ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32(12), (2019): 1759-1775, doi:10.1029/2018GB006026.
    Description: Karst subterranean estuaries (KSEs) extend into carbonate platforms along 12% of all coastlines. A recent study has shown that microbial methane (CH4) consumption is an important component of the carbon cycle and food web dynamics within flooded caves that permeate KSEs. In this study, we obtained high‐resolution (~2.5‐day) temporal records of dissolved methane concentrations and its stable isotopic content (δ13C) to evaluate how regional meteorology and hydrology control methane dynamics in KSEs. Our records show that less methane was present in the anoxic fresh water during the wet season (4,361 ± 89 nM) than during the dry season (5,949 ± 132 nM), suggesting that the wet season hydrologic regime enhances mixing of methane and other constituents into the underlying brackish water. The δ13C of the methane (−38.1 ± 1.7‰) in the brackish water was consistently more 13C‐enriched than fresh water methane (−65.4 ± 0.4‰), implying persistent methane oxidation in the cave. Using a hydrologically based mass balance model, we calculate that methane consumption in the KSE was 21–28 mg CH4·m−2·year−1 during the 6‐month dry period, which equates to ~1.4 t of methane consumed within the 102‐ to 138‐km2 catchment basin for the cave. Unless wet season methane consumption is much greater, the magnitude of methane oxidized within KSEs is not likely to affect the global methane budget. However, our estimates constrain the contribution of a critical resource for this widely distributed subterranean ecosystem.
    Description: Funding for T. M. I. and D. B. was provided by TAMU‐CONACYT (project 2015‐049). D. B. was supported by the Research‐in‐Residence program (NSF award 1137336, Inter‐university Training in Continental‐scale Ecology), the Boost Fellowship (Texas A&M University at Galveston), and the Postdoctoral Scholar Program by Woods Hole Oceanographic Institution and U.S. Geological Survey. We thank Jacob Pohlman and István Brankovits for assistance with field expeditions. Special thanks to the late Bil Phillips (Speleotech) for the support and expertise provided us during field operations. We also thank Pete van Hengstum for productive discussions and guidance during the development of the manuscript. Michael Casso and Adrian Green helped with laboratory analyses. The manuscript was greatly improved by helpful comments from an anonymus reviewer, Jeff Chanton, and Meagan Gonneea. This work is contribution number UMCES 5541. Any use of trade names is for descriptive purposes and does not imply endorsement by the U.S. Government. The authors declare no competing financial interests. Archival data are available through the USGS ScienceBase‐Catalog at https://doi.org/10.5066/P9U0KRVM.
    Keywords: Subterranean estuary ; Coastal aquifer ; Carbon cycling ; Methane ; Hydrobiogeochemistry ; Anchialine ecosystem
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...