in this study are available at https://doi.org/10.1594/IEDA/314480 (Detrick & Sinton, 2014). Data processing was conducted with Emerson‐Paradigm Software package Echos licensed to Woods Hole Oceanographic Institution under Paradigm Academic Software Program. B. B. is funded by the Graduate School of the National Oceanography Centre Southampton UK. We thank two anonymous reviewers for their constructive and insightful comments that helped us in improving the manuscript and A. S. Soule for fruitful discussions.
    Description: 2019-10-29
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(10), (2019): 5369-5377, doi: 10.1029/2019GL082078.
    Description: Seasonal evolution of the barrier layer (BL) and temperature inversion in the northern Bay of Bengal and their role on the mixed layer temperature (MLT) is examined using observations from a single Argo during December 2013 to July 2017. During fall, low salinity at surface generates BL in this region. It thickens to almost 80 m in winter enhanced by deepening of isothermal layer depth due to remote forcing. During winter, surface cooling lowers near‐surface temperature, and thus, the subsurface BL experiences a significant temperature inversion (~2.5 °C). This temperature inversion diffuses to distribute heat within ML and surface heating begins deep penetration of shortwave radiation through ML during spring. Hence, the ML becomes thermally well stratified, resulting in the warmest MLT. The Monin‐Obukhov length attains its highest value during summer indicating wind dominance in the ML. During spring and fall, upper ocean gains heat allowing buoyancy to dominate over wind mixing.
    Description: A. S. and S. S. thank financial support from Space Application Centre (SAC), Indian Space Research Organization (ISRO), Government of India (Grant: SAC/EPSA/4.19/2016). This study was also supported by the first phase of Ministry of Earth Sciences (MoES), Government of India grant to establish a Bay of Bengal Coastal Observatory (BOBCO) at IITBBS (Grant: RP088). Authors acknowledged NCPOR Contribution number J ‐ 03/2019‐20 for this work. The authors are grateful to the reviewers and the Editor for constructive suggestions. The figures are generated using Matlab. The data source and availability are given in the Text S1.
    Description: 2019-10-24
    Keywords: Argo ; Bay of Bengal ; mixed layer ; temperature inversion ; barrier layer ; Monin‐Obukhov length
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4696-4709, doi: 10.1029/2019JC015022.
    Description: The Beaufort Gyre is a key feature of the Arctic Ocean, acting as a reservoir for freshwater in the region. Depending on whether the prevailing atmospheric circulation in the Arctic is anticyclonic or cyclonic, either a net accumulation or release of freshwater occurs. The sources of freshwater to the Arctic Ocean are well established and include contributions from the North American and Eurasian Rivers, the Bering Strait Pacific water inflow, sea ice meltwater, and precipitation, but their contribution to the Beaufort Gyre freshwater accumulation varies with changes in the atmospheric circulation. Here we use a Lagrangian backward tracking technique in conjunction with the 1/12‐degree resolution Nucleus for European Modelling of the Ocean model to investigate how sources of freshwater to the Beaufort Gyre have changed in recent decades, focusing on increase in the Pacific water content in the gyre between the late 1980s and early 2000s. Using empirical orthogonal functions we analyze the change in the Arctic oceanic circulation that occurred between the 1980s and 2000s. We highlight a “waiting room” advective pathway that was present in the 1980s and provide evidence that this pathway was caused by a shift in the center of Ekman transport convergence in the Arctic. We discuss the role of these changes as a contributing factor to changes in the stratification, and hence potentially the biology, of the Beaufort Gyre region.
    Description: The underpinning high‐resolution NEMO simulation was performed using the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). ARIANE simulations were performed using the JASMIN data analysis environment (http://www.jasmin.ac.uk). Lagrangian analysis was carried out using computational tool ARIANE developed by B. Blanke and N. Grima. Arctic dynamic topography/geostrophic currents data were provided by the Centre for Polar Observation and Modelling, University College London (www.cpom.ucl.ac.uk/dynamic_topography; Armitage et al., 2016). The funding for A. Proshutinsky was provided by the NSF under grants supporting the Beaufort Gyre Observing System since 2003 (1845877, 1719280, 1604085) and by the Woods Hole Oceanographic Institution. Y. Aksenov was supported from the NERC Program “The North Atlantic Climate System Integrated Study (ACSIS), NE/N018044/1 and from the project “Advective pathways of nutrients and key ecological substances in the Arctic (APEAR)” NE/R012865/1, as a part of the joint UK/Germany “Changing Arctic Ocean” Programme. A. Yool and E. Popova were supported by NERC grants CLASS NE/R015953/1, and National Capability in Ocean Modelling. We acknowledge the FAMOS (http://web.whoi.edu/famos/) program for providing a framework for many fruitful discussions which thoroughly enhanced this work. Finally, we thank the two anonymous reviewers who greatly improved this work with their insightful input.
    Description: 2019-12-26
    Keywords: Beaufort Gyre ; Lagrangian modeling ; NEMO ; particle tracking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(7), (2019): 4433-4448, doi: 10.1029/2018JC014508.
    Description: Yu et al. (2017, https://doi.org/10.1002/2017GL075772) reported that the annual mean sea surface salinity maximum (SSS‐max) in the North Atlantic expanded northward by 0.35 ± 0.11° per decade over the 34‐year data record (1979–2012). The expansion shifted and expanded the ventilation zone northward and increased the production of the Subtropical Underwater (STUW). As a result, the STUW became deeper, thicker, and saltier. In this study, the seasonal characteristics of the poleward expansion of the North Atlantic SSS‐max and their effects on the STUW are examined. The results show that the SSS‐max expansion occurred primarily during boreal spring (April, May, and June) and expanded northward by 0.43 ± 0.21° per decade over the 34‐year period. The annual volume of the STUW increased by 0.21 ± 0.09 1014 m3 per decade over the same period, and the spring (April, May, and June) volume increased by 0.31 ± 0.02 1014 m3 per decade (a relative increase of 48 ± 1%). The characteristics of the decadal changes in STUW were attributable to the increased subduction rate associated with the northward expansion of the SSS‐max. The annual subduction rate increased by 0.29 ± 0.07 Sv per decade over the 34 years, and the greatest increase of 1.73 ± 0.61 Sv per decade occurred in April. The change in subduction associated with the expansion of the SSS‐max appeared to be consistent with the Atlantic Multidecadal Oscillation.
    Description: Most of the work was conducted at the Woods Hole Oceanographic Institution, while H. Liu was a guest student sponsored by the China Scholarship Council (201506330001). H. Liu thanks Drs. Ruixin Huang and Xiangze Jin for discussions on the computation of the STUW formation and subduction rates. The Ishii subsurface salinity and temperature analysis data sets were downloaded from https://rda.ucar.edu/datasets/ds285.3/. The EN4 data set is available at https://www.metoffice.gov.uk/hadobs/en4/download‐en4‐2‐1.html. The LEGOS SSS is accessible from http://www.legos.obs‐mip.fr/observations/sss/datadelivery/products.The OAFlux vector wind analysis is available at http://oaflux.whoi.edu. The NAO index was downloaded from https://www.ncdc.noaa.gov/teleconnections/nao/. The AMO index is available at https://www.esrl.noaa.gov/psd/data/timeseries/AMO/. X. Lin is supported by China's National Key Research and Development Projects (2016YFA0601803) in addition to the National Natural Science Foundation of China (41521091 and U1606402) and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01).
    Description: 2019-12-11
    Keywords: Subtropical Underwater ; salinity maximum ; decadal variability ; subduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Umling, N. E., Oppo, D. W., Chen, P., Yu, J., Liu, Z., Yan, M., Gebbie, G., Lund, D. C., Pietro, K. R., Jin, Z. D., Huang, K., Costa, K. B., & Toledo, F. A. L. Atlantic circulation and ice sheet influences on upper South Atlantic temperatures during the last deglaciation. Paleoceanography and Paleoclimatology, 34(6), (2019): 990-1005, doi:10.1029/2019PA003558.
    Description: Atlantic Meridional Overturning Circulation (AMOC) disruption during the last deglaciation is hypothesized to have caused large subsurface ocean temperature anomalies, but records from key regions are not available to test this hypothesis, and other possible drivers of warming have not been fully considered. Here, we present the first reliable evidence for subsurface warming in the South Atlantic during Heinrich Stadial 1, confirming the link between large‐scale heat redistribution and AMOC. Warming extends across the Bølling‐Allerød despite predicted cooling at this time, thus spanning intervals of both weak and strong AMOC indicating another forcing mechanism that may have been previously overlooked. Transient model simulations and quasi‐conservative water mass tracers suggest that reduced northward upper ocean heat transport was responsible for the early deglacial (Heinrich Stadial 1) accumulation of heat at our shallower (~1,100 m) site. In contrast, the results suggest that warming at our deeper site (~1,900 m) site was dominated by southward advection of North Atlantic middepth heat anomalies. During the Bølling‐Allerød, the demise of ice sheets resulted in oceanographic changes in the North Atlantic that reduced convective heat loss to the atmosphere, causing subsurface warming that overwhelmed the cooling expected from an AMOC reinvigoration. The data and simulations suggest that rising atmospheric CO2 did not contribute significantly to deglacial subsurface warming at our sites.
    Description: We thank H. Abrams, G. Swarr, and J. Watson for technical assistance. This work was funded by the U.S. National Science Foundation grant OCE15‐558341, the Investment in Science Fund at the Woods Hole Oceanographic Institution, and an Australian Research Council Future Fellowship (FT140100993). The data are included in the supporting information and are available online (https://www.ncdc.noaa.gov/paleo/study/26530).
    Keywords: Brazil margin ; Atlantic Meridional Overturning Circulation ; deglacial ; South Atlantic temperatures ; Mg/Li ; Cd/Ca
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Biogeosciences 124(5), (2019): 1265-1277, doi:10.1029/2018JG004920.
    Description: Tidal wetland fluxes of particulate organic matter and carbon (POM, POC) are important terms in global budgets but remain poorly constrained. Given the link between sediment fluxes and wetland stability, POM and POC fluxes should also be related to stability. We measured POM and POC fluxes in eight microtidal salt marsh channels, with net POM fluxes ranging between −121 ± 33 (export) and 102 ± 28 (import) g OM·m−2·year−1 and net POC fluxes ranging between −52 ± 14 and 43 ± 12 g C·m−2·year−1. A regression employing two measures of stability, the unvegetated‐vegetated marsh ratio (UVVR) and elevation, explained 〉95% of the variation in net fluxes. The regression indicates that marshes with lower elevation and UVVR import POM and POC while higher elevation marshes with high UVVR export POM and POC. We applied these relationships to marsh units within Barnegat Bay, New Jersey, USA, finding a net POM import of 2,355 ± 1,570 Mg OM/year (15 ± 10 g OM·m−2·year−1) and a net POC import of 1,263 ± 632 Mg C/year (8 ± 4 g C·m−2·year−1). The magnitude of this import was similar to an estimate of POM and POC export due to edge erosion (−2,535 Mg OM/year and − 1,291 Mg C/year), suggesting that this system may be neutral from a POM and POC perspective. In terms of a net budget, a disintegrating wetland should release organic material, while a stable wetland should trap material. This study quantifies that concept and demonstrates a linkage between POM/POC flux and geomorphic stability.
    Description: Use of brand names is for identification purposes only and does not constitute endorsement by the U.S. Government. This study was supported by the USGS Coastal and Marine Geology Program, the Department of the Interior Hurricane Sandy Recovery program (GS2‐2D), and the USGS Mendenhall Post‐doctoral Research Program. Viktoria Unger and Paula Zelanko are acknowledged for field and lab assistance. Core collection was funded under NJ SeaGrant/NOAA Grant 6210‐0011. Gil Pontius provided helpful feedback on statistical measures. Kevin Kroeger and two anonymous reviewers provided constructive reviews of the manuscript. All time series and water sample data are available at the U.S. Geological Survey's Oceanographic Time‐Series Data Collection (at https://stellwagen.er.usgs.gov/).
    Description: 2019-10-23
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Centennial Fall Meeting, San Francisco, CA, USA, 2019-12-09-2019-12-13American Geophysical Union
    Publication Date: 2023-06-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2023-02-21
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(8), (2019): 5313-5335, doi:10.1029/2019JC015014.
    Description: The Lagrangian method—where current location and intensity are determined by tracking the movement of flow along its path—is the oldest technique for measuring the ocean circulation. For centuries, mariners used compilations of ship drift data to map out the location and intensity of surface currents along major shipping routes of the global ocean. In the mid‐20th century, technological advances in electronic navigation allowed oceanographers to continuously track freely drifting surface buoys throughout the ice‐free oceans and begin to construct basin‐scale, and eventually global‐scale, maps of the surface circulation. At about the same time, development of acoustic methods to track neutrally buoyant floats below the surface led to important new discoveries regarding the deep circulation. Since then, Lagrangian observing and modeling techniques have been used to explore the structure of the general circulation and its variability throughout the global ocean, but especially in the Atlantic Ocean. In this review, Lagrangian studies that focus on pathways of the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC), both observational and numerical, have been gathered together to illustrate aspects of the AMOC that are uniquely captured by this technique. These include the importance of horizontal recirculation gyres and interior (as opposed to boundary) pathways, the connectivity (or lack thereof) of the AMOC across latitudes, and the role of mesoscale eddies in some regions as the primary AMOC transport mechanism. There remain vast areas of the deep ocean where there are no direct observations of the pathways of the AMOC.
    Description: The authors extend their thanks to Xiaobiao Xu for valuable comments on the first draft of this manuscript. A. B. (WHOI), H. F., M. S. L., N. F., and K. D. were supported by Overturning in the Subpolar North Atlantic Program grants OCE‐1259618, OCE‐1259013, and OCE‐1259102 from the U.S. National Science Foundation. S. Z. was supported by the Climate Program Office of the National Oceanic and Atmospheric Administration under award NA16OAR4310168. M. L. was supported through the MOVE project, funded by NOAA's Global Ocean Monitoring and Observing Program under award NA15OAR4320071. A. B. (GEOMAR) and S. R. received funding from the Cluster of Excellence 80 “The Future Ocean” within the framework of the Excellence Initiative by the Deutsche Forschungsgemeinschaft (DFG) on behalf of the German federal and state governments (grant CP1412) and by the German Federal Ministry of Education and Research (BMBF) for the SPACES projects AGULHAS (grant 03F0750A) and CASISAC (grant 03F0796A). No new data are reported in this project. The data mentioned in the text may be found in repositories cited in each previously published paper cited in this review manuscript.
    Keywords: Floats ; Drifters ; Lagrangian methods ; AMOC ; Atlantic Ocean ; Numerical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(3), (2019):1702-1708. doi:10.1029/2018GL081087.
    Description: After leaving the U.S. East Coast, the northward flowing Gulf Stream (GS) becomes a zonal jet and carries along its frontal characteristics of strong flow and sea surface temperature gradients into the North Atlantic at midlatitudes. The separation location where it leaves the coast is also an anchor point for the wintertime synoptic storm track across North America to continue to develop and head across the ocean. We examine the meridional variability of the separated GS path on interannual to decadal time scales as an agent for similar changes in the storm track and blocking variability at midtroposphere from 1979 to 2012. We find that periods of northerly (southerly) GS path are associated with increased (suppressed) excursions of the synoptic storm track to the northeast over the Labrador Sea and reduced (enhanced) Greenland blocking. In both instances, GS shifts lead those in the midtroposphere by a few months.
    Description: Our research has been conducted with the support of NSF (AGS‐1355339, OCE‐1419235, and OCE‐1242989), NASA (NNX13AM59G), and NOAA CPO Climate Variability and Predictability Program (NA13OAR4310139) grants to the Woods Hole Oceanographic Institution. We also thank three reviewers for their insightful comments on an earlier draft of this manuscript. Quarterly estimates of our Gulf Stream Index are available as a data file in the supporting information.
    Description: 2019-07-29
    Keywords: Gulf Stream path changes ; Wintertime atmospheric storm track ; Greenland blocking ; Intrerannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(5), (2019):2704-2714, doi:10.1029/2019GL081919.
    Description: Seismic images and glider sections of the Gulf Stream front along the U.S. eastern seaboard capture deep, lens‐shaped submesoscale features. These features have radii of 5–20 km, thicknesses of 150–300 m, and are located at depths greater than 500 m. These are typical signatures of anticyclonic submesoscale coherent vortices. A submesoscale‐resolving realistic simulation, which reproduces submesoscale coherent vortices with the same characteristics, is used to analyze their generation mechanism. Submesoscale coherent vortices are primarily generated where the Gulf Stream meets the Charleston Bump, a deep topographic feature, due to the frictional effects and intense mixing in the wake of the topography. These submesoscale coherent vortices can transport waters from the Charleston Bump's thick bottom mixed layer over long distances and spread them within the subtropical gyre. Their net effect on heat and salt distribution remains to be quantified.
    Description: J. G. gratefully acknowledges support from the French government, managed by the French National Agency for Research (ANR), through programs ISblue (ANR‐17‐EURE‐0015) and LabexMER (ANR‐10‐LABX‐19) and from LEFE/IMAGO through the project AO2017‐994457‐RADII. Simulations were performed using HPC resources from GENCI‐TGCC (grant 2017‐A0010107638). Simulations output is available upon request. Seismic data were processed using the Echos software package by Paradigm, Matlab, and Generic Mapping Tools. The Eastern North America Margin Community Seismic Experiment was funded by the National Science Foundation under grant OCE‐1347498 and UNOLS; cruise data are freely available via the Marine Geoscience Data System Academic Seismic Portal at Lamont‐Doherty Earth Observatory (http://www.marine-geo.org/portals/seismic/). Spray glider observations in the Gulf Stream are available from http://spraydata.ucsd.edu and should be cited using the following DOI (10.21238/S8SPRAY2675; Todd & Owens, 2016). Spray glider operations were funded by the National Science Foundation (OCE‐1633911) and the Office of Naval Research (N000141713040).
    Description: 2019-08-27
    Keywords: Submesoscale coherent vortices ; Glider ; Seismic observations ; Gulf Stream ; Topographic interactions ; Charleston Bump
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-10-26
    Description: A© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cedarholm, E. R., Rypina, I. I., Macdonald, A. M., & Yoshida, S. Investigating subsurface pathways of Fukushima cesium in the Northwest Pacific. Geophysical Research Letters, 46(12), (2019): 6821-6829, doi:10.1029/2019GL082500.
    Description: Advective pathways for Fukushima Daiichi Nuclear Power Plant (FDNPP)‐derived cesium observed in 2013 at 166°E south of the Kuroshio Extension (KE) at 〉500 m on the 26.5σθ isopycnal are investigated. Attention is paid to the KE's role in shaping these pathways. Using a high‐resolution model, particle trajectories were simulated backward and forward in time on 26.5σθ between the 2013 observations and the 2011 source. A large fraction of backtracked trajectories interacted with the mixed layer just offshore of the FDNPP. The likeliest pathway reaching the deepest 2013 observed cesium location runs along the KE out to ~165°E, where it turns sharply southward. Forward trajectory statistics suggest that for 26.5σθ waters originating north of the KE, this current acted as a permeable barrier west of 155–160°E. The deepest 2011 model mixed layers suggest that FDNPP‐derived radionuclides may have been present at 30°N in 2013 at greater depths and densities (700 m; 26.8σθ).
    Description: We would like to thank our two anonymous reviewers for their insightful suggestions that improved this paper. Work by Cedarholm on this project was supported by the WHOI Summer Student Fellowship program and was her UNH senior Capstone project. Rypina, Macdonald, and Yoshida acknowledge salary and project support from the National Science Foundation (NSF) grant OCE‐1356630. Additionally, Rypina would like to acknowledge support from NSF grant OCE‐1558806. CLIVAR PO2 and P10 observations, data sets 318M20130321 and 49NZ2012011, were obtained from the CCHDO (https://cchdo.ucsd.edu/) and the HYCOM output, data set GLBa0.08 expt_90.0v, from https://www.hycom.org/. Argo profiles were obtained from http://www.argodatamgt.org, the ISAS‐15 0.5°gridded Argo‐data‐alone product from https://www.seanoe.org, and delayed‐time allsat AVISO gridded surface velocity estimates from http://marine.copernicus.eu. Extended acknowledgements in Text S4.
    Keywords: Fukushima tracer ; Transport across Kuroshio Extension current ; Subsurface pathways and barriers ; Mode waters ; Particle tracking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(6), (2019): 3987-4002, doi:10.1029/2019JC015134.
    Description: Mooring data from September 2011 to July 2013 on the Iceland slope north of Denmark Strait are analyzed to better understand the structure and variability of the North Icelandic Jet (NIJ). Three basic configurations of the flow were identified: (1) a strong separated East Greenland Current (EGC) on the mid‐Iceland slope coincident with a weak NIJ on the upper slope, (2) a merged separated EGC and NIJ, and (3) a strong NIJ located at its climatological mean position, coincident with a weak signature of the separated EGC at the base of the Iceland slope. Our study reveals that the NIJ‐dominant scenario was present during different times of the year for the two successive mooring deployments—appearing mainly from September to February the first year and from January to July the second year. Furthermore, when this scenario was active it varied on short timescales. An energetics analysis demonstrates that the high‐frequency variability is driven by mean‐to‐eddy baroclinic conversion at the shoreward edge of the NIJ, consistent with previous modeling work. The seasonal timing of the NIJ dominant scenario is investigated in relation to the atmospheric forcing upstream of Denmark Strait. The resulting lagged correlations imply that strong turbulent heat fluxes in a localized region on the continental slope of Iceland, south of the Spar Fracture zone, lead to a stronger NIJ dominant state with a two‐month lag. This can be explained dynamically in terms of previous modeling work addressing the circulation response to dense water formation near an island.
    Description: The authors thank the crew members of the R/V Knorr, RRS James Clark Ross, and R/V Bjarni Sæmundsson for the deployment and recovery of the moorings. D. Torres and F. Bahr processed the second year of mooring data. We thank K. Våge, B. Harden, Z. Song, J. Li, and M. Li for helpful discussions regarding the work. Funding was provided by the National Science Foundation under grants OCE‐1558742 (J. H., R. P., P. L., and M. S.) and OCE‐1534618 (M. S.). The mooring data are available at http://kogur.whoi.edu/php/index.php.
    Description: 2019-12-04
    Keywords: North Icelandic Jet ; Denmark Strait Overflow Water ; Baroclinic instability ; Island flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Earth and Space Science, 6(7), (2019): 1220-1233, doi:10.1029/2018EA000436.
    Description: Ocean evaporative fluxes are a critical component of the Earth's energy and water cycle, but their estimation remains uncertain. Near‐surface humidity is a required input to bulk flux algorithms that relate mean surface values to the turbulent fluxes. Several satellite‐derived turbulent flux products have been developed over the last decade that utilize passive microwave imager observations to estimate the surface humidity. It is known, however, that these estimates tend to diverge from one another and from in situ observations. Analysis of current state‐of‐the‐art satellite estimates provided herein reveals that regional‐scale biases in these products remain significant. Investigations reveal a link between the spatial coherency of the observed biases to atmospheric dynamical controls of water vapor vertical stratification, cloud liquid water, and sea surface temperature. This information is used to develop a simple state‐dependent bias correction that results in more consistent ocean surface humidity estimates. A principal conclusion is that further improvements to ocean near‐surface humidity estimation using microwave radiometers requires incorporation of prior information on water vapor stratification and sea surface temperature.
    Description: Data products used in this study are made publicly available via multiple repositories hosted by individual data product producers. JOFUROv2 and JOFUROv3 data are available online (https://j‐ofuro.scc.u‐tokai.ac.jp/en/). IFREMERv4 and NOCS surface data are available through the OceanHeatFlux project (https://www.ifremer.fr/oceanheatflux/Data). GSSTFv3 (doi:10.5067/MEASURES/GSSTF/DATA301) and MERRA‐2 data are obtained from the Goddard Earth Sciences Data and Information Services Center. HOAPSv3.2 data are available from Satellite Application Facility on Climate Monitoring (https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V001). SEAFLUXv2 data are accessed through the National Centers for Environmental Information (http://doi.org/10.7289/V59K4885). Daily surface observations were provided by David Berry and Elizabeth Kent. This work is supported under the NASA Physical Oceanography Program Grant NNX14AK48A.
    Keywords: Humidity ; Passive microwave ; Ocean ; Turbulent fluxes ; Evaporation ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 20XX. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(12), (2019): 6435-6442, doi:10.1029/2019GL082523.
    Description: Acoustic Doppler current profiler and conductivity‐temperature‐depth data acquired in Yellowstone Lake reveal the presence of a buoyant plume above the “Deep Hole” hydrothermal system, located southeast of Stevenson Island. Distributed venting in the ~200 × 200‐m hydrothermal field creates a plume with vertical velocities of ~10 cm/s in the mid‐water column. Salinity profiles indicate that during the period of strong summer stratification the plume rises to a neutral buoyancy horizon at ~45‐m depth, corresponding to a ~70‐m rise height, where it generates an anomaly of ~5% (−0.0014 psu) relative to background lake water. We simulate the plume with a numerical model and find that a heat flux of 28 MW reproduces the salinity and vertical velocity observations, corresponding to a mass flux of 1.4 × 103 kg/s. When observational uncertainties are considered, the heat flux could range between 20 to 50 MW.
    Description: The authors thank Yellowstone National Park Fisheries and Aquatic Sciences, The Global Foundation for Ocean Exploration, and Paul Fucile for logistical support. This research was supported by the National Science Foundation grants EAR‐1516361 to R. S., EAR‐1514865 to K. L., and EAR‐1515283 to R. H. and J. F. All work in Yellowstone National Park was completed under an authorized Yellowstone research permit (YELL‐2018‐SCI‐7018). CTD and ADCP profiles reported in this paper are available through the Marine Geoscience Data System (doi:10.1594/IEDA/324713 and doi:10.1594/IEDA/324712, accessed last on 17 April 2019, respectively).
    Description: 2019-11-09
    Keywords: Hydrothermal plume
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32(12), (2019): 1759-1775, doi:10.1029/2018GB006026.
    Description: Karst subterranean estuaries (KSEs) extend into carbonate platforms along 12% of all coastlines. A recent study has shown that microbial methane (CH4) consumption is an important component of the carbon cycle and food web dynamics within flooded caves that permeate KSEs. In this study, we obtained high‐resolution (~2.5‐day) temporal records of dissolved methane concentrations and its stable isotopic content (δ13C) to evaluate how regional meteorology and hydrology control methane dynamics in KSEs. Our records show that less methane was present in the anoxic fresh water during the wet season (4,361 ± 89 nM) than during the dry season (5,949 ± 132 nM), suggesting that the wet season hydrologic regime enhances mixing of methane and other constituents into the underlying brackish water. The δ13C of the methane (−38.1 ± 1.7‰) in the brackish water was consistently more 13C‐enriched than fresh water methane (−65.4 ± 0.4‰), implying persistent methane oxidation in the cave. Using a hydrologically based mass balance model, we calculate that methane consumption in the KSE was 21–28 mg CH4·m−2·year−1 during the 6‐month dry period, which equates to ~1.4 t of methane consumed within the 102‐ to 138‐km2 catchment basin for the cave. Unless wet season methane consumption is much greater, the magnitude of methane oxidized within KSEs is not likely to affect the global methane budget. However, our estimates constrain the contribution of a critical resource for this widely distributed subterranean ecosystem.
    Description: Funding for T. M. I. and D. B. was provided by TAMU‐CONACYT (project 2015‐049). D. B. was supported by the Research‐in‐Residence program (NSF award 1137336, Inter‐university Training in Continental‐scale Ecology), the Boost Fellowship (Texas A&M University at Galveston), and the Postdoctoral Scholar Program by Woods Hole Oceanographic Institution and U.S. Geological Survey. We thank Jacob Pohlman and István Brankovits for assistance with field expeditions. Special thanks to the late Bil Phillips (Speleotech) for the support and expertise provided us during field operations. We also thank Pete van Hengstum for productive discussions and guidance during the development of the manuscript. Michael Casso and Adrian Green helped with laboratory analyses. The manuscript was greatly improved by helpful comments from an anonymus reviewer, Jeff Chanton, and Meagan Gonneea. This work is contribution number UMCES 5541. Any use of trade names is for descriptive purposes and does not imply endorsement by the U.S. Government. The authors declare no competing financial interests. Archival data are available through the USGS ScienceBase‐Catalog at https://doi.org/10.5066/P9U0KRVM.
    Keywords: Subterranean estuary ; Coastal aquifer ; Carbon cycling ; Methane ; Hydrobiogeochemistry ; Anchialine ecosystem
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(7) (2019): 3927-3935, doi: 10.1029/2018GL081593.
    Description: Climate model simulations of the summer South Asian monsoon predict increased rainfall in response to anthropogenic warming. However, instrumental data show a decline in Indian rainfall in recent decades, underscoring the critical need for additional, independent records of past monsoon variability. Here, we present new reconstructions of annual summer South Asian Monsoon circulation over the past 250 years, based on the geochemical barium‐calcium signature of dust present in Red Sea corals. These records reveal how monsoon circulation has evolved with warming climate and indicate a significant multi‐century long monsoon intensification, with decreased multidecadal variance. Stronger monsoon circulation would have increased the moisture transport from the Arabian Sea and Bay of Bengal over the Indian subcontinent. If these trends continue, the monsoon circulation and associated moisture transport and precipitation will remain strong and stable for several decades.
    Description: We thank Editor Valerie Trouet and two anonymous reviewers for their constructive comments. We gratefully acknowledge Justin Ossolinski for assistance during core drilling; Maureen Auro, Laura Robinson, and Tom Marchitto for use of lab space and for technical advice; Margaret Sulanowska for providing XRD analysis of dust samples; and Sujata Murty and Ryan Davis for assistance in the lab. We thank Falmouth Hospital for use of X‐ray equipment. We acknowledge the use of the NSF‐supported WHOI ICP‐MS facility and thank Scot Birdwhistell for his assistance. This research was supported by grants to K. A. H. from NSF award OCE‐1031288 and KAUST award USA00002, and by a WHOI Postdoctoral Fellowship awarded to S. P. B. All data presented in this manuscript will be made publicly available online through the NOAA NCDC Paleoclimatology data archive (https://www.ncdc.noaa.gov/data‐access/paleoclimatology‐data/).
    Description: 2019-09-28
    Keywords: Paleoclimatology ; Climate variability ; Aerosols and particles ; Major and trace element geochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(6), (2019):3398-3407, doi:10.1029/2018GL080890.
    Description: The hazards posed by infrequent major floods to communities along the Susquehanna River and the ecological health of Chesapeake Bay remain largely unconstrained due to the short length of streamgage records. Here we develop a history of high‐flow events on the Susquehanna River during the late Holocene from flood deposits contained in MD99‐2209, a sediment core recovered in 26 m of water from Chesapeake Bay near Annapolis, Maryland, United States. We identify coarse‐grained deposits left by Hurricane Agnes (1972) and the Great Flood of 1936, as well as during three intervals that predate instrumental flood records (~1800–1500, 1300–1100, and 400–0 CE). Comparison to sedimentary proxy data (pollen and ostracode Mg/Ca ratios) from the same core site indicates that prehistoric flooding on the Susquehanna often accompanied cooler‐than‐usual winter/spring temperatures near Chesapeake Bay—typical of negative phases of the North Atlantic Oscillation and conditions thought to foster hurricane landfalls along the East Coast.
    Description: This work was supported by the USGS Land Change Science Program and Northeast Region. We appreciated the assistance of Brian Buczkowski, Andrew Zimmerman, and John Bratton in locating archived core materials and data sets. We thank John Jackson and Bryan Landacre for assistance with XRD and pollen analysis, respectively. We thank two anonymous reviewers, Lynn Wingard (USGS), and Rob Stamm (USGS) for their helpful feedback on earlier versions of this manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Data generated for this report can be found in the accompanying supporting information.
    Description: 2019-08-19
    Keywords: Hurricane ; Flood ; Holocene ; East coast ; River ; Chesapeake
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32(12), (2019): 1738-1758, doi:10.1029/2018GB005994.
    Description: Sinking particles strongly regulate the distribution of reactive chemical substances in the ocean, including particulate organic carbon and other elements (e.g., P, Cd, Mn, Cu, Co, Fe, Al, and 232Th). Yet, the sinking fluxes of trace elements have not been well described in the global ocean. The U.S. GEOTRACES campaign in the North Atlantic (GA03) offers the first data set in which the sinking flux of carbon and trace elements can be derived using four different radionuclide pairs (238U:234Th ;210Pb:210Po; 228Ra:228Th; and 234U:230Th) at stations co‐located with sediment trap fluxes for comparison. Particulate organic carbon, particulate P, and particulate Cd fluxes all decrease sharply with depth below the euphotic zone. Particulate Mn, Cu, and Co flux profiles display mixed behavior, some cases reflecting biotic remineralization, and other cases showing increased flux with depth. The latter may be related to either lateral input of lithogenic material or increased scavenging onto particles. Lastly, particulate Fe fluxes resemble fluxes of Al and 232Th, which all have increasing flux with depth, indicating a dominance of lithogenic flux at depth by resuspended sediment transported laterally to the study site. In comparing flux estimates derived using different isotope pairs, differences result from different timescales of integration and particle size fractionation effects. The range in flux estimates produced by different methods provides a robust constraint on the true removal fluxes, taking into consideration the independent uncertainties associated with each method. These estimates will be valuable targets for biogeochemical modeling and may also offer insight into particle sinking processes.
    Description: This study grew out of a synthesis workshop at the Lamont‐Doherty Earth Observatory of Columbia University in August 2016. This workshop was sponsored by the U.S. GEOTRACES Project Office (NSF 1536294) and the Ocean Carbon and Biogeochemistry (OCP) Project Office (NSF 1558412 and NASA NNX17AB17G). The U.S. National Science Foundation supported all of the analytical work on GA03. Kuanbo Zhou measured 228Th in the large size class particles (NSF 0925158 to WHOI). NSF 1061128 to Stony Brook University supported the BaRFlux project, for which Chistina Heilbrun is acknowledged for laboratory and field work. The lead author acknowledges support from a start‐up grant from the University of Southern Mississippi. Two anonymous reviewers are thanked for their constructive comments. All GEOTRACES GA03 data used in this study are accessible through the Biological and Chemical Oceanography Data Management Office (http://data.bco‐dmo.org/jg/dir/BCO/GEOTRACES/NorthAtlanticTransect/), and derived parameters are reported in the supporting information.
    Description: 2019-05-22
    Keywords: Biological carbon pump ; Trace metals ; North Atlantic ; Export ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bodini, N., Lundquist, J. K., & Kirincich, A. US East Coast lidar measurements show offshore wind turbines will encounter very low atmospheric turbulence. Geophysical Research Letters, 46(10), (2019):5582-5591, doi:10.1029/2019GL082636.
    Description: The rapid growth of offshore wind energy requires accurate modeling of the wind resource, which can be depleted by wind farm wakes. Turbulence dissipation rate (ϵ) governs the accuracy of model predictions of hub‐height wind speed and the development and erosion of wakes. Here we assess the variability of turbulence kinetic energy and ϵ using 13 months of observations from a profiling lidar deployed on a platform off the Massachusetts coast. Offshore, ϵ is 2 orders of magnitude smaller than onshore, with a subtle diurnal cycle. Wind direction influences the annual cycle of turbulence, with larger values in winter when the wind flows from the land, and smaller values in summer, when the wind flows from open ocean. Because of the weak turbulence, wind plant wakes will be stronger and persist farther downwind in summer.
    Description: Collection of the wind data was funded by the Massachusetts Clean Energy Center through agreements with WHOI and AWS Truepower. The authors appreciate the efforts of the MVCO/ASIT technicians and AWS staff who collected the data. This analysis was supported by the National Science Foundation CAREER Award (AGS‐1554055) to J. K. L. and N. B., and by internal funds from WHOI for A. K. This work was authored (in part) by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract DE‐AC36‐08GO28308. Funding was provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid‐up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. The lidar observations used here are described at https://www.masscec.com/masscec-metocean-data-initiative, and available at https://doi.org/10.26025/1912/24050. The postprocessed data and the scripts used for the Figures of the present paper can be found at https://github.com/nicolabodini/GRL_OffshoreTurbulence.
    Description: 2019-11-01
    Keywords: Turbulence ; Offshore wind energy ; Lidar ; Wakes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(4), (2019):2750-2768, doi: 10.1029/2018JC014635.
    Description: The advances in the modern sea level observing system have allowed for a new level of knowledge of regional and global sea level in recent years. The combination of data from satellite altimeters, Gravity Recovery and Climate Experiment (GRACE) satellites, and Argo profiling floats has provided a clearer picture of the different contributors to sea level change, leading to an improved understanding of how sea level has changed in the present and, by extension, may change in the future. As the overlap between these records has recently extended past a decade in length, it is worth examining the extent to which internal variability on timescales from intraseasonal to decadal can be separated from long‐term trends that may be expected to continue into the future. To do so, a combined modal decomposition based on cyclostationary empirical orthogonal functions is performed simultaneously on the three data sets, and the dominant shared modes of variability are analyzed. Modes associated with the trend, seasonal signal, El Niño–Southern Oscillation, and Pacific decadal oscillation are extracted and discussed, and the relationship between regional patterns of sea level change and their associated global signature is highlighted.
    Description: The satellite altimetry grids are available from NASA JPL/PO.DAAC at the following location: https://podaac.jpl.nasa.gov/dataset. GRACE land water storage data are available at http://grace.jpl.nasa.gov, supported by the NASA MEaSUREs Program. The gridded fields based on Argo data used to compute the steric sea level data are available at http://www.argo.ucsd.edu/Gridded_fields.html. The gridded fields based on Argo data used to compute the steric sea level data are available at http://www.argo.ucsd.edu/Gridded_fields.html. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. B. D. H., F. W. L., J. T. R., and P. R. T. acknowledge support from NASA grant 80NSSC17K0564 (NASA Sea Level Change Team). C. G. P. acknowledges support from NSF awards OCE‐1558966 and OCE‐1834739. K. Y. K. was partially supported for this research by the National Science Foundation of Korea under the grant NRF‐ 2017R1A2B4003930.
    Description: 2019-09-21
    Keywords: Sea level ; Regional ; Global ; Variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(4), (2019):2861-2875, doi: 10.1029/2018JC014175.
    Description: Strong variability in sea surface salinity (SSS) in the Eastern Tropical Pacific (ETPac) on intraseasonal to interannual timescales was studied using data from the Soil Moisture and Ocean Salinity, Soil Moisture Active Passive, and Aquarius satellite missions. A zonal wave number‐frequency spectral analysis of SSS reveals a dominant timescale of 50–180 days and spatial scale of 8°–20° of longitude with a distinct seasonal cycle and interannual variability. This intraseasonal SSS signal is detailed in the study of 19 individual ETPac eddies over 2010–2016 identified by their sea level anomalies, propagating westward at a speed of about 17 cm/s. ETPac eddies trap and advect water in their core westward up to 40° of longitude away from the coast. The SSS signatures of these eddies, with an average anomaly of 0.5‐pss magnitude difference from ambient values, enable the study of their dynamics and the mixing of their core waters with the surroundings. Three categories of eddies were identified according to the location where they were first tracked: (1) in the Gulf of Tehuantepec, (2) in the Gulf of Papagayo, and (3) in the open ocean near 100°W–12°N. They all traveled westward near 10°N latitude. Category 3 is of particular interest, as eddies seeded in the Gulf of Tehuantepec grew substantially in the vicinity of the Clipperton Fracture Zone rise and in a region where the mean zonal currents have anticyclonic shear. The evolution of the SSS signature associated with the eddies indicates the importance of mixing to their dissipation.
    Description: This research was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with NASA and part at LOCEAN (Sorbonne Université, CNRS, IRD, MNHN) under a CNES Postdoctoral fellowship. This work is supported by NASA Grants NNX11AE83G and NNX14AH38G and is a contribution to the TOSCA/SMOS‐Ocean proposal supported by CNES. We thank the reviewers for their thoughtfully comments that lead to a much‐improved manuscript. We benefited from numerous data sets made freely available and are listed here: The SMOS debias_v2 SSS have been produced by LOCEAN laboratory and ACRI‐st company that participate to the Ocean Salinity Expertise Center (CEC‐OS) of Centre Aval de Traitement des Donnees SMOS (CATDS). of CATDS at IFREMER, Plouzane, France (http://www.catds.fr/Products, see documentation: http://www.catds.fr/Products/Available‐products‐from‐CEC‐OS/L3‐Debiased‐Locean‐v2); the Aquarius/SAC‐D and SMAP data was produced by Remote Sensing Systems and distributed by PODAAC (https://podaac.jpl.nasa.gov/dataset/AQUARIUS_L3_SSS_SMI_7DAY_V4; https://podaac.jpl.nasa.gov/dataset/SMAP_RSS_L3_SSS_SMI_8DAY‐RUNNINGMEAN_V2); the SLA product is processed and distributed by CMEMS (http://marine.copernicus.eu); the global atlas of eddies is produced by AVISO (https://www.aviso.altimetry.fr/en/data/products/value‐added‐products/global‐mesoscale‐eddy‐trajectory‐product.html); the GPCP precipitation data set (http://eagle1.umd.edu/GPCP_CDR/Monthly_Data) is described in the project technical report (http://eagle1.umd.edu/GPCP_ICDR/GPCPmonthlyV2.3.pdf); Woods Hole Oceanographic Institution OAFlux evaporation data set (ftp://ftp.whoi.edu/pub/science/oaflux/data_v3); UCAR high‐resolution terrain data set (High res terrain data set https://rda.ucar.edu/datasets/ds759.2/#!description); Chelton et al. (1998) Global Atlas of the First‐Baroclinic Rossby Radius of Deformation and Gravity‐Wave Phase Speed (http://www‐po.coas.oregonstate.edu/research/po/research/rossby_radius/).
    Description: 2019-09-28
    Keywords: Eddies ; Mesoscale ; Salinity ; Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...