ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
  • 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
  • Elsevier  (65)
  • Geological Society of America  (17)
  • MDPI Publishing
  • Nature Publishing Group
  • Springer Science+Business Media B.V.
Collection
Keywords
Years
  • 1
    Publication Date: 2024-05-09
    Description: In order to unravel the tectonic evolution of the north-central sector of the Sicily Channel (Central Mediterranean), a seismo-stratigraphic analysis of single- and multichannel seismic reflection profiles has been carried out. This allowed to identify, between 20 and 50 km offshore the central-southern coast of Sicily, a *80-km-long deformation belt, characterized by a set of WNW–ESE to NW–SE fault segments showing a polyphasic activity. Within this belt, we observed: i) Miocene normal faults reactivated during Zanclean–Piacenzian time by dextral strike-slip motion, as a consequence of the Africa– Europe convergence; ii) releasing and restraining bend geometries forming well-developed pull-apart basins and compressive structures. In the central and western sectors of the belt, we identified local transpressional reactivations of Piacenzian time, attested by well-defined compressive features like push-up structures and fault-bend anticlines. The reconstruction of timing and style of tectonic deformation suggest a strike-slip reactivation of inherited normal faults and the local subsequent positive tectonic inversion, often documented along oblique thrust ramps. This pattern represents a key for an improved knowledge of the structural style of foreland fold-and-thrust belts propagating in a preexisting extensional domain. With regard to active tectonics and seismic hazards, recent GPS data and local seismicity events suggest that this deformation process could be still active and accomplished through deep-buried structures; moreover, several normal faults showing moderate displacements have been identified on top of the Madrepore Bank and Malta High, offsetting the Late Quaternary deposits. Finally, inside the northern part of the Gela Basin, multiple slope failures, originated during Pleistocene by the further advancing of the Gela Nappe, reveal tectonically induced potential instability processes.
    Description: Published
    Description: 233–251
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic stratigraphy ; Tectonic inversion ; Strike-slip motion ; Push-up structures ; Compressive features ; Sicily Channel ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-26
    Description: Solidified frictional melts, or pseudotachylytes, remain the only unambiguous indicator of seismic slip in the geological record. However, pseudotachylytes form at 〉5 km depth, and there are many rock types in which they do not form at all. We performed low- to high-velocity rock friction experiments designed to impose realistic coseismic slip pulses on calcite fault gouges, and report that localized dynamic recrystallization may be an easy-to-recognize microstructural indicator of seismic slip in shallow, otherwise brittle fault zones. Calcite gouges with starting grain size 〈250 μm were confined up to 26 MPa normal stress using a purpose-built sample holder. Slip velocities were between 0.01 and 3.4 m s−1, and total displacements between 1 and 4 m. At coseismic slip velocities ≥0.1 m s−1, the gouges were cut by reflective principal slip surfaces lined by polygonal grains 〈1 μm in size. The principal slip surfaces were flanked by 〈300 μm thick layers of dynamically recrystallized calcite (grain size 1–10 μm) containing well-defined shape- and crystallographic-preferred orientations. Dynamic recrystallization was accompanied by fault weakening and thermal decomposition of calcite to CO2 + CaO. The recrystallized calcite aggregates resemble those found along the principal slip surface of the Garam thrust, South Korea, exhumed from 〈5 km depth. We suggest that intense frictional heating along the experimental and natural principal slip surfaces resulted in localized dynamic recrystallization, a microstructure that may be diagnostic of seismic slip in the shallow crust.
    Description: Published
    Description: 63-66
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Rock mechanics ; shallow earthquales ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-14
    Description: The Global Earthquake Model (GEM) aims to develop uniform, openly available, standards, datasets and tools for worldwide seismic risk assessment through global collaboration, transparent communication and adapting state-of-the-art science. GEM Faulted Earth (GFE) is one of GEM’s global hazard module projects. This paper describes GFE’s development of a modern neotectonic fault database and a unique graphical interface for the compilation of new fault data. A key design principle is that of an electronic field notebook for capturing observations a geologist would make about a fault. The database is designed to accommodate abundant as well as sparse fault obser- vations. It features two layers, one for capturing neotectonic faults and fold observations, and the other to calculate potential earthquake fault sources from the observations. In order to test the flexibility of the database structure and to start a global compilation, five preexisting databases have been uploaded to the first layer and two to the second. In addition, the GFE project has characterised the world’s approximately 55,000 km of subduction interfaces in a globally consistent manner as a basis for generating earthquake event sets for inclusion in earthquake hazard and risk modelling. Following the subduction interface fault schema and including the trace attributes of the GFE database schema, the 2500-km-long frontal thrust fault system of the Himalaya has also been characterised. We propose the database structure to be used widely, so that neotectonic fault data can make a more complete and beneficial contribution to seismic hazard and risk characterisation globally.
    Description: Published
    Description: 111–135
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: restricted
    Keywords: Global Earthquake Model ; Fault database ; Earthquake fault source ; GEM Faulted Earth ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-17
    Description: Earthquakes occur along faults in response to plate tectonic movements, but paradoxically, are not widely recognized in the geological record, severely limiting our knowledge of earthquake physics and hampering accurate assessments of seismic hazard. Light-reflective (so-called mirror like) fault surfaces are widely observed geological features, especially in carbonate-bearing rocks of the shallow crust. Here we report on the occurrence of mirror-like fault surfaces cutting dolostone gouges in the Italian Alps. Using friction experiments, we demonstrate that the mirror-like surfaces develop only at seismic slip rates (∼1 m/s) and for applied normal stresses and sliding displacements consistent with those estimated on the natural faults. Under these experimental conditions, the frictional power density dissipated in the samples is comparable to that estimated for natural earthquakes (1–10 MW/m2). Our results indicate that mirror-like surfaces in dolostone gouges are a signature of seismic faulting, and can be used to estimate power dissipation during ancient earthquake ruptures.
    Description: Published
    Description: 1175-1178
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquakes ; Faults ; Carbonates ; Rock Mechanics ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Geological, geodetic and seismological data have been analyzed in order to frame the Lipari–Vulcano complex (Aeolian archipelago, southern Italy) into the geodynamic context of the southeastern Tyrrhenian Sea. It is located at the northern end of a major NNW–SSE trending right-lateral strike-slip fault system named “Aeolian–Tindari–Letojanni” which has been interpreted as a lithospheric discontinuity extending from the Aeolian Islands to the Ionian coast of Sicily and separating two different tectonic domains: a contractional one to the west and an extensional one to the north-east. Structural field data consist of structural measurements performed on well-exposed fault planes and fractures. The mesostructures are mostly represented by NW–SE striking normal faults with a dextral-oblique component of motion. Minor structures are represented by N–S oriented joints and tension gashes widespread over the whole analyzed area and particularly along fumarolized sectors. The analyzed seismological dataset (from 1994 to 2013) is based on earthquakes with magnitude ranging between 1.0 and 4.8. The hypocenter distribution depicts two major alignments corresponding to the NNW–SSE trending Aeolian–Tindari–Letojanni fault system and to the WNW–ESE oriented Sisifo–Alicudi fault system. GPS data analysis displays ∼3.0 mm/yr of active shortening between the two islands, with a maximum shortening rate of about 1.0 × 10−13 s−1, between La Fossa Caldera and south of Vulcanello. This region is bounded to the north by an area where the maximum values of shear strain rates, of about 0.7 × 10−13 s−1 are observed. This major change occurs in the area south of Vulcanello that is also characterized by a transition in the way of the vertical axis rotation. Moreover, both the islands show a clear subsidence process, as suggested by negative vertical velocities of all GPS stations which exhibit a decrease from about −15 to −7 mm/yr from north to south. New data suggest that the current kinematics of the Lipari–Vulcano complex can be framed in the tectonic context of the eastward migrating Sisifo–Alicudi fault system. This is dominated by transpressive tectonics in which contractional and minor extensional structures can coexist with strike-slip motion.
    Description: Published
    Description: 150-167
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Southern Tyrrhenian sea ; Aeolian Archipelago ; Lipari–Vulcano complex ; Structural analysis ; GPS ; Seismological data ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: In this paper, we describe the 1809 eruption of Mt. Etna, Italy, which represents one historical rare case in which it is possible to observe details of the internal structure of the feeder system. This is possible thanks to the presence of two large pit craters located in the middle of the eruptive fracture field that allow studying a section of the shallow feeder system. Along the walls of one of these craters, we analysed well-exposed cross sections of the uppermost 15–20 m of the feeder system and related volcanic products. Here, we describe the structure, morphology and lithology of this portion of the 1809 feeder system, including the host rock which conditioned the propagation of the dyke, and compare the results with other recent eruptions. Finally, we propose the dynamic model of the magma behaviour inside a laterally-propagating feeder dyke, demonstrating how this dynamic triggered important changes in the eruptive style (from effusive/Strombolian to phreatomagmatic) during the same eruption. Our results are also useful for hazard assessment related to the development of flank eruptions, potentially the most hazardous type of eruption from basaltic volcanoes in densely urbanized areas, such as Mt. Etna.
    Description: Published
    Description: 1-11
    Description: 2T. Tettonica attiva
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: N/A or not JCR
    Description: open
    Keywords: feeder dyke ; basaltic volcanoes ; flank eruptions ; Etna ; volcanic hazards ; sill ; volcanic rift ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-17
    Description: The Lower Pliocene succession of the Crotone Basin (Calabrian Arc, Southern Italy) is mainly comprised of blue-grey marly clay with good magnetic properties. Here the bio-magnetostratigraphic data indicate a mean sedimentation rate of about 12–15 cm/kyr. Around 3.7–3.6 Ma a major change in the sedimentation regime occurred: the blue-grey hemipelagic marls grade rapidly into silty marls with a significant increase in the terrigenous fraction and with abundant siliceous remains throughout the whole interval. Magnetic properties of these sediments are very poor, but an integrated calcareous plankton biostratigraphy (foraminifera and nannofossils) infers a high average sedimentation rate (about 50–60 cm/kyr). The abrupt onset of this sedimentation regime in the Crotone Basin is contemporaneous with a major unconformity already recognized in the northern sector of the basin, part of amajor reorganization phase in the whole Apenninic–Maghrebid Chain known as “Globorotalia puncticulata event”. Reports of coeval siliceous sediments in other marginal basins of the Apennines (Southern Calabria, Southern and Northern Apennines) suggest that this “siliceous event” might have been regionally extensive, having important palaeoceanographical implications.We infer that the “siliceous event” is characterized by a combined tectonic- and climate-induced change in palaeoceanographic conditions. The tectonic triggering factors may have been linked to two synchronous events in the Tyrrhenian–Apennine system: 1) the shortening event also known as “G. puncticulata event”, and 2) the coeval opening of the Vavilov Basin in the Tyrrhenian Sea which yielded profound influences in terms of physiography and characteristics of the Crotone Basin. The consequent uplift of the Southern Apennines would have increased sediment supply and availability of silica, resulting in eutrophication and enhanced silica preservation. Strong winter mixing and possibly upwelling conditions could have increased primary productivity during heavy isotope stages Gi4, Gi2 and MG8, at the onset of the “siliceous event”. This important event, lasting from ca. 3.6 Ma to ca. 3.2 Ma, would have recorded a peculiar transitional period before further climatic deterioration and more drastic palaeoceanographic changes occurred around 3.1 Ma, leading to cyclic sapropel deposition in the whole of the Mediterranean sea.
    Description: Published
    Description: 398-410
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Biostratigraphy ; Magnetostratigraphy ; Pliocene ; Calabrian Arc ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-07
    Description: Low-field anisotropy of magnetic susceptibility (AMS) analyses were performed on 532 samples col-lected in 36 (mostly lower Pliocene to lower Pleistocene) marine clay sites from the Crotone basin, afore-arc basin located on top of the external Calabrian accretionary wedge. The Crotone basin formedsince mid-late Miocene under a predominant extensional tectonic regime, but it was influenced there-after by complex interactions with NW–SE left-lateral strike-faults bounding the basin, which also yieldedpost-1.2 Ma ~30◦counterclockwise block rotations. The basin is filled by continental to marine sedimentsyielding one of the thickest and best-exposed Neogene succession available worldwide. The deep-marinefacies – represented by blue-grey marly clays gave the best results, as they both preserved a clear mag-netic fabric, and provided accurate chronology based on previously published magnetostratigraphy andcalcareous plankton (i.e. foraminifers and nannofossils) biostratigraphy. Magnetic susceptibility rangeand rock magnetic analyses both indicate that AMS reflects paramagnetic clay matrix crystal arrange-ment. The fabric is predominantly oblate to triaxial, the anisotropy degree low (〈1.06), and the magneticfoliation mostly subparallel to bedding. Magnetic lineation is defined in 30 out of 36 sites (where thee12 angle is 〈35◦). By also considering local structural analysis data, we find that magnetic fabric wasgenerally acquired during the first tectonic phases occurring after sediment deposition, thus validatingits use as temporally dependent strain proxy. Although most of the magnetic lineations trend NW–SE andare orthogonal to normal faults (as observed elsewhere in Calabria), few NE–SW compressive lineationsshow that the Neogene extensional regime of the Crotone basin was punctuated by compressive episodes.Finally, compressive lineations (prolate magnetic fabric) documented along the strike-slip fault boundingthe basin to the south support the significance of Pleistocene strike-slip tectonics. Thus the Crotone basinshows a markedly different tectonics with respect to other internal and western basins of Calabria, asit yields a magnetic fabric still dominated by extensional tectonics but also revealing arc-normal short-ening episodes and recent strike-slip fault activity. The tectonics documented in the Crotone basin iscompatible with a continuous upper crustal structural reorganization occurring during the SE-migrationof the Calabria terrane above the Ionian subduction system.
    Description: Published
    Description: 67-79
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Calabrian Arc, Anisotropy of magnetic susceptibility, Structural analysis, Fore-arc region ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Detailed structural analysis of tourmaline-rich veins hosted in the contact aureole of the ∼6 Ma Porto Azzurro granite in southeastern Elba Island, northern Tyrrhenian Sea is presented. Using geometric features of the veins, the physical conditions at the time of vein formation are estimated, namely the stress ratio (Φ = (σ2 − σ3)/(σ1 − σ3)), driving stress ratio (R′ = (Pf − σ3)/(σ1 − σ3)) and fluid overpressure (ΔPo = Pf − σ3). Two vein sets (A veins and B veins) have been recognized based on orientation and thickness distributions and infilling material. Analysis of vein pole distributions indicates Φ = 0.57 and R′ = 0.24 for the A veins and Φ = 0.58 and R′ = 0.47 for the B veins, and fluid pressures less than the intermediate stress magnitude. Analysis of geometric features of the veins gives estimated fluid overpressures of between ∼16 MPa (A veins) and ∼32 MPa (B veins). We propose a model for the tectonic environment of vein development, in which formation of secondary permeability in the deforming thermal aureole of the Porto Azzurro pluton was controlled by ongoing development of fracture systems in the hinge zone of a regional NNW–SSE trending fold that favored transport and localization of hydrothermal fluids.
    Description: Published
    Description: 1509-1522
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Thermal aureole ; Upper crust ; Deformation ; Fluid circulation ; Northern Apennines ; Elba Island ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-28
    Description: The Main Ethiopian Rift (MER) offers a complete record of the time–space evolution of a continental rift. We have characterized the brittle deformation in different rift sectors through the statistical analysis of a new database of faults obtained from the integration between satellite images and digital elevation models, and implemented with field controls. This analysis has been compared with the results of lithospheric-scale analogue models reproducing the kinematical conditions of orthogonal and oblique rifting. Integration of these approaches suggests substantial differences in fault architecture in the different rift sectors that in turn reflect an along-axis variation of the rift development and southward decrease in rift evolution. The northernmost MER sector is in a mature stage of incipient continental rupture, with deformation localised within the rift floor along discrete tectono-magmatic segments and almost inactive boundary faults. The central MER sector records a transitional stage in which migration of deformation from boundary faults to faults internal to the rift valley is in an incipient phase. The southernmost MER sector is instead in an early continental stage, with the largest part of deformation being accommodated by boundary faults and almost absent internal faults. The MER thus records along its axis the typical evolution of continental rifting, from fault-dominated rift morphology in the early stages of extension toward magma-dominated extension during break-up. The extrapolation of modelling results suggests that a variable rift obliquity contributes to the observed along-axis variations in rift architecture and evolutionary stage, being oblique rifting conditions controlling the MER evolution since its birth in the Late Miocene in relation to a constant post ca. 11 Ma ~ N100°E Nubia–Somalia motion.
    Description: Published
    Description: 479-492
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: continental rifting ; East African Rift ; Main Ethiopian Rift ; rift kinematics ; plate kinematics ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: No Abstract
    Description: Published
    Description: 546-547
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Stratigraphic Drilling ; McMurdo Ice Shelf ; Chronostratigraphy ; Neogene ; Tectonics ; Ice Sheet history ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: In the northern Tyrrhenian Sea, late Miocene intrusions (Monte Capanne pluton and Porto Azzurro pluton) were emplaced at upper crustal levels (〈0.2 GPa) in the thrust systems of Elba Island. The emplacement of intrusive rocks is currently explained in the context of late Miocene extensional tectonics. New detailed structural data collected along a continuous natural cross section through the contact aureole of the Porto Azzurro pluton (eastern Elba) where strain localization has occurred within two west-dipping decameter-scale carbonate shear zones, namely the Calanchiole and Felciaio shear zones, are reported here. These shear zones, characterized by a lithological difference with calcite and dolomite marbles dominant in the Calanchiole and Felciaio shear zones, respectively, exhibit a similar rheological behavior. They represent two weakened layers in which west-dipping mylonitic foliation, sheath folds, boudinage structures, and upright folds developed within the contact aureole. Moreover, in correspondence with the Felciaio shear zone, the inversion of metamorphic facies occurs. Meso- and microstructural data give evidence that most of the deformation and displacement in the shear zones was coeval with contact metamorphism and developed under metamorphic conditions retrograde from pyroxene hornfels to hornblende-hornfels facies. Geometric and kinematic features indicate that both shear zones correspond to ductile thrusts, which led to internal stacking of the contact aureole. Therefore, at Elba Island, emplacement of intrusive rocks coeval with late Miocene crustal shortening gives a new perspective on relations between tectonics and magmatism in the northern Apennines.
    Description: Published
    Description: 470-490
    Description: 1.10. TTC - Telerilevamento
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: granite emplacement ; contact aureole ; deformation and metamorphism ; Neogene ; northern Apennines ; Elba Island ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-12-06
    Description: Brown Tuffs (BT) are volcaniclastic ash deposits prominently represented in the stratigraphic profiles of all the Aeolian Islands (and Capo Milazzo on the northern coast of Sicily). Detailed stratigraphy and tephrochronology together with available radiometric ages suggest that they were emplaced over a long time interval spanning from the end of the last interglacial period (ca. 80 ka BP) up to 4–5 ka BP (age of the overlying Punte Nere pyroclastic products on Vulcano). The most complete BT succession is documented on Lipari where 14 distinct and successive units are subdivided by the interbedding of widespread tephra layers, local volcanic products, paleosols and epiclastic deposits and the occurrence of local erosive surfaces. Inter-island occurrence of Ischia-Tephra (a widely known tephra layer in the Aeolian archipelago dated at 56 ka BP) and Monte Guardia pyroclastics from Lipari (dated at 22–20 ka BP) subdivides the BT succession in Upper (UBT), Intermediate (IBT) and Lower BT units (LBT), which can be correlated at regional level: the LBT was emplaced between 80 and 56 ka BP, the IBT between 56 and 22 ka BP and the UBT between 20 and 4–5 ka BP. On the basis of stratigraphy, similarity in lithology and textural features, morphology of glass fragments, composition and consistency of thickness and grain-size variations, UBT units correlate with Piano Grotte dei Rossi tuffs on Vulcano island. They were generated by pulsating hydromagmatic explosive activity giving rise to pyroclastic density currents spreading laterally from a source located inside the La Fossa caldera on Vulcano island. Composition is in agreement with this hypothesis since UBT compositional features match those of Vulcano magmas erupted in that period. The effect of co-ignimbrite ash clouds (or associated fallout processes from sustained eruptive columns) is seen to explain the presence of UBT in areas further away from the suggested source (e.g. Salina and Lipari islands and Capo Milazzo). The origin of UBT exposed on Panarea island is still a matter of debate, due to contrasting compositional data. Due to large uniformity of lithological, textural and componentry characters with respect to the UBT, the lower portions of the BT succession (LBT-IBT) are considered to be the result of recurrent, large scale hydromagmatic eruptions of similar type. Moreover, for the IBT units, the correlation with Monte Molineddo 3 pyroclastics of Vulcano island (on the basis of lithological, compositional and stratigraphic matching) again suggests source(s) related to the Vulcano plumbing system and located within the La Fossa Caldera.
    Description: Published
    Description: 49-70
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: stratigraphy ; tephrocronology ; Brown Tuffs ; hydromagmatic eruption ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-06-14
    Description: Paleoenvironmental and paleoclimate changes that occurred during the late postevaporitic stage of the Mediterranean Basin in the Messinian foreland domain of the Adriatic region offer a new perspective on the relationship between orbital forcing and climate response. The magnetic susceptibility record of the Fonte dei Pulcini A section (Maiella Mountains, Italy) allows us to orbitally tune the record between 5.394 and 5.336 Ma and to temporally constrain the paleoenvironmental and paleoclimate changes evidenced by quantitative paleontological (palynomorphs, ostracods, and calcareous nannofossils), stable isotope (δ18O and δ13C), and X-ray diffraction (XRD) analyses. The base of the Fonte dei Pulcini A section is characterized by Paratethyan ostracods and dinocysts, which point to the late Messinian Lago-Mare biofacies (Loxocorniculina djafarovi zone) of the Mediterranean Messinian stratigraphy. From paleontological and geochemical (δ18O) analyses, there is no evidence of a marine incursion in the Fonte dei Pulcini A section. The major changes in terms of paleodepth, paleosalinity, evaporation versus precipitation, aridity versus humidity, and reworking processes occurred in the upper part of the Fonte dei Pulcini A section, during the last Messinian insolation cycle (i-cycle 511/512), which is characterized by high-amplitude oscillations. In contrast, the lower part of the Fonte dei Pulcini A section, which was deposited during relatively low-amplitude insolation cycles, is characterized by more stable environmental conditions. Comparing summer insolation with the paleoenvironmental changes at the Fonte dei Pulcini A section, we identify delays of several thousands of years between orbital forcing and climate response.
    Description: Published
    Description: 499-516
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Messinian stage ; Lago-Mare event ; Maiella ; Apennines ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-06-14
    Description: In 2007, the Antarctic Geological Drilling Program (ANDRILL) drilled 1138.54 m of strata ~10 km off the East Antarctic coast, includ ing an expanded early to middle Miocene succession not previously recovered from the Antarctic continental shelf. Here, we pre sent a facies model, distribution, and paleoclimatic interpretation for the AND-2A drill hole, which enable us, for the fi rst time, to reconstruct periods of early and middle Miocene glacial advance and retreat and paleo environmental changes at an ice-proximal site. Three types of facies associations can be recognized that imply signifi cantly different paleoclimatic interpretations. (1) A diamictite-dominated facies association represents glacially dominated depositional environments, including subglacial environments, with only brief intervals where ice-free coasts existed, and periods when the ice sheet was periodically larger than the modern ice sheet. (2) A stratified diamictite and mudstone facies association includes facies characteristic of open-marine to iceberg-infl uenced depositional environments and is more consistent with a very dynamic ice sheet, with a grounding line south of the modern position. (3) A mudstone-dominated facies association generally lacks diamictites and was produced in a glacially infl uenced hemipelagic depositional environment. Based on the distribution of these facies associations, we can conclude that the Antarctic ice sheets were dynamic, with grounding lines south of the modern location at ca. 20.1–19.6 Ma and ca. 19.3–18.7 Ma and during the Miocene climatic optimum, ca. 17.6–15.4 Ma, with ice-sheet and sea-ice minima at ca. 16.5–16.3 Ma and ca. 15.7–15.6 Ma. While glacial minima at ca. 20.1–19.6 Ma and ca. 19.3–18.7 Ma were characterized by temperate margins, an increased abundance of gravelly facies and diatomaceous siltstone and a lack of meltwater plume deposits suggest a cooler and drier climate with polythermal conditions for the Miocene climatic optimum (ca. 17.6–15.4 Ma). Several periods of major ice growth with a grounding line traversing the drill site are recognized between ca. 20.2 and 17.6 Ma, and after ca. 15.4 Ma, with evidence of cold polar glaciers with ice shelves. The AND-2A core provides proximal evidence that during the middle Miocene climate transition, an ice sheet larger than the modern ice sheet was already present by ca. 14.7 Ma, ~1 m.y. earlier than generally inferred from deep-sea oxygen isotope records. These fi ndings highlight the importance of high-latitude ice-proximal records for the interpretation of far-fi eld proxies across major climate transitions.
    Description: Published
    Description: 2352-2365
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: ANDRILL-SMS ; Miocene ; Ross Sea ; Antarctica ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-04-20
    Description: The spatial clustering of basaltic vents in monogenetic volcanic fields has been used as a proxy for crustal thickness in extensional and back-arc tectonic settings. The basaltic vents have a fractal clustered distribution (self-similar clustering) described by a power-law. The power-law is defined over a range, the size range of the distribution, of values (in this case the vents' separation) delimited by a lower and an upper cut-offs. Here we apply the fractal clustering analysis to the two largest monogenetic volcanic fields of the Trans-Mexican Volcanic Belt (TMVB), a continental arc built on different crustal terranes. The Michoacan–Guanajuato volcanic field (MGVF), located in the central-western TMVB, includes over 1000 vents of late Pliocene to Quaternary age, built on attenuated crust of Mesozoic to Tertiary age. The Sierra de Chichinautzin volcanic field (SCVF), in the central-eastern TMVB, is composed of ~ 220 Late Pleistocene to Holocene vents laying above thicker crust of Precambrian to Tertiary age. Monogenetic vents in both volcanic fields show self-similar clustering with fractal exponent D = 1.67 in the range 1.3–38 km (MGVF) and D = 1.56 in the range 1.5–32 km (SCVF). The upper cut-off (Uco) for the power-law distribution of the MGVF well fits the crustal thickness below the volcanic field as derived from independent geophysical data. The Uco value of SCVF indicates a crust thickness of about 32 km, this value is in agreement with new geophysical data that indicate magma underplating the crust beneath the volcanic field area.
    Description: Published
    Description: 55-64
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic fields ; Tectonic ; Vent distribution ; Crust thickness ; Mexico ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-11-30
    Description: We present structural analysis, fluid inclusion data on calcite and quartz, and isotopic composition of calcite forming veins occurring in the upper crustal level and hosted in Oligocene sandstone in southern Tuscany (Italy). The veins have been analysed in two sites few kilometres apart, along well-exposed coastal cliffs and in an abandoned quarry. These two sites were at a different depths at the time of the vein formation with a Δh ~ 100 m. Structural analysis of veins provided estimations of stress ratio (Φ = (σ2 − σ3)/(σ1 − σ3)), driving stress ratio (R′ = (Pf − σ3)/(σ1 − σ3)) and fluid overpressure (ΔPo = Pf − σ3) at the time of vein formation. The estimated ΔPo is in the range of 42–103 MPa, Φ = 0.24 and R′ = 0.45, indicating that fluid pressure was higher than the intermediate principal stress at the time of veins formation. The veins' thickness (t) shows a clear power-law distribution (D = 1.8835 and R2 = 0.9762) in the lowermost site (coast) and a negative exponential distribution (a = 0.6943 and R2 = 0.9921) in the uppermost site (abandoned quarry). The vein thickness distributions have been used to compute the average transmissivity of the veins in the two sites. The computed transmissivity for the vein formation is ~ 10−4 m2 s−1, with higher values attained by the veins having negative exponential thickness distribution. Fluid inclusions studies highlighted that in both calcite and quartz, water-rich inclusions, with salinities of 2.2–4.3 wt.% NaCl equiv., and methane-rich inclusions were coevally trapped during fluid un-mixing processes. Thermogenic origin, from thermal maturation of organic matter present in the Macigno Formation, is proposed for methane. Whereas, the similarity between the δ18O (from 14.9 to 17.4‰) and δ13C (from −0.4 to −2.4‰) data of representative calcite veins and the isotopic composition (δ18O: 16.1‰, δ13C: −1.0‰) of host-rock carbonate component, indicates that the fluid which formed calcite was in isotopic equilibrium with the carbonates present in the Oligocene sandstones. The calculated pressure–temperature conditions during the formation of these inclusions are prevalently within the 40–145 MPa and 160–260 °C ranges. The highest pressure values approximate the lithostatic pressure (~ 120 MPa) computed from geological data and are coherent with a geothermal gradient ranges of 35–45 °C/km. Whereas, the lower pressure values are comparable with hydrostatic pressure conditions. The pressure range indicated by fluid inclusion data is also comparable with the fluid pressure estimated from structural analysis. The considerable pressure range can be related to pressure cycling between lithostatic and hydrostatic conditions as a consequence of fault-valve actions and rock fracturing with subsequent pressure recover due to self-sealing process.
    Description: Published
    Description: 118-138
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Vein systems ; Fluid type ; Fluid pressure ; Fluid inclusions ; Upper crust ; Tuscany ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-05-28
    Description: This paper presents analogue models for the emplacement of granitic magmas in upper crustal levels with different mechanical layering during shortening, extension and strike–slip deformation. In particular, we investigated how a weak layer embedded in the upper brittle crust can control the level of magma emplacement. The adopted experimental setup was used to examine the control of soft rocks on the movement of magma through a deforming brittle crust. Model results indicate that the occurrence of a weak (soft) layer embedded in brittle (stiff) material has an impact on the level of magma emplacement. The level of emplacement during both extension and shortening was systematically deeper for models with a soft layer than for purely brittle models. During strike–slip deformation the magma pierced the surface in both purely brittle and brittle–ductile models.
    Description: Published
    Description: 139-146
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Mechanical layering of upper crust ; Magma emplacement ; Analogue modelling ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: To develop a model of both the structure and evolution of the Campi Flegrei caldera (CFc) magmatic feeding system, geochronological, geochemical and Sr, Nd, Pb and B isotopic data of representative volcanic products of the past 15 ka have been combined with geophysical and melt inclusion literature data, structural setting and dynamics of the resurgent caldera. According to previous petrological data, the CFc magmatic feeding system consists of a deep reservoir, in which mantle-derived K-basaltic parental magmas differentiate to shoshonite, latite and trachyte, through combined crustal contamination and fractional crystallization processes, and shallowreservoirswhere the evolvedmagmas further differentiate andmingle/mix before eruptions. The Sr,Nd, Pb, and B isotope data allowrecognition of three distinctmagmatic components.One component is believedto be residualmagmafromtheNeapolitanYellowTuff (NYT) caldera forming eruption. The NYT component (87Sr/86Sr of 0.70750–53, 143Nd/144Nd ratio of ca. 0.51246, 206Pb/204Pb of ca. 19.04 and δ11B of ca. –7.9‰), has been the most prevalent component over the past 15 ka being mixed, in most cases, with the other two components. One of these other components is best recognized in the Minopoli 2 magma, first erupted 10 ka ago. Minopoli 2 magma is shoshonitic in composition and is the most enriched in radiogenic Sr (87Sr/86Sr of ca. 0.70860) and unradiogenic Nd and Pb (143Nd/144Nd ratio of ca. 0.51236, 206Pb/204Pb of ca. 18.90), and is characterised by δ11B value of ca. –7.32‰. The third component is trachytic in composition and has higher 206Pb/204Pb (ca. 19.08), lower 87Sr/86Sr (ca. 0.70726) and δ11B (−9.8‰) and higher 143Nd/144Nd (ca. 0.51250), with respect to the NYT component. This third component is best recognized in the Astroni 6 magma and did not appear until ca. 4 ka. The identified isotopically distinct magmatic components were erupted in different sectors of the CFc. During both I (b14.9–9.5 ka) and II (8.6–8.2 ka) epochs of volcanic activity,magmas similar to the NYT component, and those resulting from mixing between Minopoli 2 and NYT components were erupted from vents located mostly on the marginal faults of the NYT caldera. During the III epoch (4.8–3.8 ka) magmas either similar to NYT, or resulting from mixing between Astroni 6 and NYT components were erupted from vents located along faults bordering the La Starza resurgent block and, subordinately, the NYT caldera. Moreover, magmas resulting from mixing betweenMinopoli 2 and NYT components were erupted fromvents located along NE–SW regional faults activated during caldera resurgence. The inferred present structure of the feeding system is characterised by a deep reservoir, whose top is at about 8 kmdepth, that hosts shoshonitic–trachyticmagmas. Remnants of the NYT magma reside at shallower depth in different sectors of the crust underlying CFc, and were sometimes intercepted by volatile-rich magmas of deep provenance during the three epochs of CFc volcanic activity.
    Description: Published
    Description: 227-241
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei caldera ; Magmatic system ; Caldera structure ; Geochemistry ; Isotopes ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: The database and visualization facilities of Geographic Information System (GIS) software are employed to support the analysis of rock texture from thin section by image processing. A Microscopic Information System (MIS) is hence obtained. The method is applied to transmitted light images of 137 samples obtained from 8 granitoid rocks. A slide scanner and a mount for crossed polarization are used to acquire the input images. For each thin section 5 collimated RGB images are scanned: 4 under different directions of crossed polarization and 1 without polarization. A grain segmentation procedure, based on two region growing functions is applied. The output is converted to vector format and refined using editing tools in the MIS environment, which enables a straightforward match between the input imagery and the final vectorized texture. GIS software provides optimal management of the MIS database, allowing the cumulative measurement of more than 87,000 grains.
    Description: Published
    Description: 665-674
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 5.3. TTC - Banche dati vulcanologiche
    Description: JCR Journal
    Description: reserved
    Keywords: Granitoid rocks ; Geographic Information System (GIS) ; Image processing ; Petrography ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: It is crucial to understand magma chamber chemico-physical conditions and residence times for high-risk volcanoes because these factors control the occurrence and size of future eruptions. In order to define magmatic pressure–temperature conditions and residence times at the Somma–Vesuvius volcano, we studied the geochemistry and texture of selected past eruptions that are representative of the entire volcanic history. Our petrological model indicates a multi-depth magma chamber composed of a deeper tephritic (350– 400 Mpa) magma layer, which fed Strombolian and effusive eruptions during open-conduit activity, and an upper (200–250 Mpa) phonolitic level, which supplied the high explosive events that followed closedconduit repose time. This upper reservoir matches the inferred transition between sedimentary sequences and metamorphic basement. At this level, the presence of a structural and lithological discontinuity favors magma storage during closed-conduit periods. The prevalent differentiation process was fractional crystallization during the magma cooling associated with upward migration of less dense, evolved liquids. Our results indicate that major steam exolution occurred during the late crystallization stage of phonolites, which accounts for the high Volcanic Explosivity Index (VEI) of eruptions supplied by these melts. Moreover, our phenocryst CSD data reveal the rapid crystallization and differentiation (decades to centuries) of alkaline Somma–Vesuvius magmas. This implies that the 400 km2 partial melting zone detected by tomography studies at 8–10 km depth beneath Vesuvius should consist of differentiated magma that is already capable of generating a large-scale (plinian) explosive event if renewed activity develops out of the present closed-conduit state. Additionally, because our microlite CSD data indicate rapid magma migration from the chamber toward the surface, precursory activity could appear only short time before a major eruption.
    Description: Published
    Description: 133–143
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: residence time ; phonolite ; Vesuvius ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: The spatial clustering of fracture networks and vents in basaltic volcanic fields has been analyzed in three sectors of the East African Rift System, the classical example of an active continental rift. Fracture trace maps and monogenetic basaltic vents have been thus collected in the Afar Depression, in the Main Ethiopian Rift, and in the Virunga Belt (Western Rift). The mapped vents are generally younger than 2 Ma, and most are of Holocene age. All the analyzed fracture networks have self-similar clustering with fractal exponents (Df) varying in the 1.54−1.85 range. Also, vents show a self-similar clustering with fractal exponents (Dv) in the 1.17−1.50 range. For all the studied sectors, the relationship Df 〉 Dv has been observed. The fractal exponents for vents (Dv) of power-law distributions are computed in a range of lengths with a lower and an upper cutoff. The upper cutoff (Uco) for the fractal clustering of vents in the studied sectors of the East African Rift System are compared with the respective crust thickness derived by independent geophysical data. The computed Ucos for the studied sectors well match the crust thickness in the volcanic fields. A preliminary conceptual model to explain the relationships between the upper cutoffs of the fractal distribution of vents and the thickness of the crust in the volcanic fields is thus proposed in the light of the percolation theory.
    Description: Published
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: crustal thickness ; basaltic volcanic fields ; vent distribution ; EASR ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: The origins of granites and intrusive rocks have been widely discussed for a couple of centuries, and the way volcanoes work and their magma forms have attracted scientists, naturalists, and laymen since the dawn of humankind. However, shallow igneous intrusions, representing the obvious link between the hidden kingdom of Pluto and the fiery realm of Vulcanus, have been partly overlooked, leading to some lack of communication between “plutonic” and “volcanic” researchers. An effort devoted to heal this breach has been contributed to by the establishment of the LASI conferences (named after laccolith and sill, the main types of shallow igneous intrusions).
    Description: Published
    Description: 161-162
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: upper crustal level intrusions ; emplacement of magma ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-12-15
    Description: Structural observations carried out on the volcanic Island of Pantelleria show that the tectonic setting is dominated by NNE trending normal faults and by NW-striking right-lateral strike-slip faults with normal component of motion controlled by a ≈N 100°E oriented extension. This mode of deformation also controls the development of the eruptive fissures, dykes and eruptive centres along NNE–SSW belts that may thus represent the surface response to crustal cracking with associated magma intrusions. Magmatic intrusions are also responsible for the impressive vertical deformations that affect during the Late Quaternary the south-eastern segment of the island and producing a large dome within the Pantelleria caldera complex. The results of the structural analysis carried out on the Island of Pantelleria also improves the general knowledge on the Late Quaternary tectonics of the entire Sicily Channel. ESE–WNW directed extension, responsible for both the tectonic and volcano-tectonic features of the Pantelleria Island, also characterizes, at a greater scale, the entire channel as shown by available geodetic and seismological data. This mode of extension reactivates the older NW–SE trending fault segments bounding the tectonic troughs of the Channel as right-lateral strike-slip faults and produces new NNE trending pure extensional features (normal faulting and cracking) that preferentially develop at the tip of the major strike-slip fault zones. We thus relate the Late Quaternary volcanism of the Pelagian Block magmatism to dilatational strain on the NNE-striking extensional features that develop on the pre-existing stretched area and propagate throughout the entire continental crust linking the already up-welled mantle with the surface.
    Description: Published
    Description: 75-82
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Extensional tectonics ; Quaternary ; Volcanism ; Pantelleria Island ; Southern Italy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-01-25
    Description: Continuous marine successions covering the Middle Miocene Climate Transition (MMCT; ∼15–13.7 Ma) are scarce and the lack of a high-resolution magnetobiostratigraphic framework hampers the construction of astronomically tuned age models for this time interval. The La Vedova High Cliff section, exposed along the coast of the Cònero Riviera near Ancona (Italy), is one of the few Mediterranean sections covering the critical time interval of the MMCT. Starting from an initial magnetobiostratigraphic age model, a robust astronomical tuning was constructed for the interval between 14.2 and 13.5 Ma, using geochemical element data and time series analysis. A shift in δ18O of bulk sediment towards heavier values occurs between ∼13.92 and 13.78 Ma and could be related to the Mi3b oxygen isotope event, which reflects the rapid expansion of the East Antarctic Ice Sheet in the middle Miocene. The onset of the CM6 carbon excursion is reflected in the bulk record by a rapid increase in δ13C at 13.86 Ma. Our results confirm the proposition that these events coincide with a 405-kyr minimum in eccentricity and a node in obliquity related to the ∼1.2 Myr cycle. From 13.8 Ma onwards, distinct quadruplet cycles containing sapropelitic sediments were deposited. This may suggest a causal connection between the main middle Miocene cooling step and the onset of sapropel formation in the Mediterranean.
    Description: Published
    Description: 249–261
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Middle Miocene ; Mediterranean ; astronomical tuning ; paleomagnetism ; biostratigraphy ; environmental changes ; orbital forcing ; sapropels ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: The Piànico-Sèllere is a lacustrine succession from northern Italy that records a sequence of climatic transitions across two Pleistocene glacial stages. The intervening interglacial stage is represented by well-preserved varves with calcitic (summer) and clastic (winter) laminae. There is a tight coupling between climate-driven lithologic changes and magnetic susceptibility variations, and stable paleomagnetic components were retrieved from all investigated lithologies including the largely diamagnetic calcite varves. These components were used to delineate a sequence of magnetic polarity reversals that was interpreted as a record of excursions of the Earth’s magnetic field. Comparison of the magnetostratigraphic results with previously published data allows discussion of two possible models which have generated controversy regarding the age of the Piànico Formation. The data indicates that the Piànico Formation magnetostratigraphy correlates to geomagnetic field excursions across the Brunhes/Matuyama transition, and consequently the Piànico interglacial correlates to marine isotope stage 19. This correlation option is substantially consistent with K-Ar radiometric age estimates recently obtained from a tepha layer interbedded in the Piànico Formation. The alternative option, considering the Piànico interglacial correlative to marine isotope stage 11 within the Brunhes Chron as supported by tephrochronological dating reported in the literature, is not supported by the magnetostratigraphic results.
    Description: Published
    Description: 44-53
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Piànico Formation ; Pleistocene ; magnetostratigraphy ; polarity excursions ; Brunhes Chron ; Southern Alps ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: The database and visualization facilities of Geographic Information System (GIS) software are employed to support the analysis of rock texture from thin section by image processing. A Microscopic Information System (MIS) is hence obtained. The method is applied to transmitted light images of 137 samples obtained from 8 granitoid rocks. A slide scanner and a mount for crossed polarization are used to acquire the input images. For each thin section 5 collimated RGB images are scanned: 4 under different directions of crossed polarization and 1 without polarization. A grain segmentation procedure, based on two region growing functions is applied. The output is converted to vector format and refined using editing tools in the MIS environment, which enables a straightforward match between the input imagery and the final vectorized texture. GIS software provides optimal management of the MIS database, allowing the cumulative measurement of more than 87 000 grains.
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 5.3. TTC - Banche dati vulcanologiche
    Description: JCR Journal
    Description: open
    Keywords: Granitoid rocks ; Geographic Information System ; Image processing ; Petrography ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Abstract: The ANDRILL McMurdo Ice Shelf (MIS) initiative recovered a 1285 m-long core (MIS AND-1B) composed of cyclic glacimarine sediments with interbedded volcanic deposits. By far the thickest continuous volcanic sequence is about 175 m long and is found at midcore depths from 584.19 to 759.32 meters below sea floor (mbsf). The sequence was logged and initial interpretations of lithostratigraphic subdivisions were made on-ice during drilling in late 2006. Subsequent observations, based on image, petrographic, and SEM-EDS analyses, provide a more detailed, revised interpretation of a thick submarine to emergent volcanic succession. The sequence is subdivided into two main subsequences on the basis of sediment composition, texture and alteration style. The ~70 m thick lower subsequence consists mostly of monothematic stacked volcanic-rich mudstone and sandstone deposits, which are attributed to epiclastic gravity flow turbidite processes. This subsequence is consistent with abundant active volcanism that occurred at a distal site with respect to the drill site. The ~105 m thick upper subsequence consists mainly of interbedded tuff, lapilli tuff, and volcanic diamictite. A late Miocene (6.48 Ma) 2.81 m-thick subaqueously emplaced lava flow occurs within the second subsequence. This second subsequence is attributed to recurring cycles of submarine to emergent volcanic activity that occurred proximal to the drill site. This new dataset provides 1) the first rock evidence of significant late Miocene submarine volcanic activity in the Ross Embayment during a period of no to limited glaciation , and 2) a rich stratigraphic record that elucidates submarine volcano-sedimentary processes in an off-shore setting.
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: open
    Keywords: ANDRILL ; AND1-B core ; McMurdo Sound ; submarine volcanism ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: The Adriatic foreland of the Apennines comes ashore only in Apulia (easternmost Italy). Its southern part, our study area, lacks any structural analysis devoted to define its recent-to-active tectonics. Throughout the Quaternary, this region was affected by mild brittle deformation with rare faults, characterized by small displacement, and widespread extension joints, frequently organized in sets. Therefore, we conducted a quantitative and systematic analysis of the joint sets affecting Quaternary deposits, by applying an inversion technique ad hoc to infer the orientation and ratio of the principal stress axes, R = (σ2 - σ3)/(σ1 - σ3). Within a general extensional regime, we recognized three deformational events of regional significance. The oldest event, constrained to the early and middle part of the Middle Pleistocene, is characterized by variable direction of extension and R between 0.64-0.99. The penultimate event, dated late Middle Pleistocene, is characterized by an almost uniaxial tension, with a horizontal σ3 striking ~N43°E; R is high, between 0.85-0.99. The most recent event is characterized by the lowermost R values, that never exceed 0.47 and are frequently 〈0.30, indicating a sort of horizontal „radial‟ extension. This event is not older than the Late Pleistocene and possibly reflects the active stress field still dominating the entire study area.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Quaternary tectonics ; brittle deformation ; fracture ; Pleistocene ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-02-24
    Description: Sampling of interstitial fluids during deep coring in southern McMurdo Sound, Antarctica, revealed the presence of seawater-sourced, hypersaline brine at depths 〉200 m below the sea-floor. Na-Cl-Br and SO4-Cl-Br relationships are consistent with a concentration mechanism that involves the removal of pure H2O as ice and precipitation of mirabilite (Na2SO4·10H2O) during progressive freezing of seawater. The brine is in Neogene subglacial, glacimarine, and marine facies that record advance and retreat of glaciers through the Ross Sea embayment. In this environment, sea ice formation in semi-isolated marine basins that occupied flexural troughs along ice sheet margins produced dense brines that sank and infiltrated the permeable subglacial sediment. Repeated cycles of glacial advance and retreat provided multiple opportunities for batches of seawater to be transformed into brine that now is in the subsurface of southern McMurdo Sound. Results demonstrate the feasibility of brine formation via seawater freezing and attest to the potential of a cryogenic origin for subsurface brines in high-latitude regions of the Northern Hemisphere, as proposed by some workers.
    Description: Published
    Description: 587-590
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: ANDRILL ; SMS Project ; interstitial fluids ; hypersaline brine ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Although ~50 radiometric age analyses have been performed on Etna, and there are many historical references, these are not enough to temporally constrain the geo- logical evolution of the volcano. In particular, a new stratigraphic framework based on lithostratigraphic and unconformity-bounded units has pointed out the presence of some stratigraphic uncertainty that can be resolved only with radiometric dating. For this reason, a dating project applying the 40 Ar/ 39 Ar incremental heating technique started in 2002. The results obtained improve our understanding and provide con- straints for Etna’s geological evolution; in addition, they show that the applied tech- nique is very useful for dating young basalts and quantifying the hiatus represented by unconformities, as well as for understanding their meaning.
    Description: Published
    Description: 241-248
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: restricted
    Keywords: Ar/Ar dating ; Etna ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: An integrated high-resolution magnetobiocyclostratigraphy including radioisotopic dating and astronomical tuning is presented for the interval between 15.29 and 14.17 Ma in the marine La Vedova section in northern Italy. The natural remanent magnetization is carried by the iron sulphide greigite and the resultant magnetostratigraphy can be correlated straightforwardly to the interval ranging from C5Bn.2n to C5ADn in the Astronomically Tuned Neogene Time Scale (ATNTS2004). Spectral analysis on high-resolution magnetic susceptibility and geochemical proxy records in the depth domain and, using our magnetobiostratigraphic age model, in the time domain demonstrate that the various scales of cyclicity in the section are related to astronomical climate forcing. Starting from our initial age model, larger-scale cycles were first tuned to eccentricity. This first-order tuning was followed by tuning the basic cycle to precession and boreal summer insolation using inferred phase relations between maxima in Ca/Al, redox-sensitive elements and Ba, and minima in magnetic susceptibility, and maxima in precession and minima in obliquity and boreal summer insolation. Our astronomical ages for reversal boundaries are supported by analysis of sea floor spreading rates and should replace the existing ages in the ATNTS2004 lacking direct astronomical control. Two major steps in the geochemical proxy records, astronomically dated at 15.074 and 14.489 Ma, coincide with abrupt changes in sedimentation rate, and are the result of the combined effect of the ∼400-kyr eccentricity cycle superimposed upon a longer-term climatic or tectonic induced trend.
    Description: Published
    Description: 254–269
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Middle Miocene ; Langhian ; Mediterranean ; astronomical tuning ; palaeomagnetism ; biostratigraphy ; environmental changes ; orbital forcing ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: The Danian–Selandian (D–S) boundary has been identified for the first time in the Black Sea coast at Bjala (Bulgaria) based on a new integrated bio-, magneto- and cyclostratigraphic study. Several correlation criteria as established for the basal Selandian GSSP from Zumaia (Basque Basin) are evaluated. Noteworthy, is the almost complete lack of calcareous nannoplankton species Braarudosphaera bigelowi in the Bulgarian sections, a sharp decrease of which was indicated as suitable criteria for defining the D–S boundary as it occurred both at Zumaia and in the classical locations of the North Sea basin. Conversely, the second evolutionary radiation of the calcareous nannofossil genus Fasciculithus together with the occurrence of Fasciculithus tympaniformis that define the NP4/NP5 zonal boundary seem to be reliable criteria to approximate the D–S boundary. In detail, however, the best approach is to integrate biostratigraphic data within a magnetostratigraphic and/or cyclostratigraphic framework. Refinements on the placement of chron C27n at Zumaia and robust bed-by-bed correlation between several Basque sections and Bjala indicates that the D–S boundary is located 30 precession cycles (~630 ky) above C27n. In addition to the precession-related marl–limestone couplets and 100-ky eccentricity bundles recognized in the studied sections, expression of the stable 405-ky long eccentricity allows direct tuning to the astronomical solutions. A correlation of the land-based sections with previously tuned data from ODP Site1262 from the Southern Atlantic is challenged. Our choice is consistent with original tuning at Zumaia but shifts one 100-ky cycle older previous tuning from Site 1262 along the interval above C27n. Under the preferred tuning scheme the D–S boundary can be given an age of 61.641± 0.040 Ma on the La04 orbital solution.
    Description: Published
    Description: 511-533
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Paleocene ; Magnetostratigraphy ; Orbital tuning ; Calcareous nannofossils ; Selandian GSSP ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: The Fortuna Basin is an example of a marginal Mediterranean basin with evaporitic sedimentation during the Late Tortonian and Messinian. This basin shows an early restriction event before the main Messinian Salinity Crisis (MSC) that allows the Tortonian Salinity Crisis (TSC) to be proposed as a tectonic uplift event isolating the eastern Betic basins. Four evaporitic events are present in the central part of the Fortuna Basin, from bottom to top: Los Baños Marls Formation (composed by Fenazar Conglomerate Bed, Lower Gypsum Member [Mb] and Sanel Mb), Tale Gypsum Formation (Fm), Chicamo Diatomites and Gypsum Cycles Fm, and Rambla Salada Gypsum Fm. The present work documents the first biostratigraphic dating based on calcareous nannoplankton of these events. The lowest occurrence (LO) of Amaurolithus primus is registered at the upper part of the Sanel Mb, below the Tale Gypsum Fm. The LOs of Amaurolithus delicatus and Reticulofenestra rotaria, which mark the base of the Messinian, occur in the lower part of the Chicamo Cycles Fm, above the Tale Gypsum Fm, the Triquetrorhabdulus rugosus-Nicklithus amplificus integrate form and the LO of Nicklithus cf. amplificus in the upper part of the Chicamo Cycles Fm. Taking into account these results, a new calibration of the available magnetostratigraphic data is presented: the Chicamo Cycles Fm were formed during the reverse chron C3Ar and the Tortonian-Messinian boundary should be found within the Tale Gypsum Fm or near the top of the Sanel Mb. The onset of the TSC, the first restriction phase of the Fortuna Basin, is represented by the Fenazar Conglomerate Bed, bottom of the Los Baños Fm, and not by the Tale Gypsum Fm, as previously considered.
    Description: Published
    Description: 201-217
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Betic Cordillera ; Tortonian Salinity Crisis ; Calcareous nannoplankton ; Messinian ; Fortuna Basin ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: The northeast-striking, dextral-reverse Alpine fault transitions into the Marlborough Fault System near Inchbonnie in the central South Island, New Zealand. New slip-rate estimates for the Alpine fault are presented following a reassessment of the geomorphology and age of displaced late Holocene alluvial surfaces of the Taramakau River at Inchbonnie. Progressive avulsion and abandonment of the Taramakau floodplain, aided by fault movements during the late Holocene, have preserved a left-stepping fault scarp that grows in height to the northeast. Surveyed dextral (22.5 ± 2 m) and vertical (4.8 ± 0.5 m) displacements across a left stepover in the fault across an alluvial surface are combined with a precise maximum age from a remnant tree stump (≥1590–1730 yr) to yield dextral, vertical, and reverse-slip rates of 13.6 ± 1.8, 2.9 ± 0.4, and 3.4 ± 0.6 mm/yr, respectively. These values are larger (dextral) and smaller (dip slip) than previous estimates for this site, but they refl ect advances in the local chronology of surfaces and represent improved time-averaged results over 1.7 k.y. A geological kinematic circuit constructed for the central South Island demonstrates that (1) 69%–89% of the Australian-Pacific plate motion is accommodated by the major faults (Alpine-Hope-Kakapo) in this transitional area, (2) the 50% drop in slip rate on the Alpine fault between Hokitika and Inchbonnie is taken up by the Hope and Kakapo faults at the southwestern edge of the Marlborough Fault System, and (3) the new slip rates are more compatible with contemporary models of strain partitioning presented from geodesy.
    Description: Published
    Description: 139-152
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: N/A or not JCR
    Description: reserved
    Keywords: Alpine fault ; plate boundary ; slip rate ; New Zealand ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: The Pleistocene history of climate control on sedimentation in the Southern Alps-Po Plain system, northern Italy, was reconstructed using an integrated magnetostratigraphic, palynological, and petrographical approach on a 47-m-deep core. The core mainly consists of lacustrine sediments pertaining to the Bagaggera sequence, deposited at the foothills of the Southern Alps during the late Matuyama subchron (0.99-0.78 Ma). At that time, climate worsened globally and locally it caused the progradation of an alluvial fan unit onto the nearby Po Plain, triggering lake formation by damming of a tributary valley. These new data are used in conjunction with data from the literature to highlight and track the effects of climate forcing on sedimentation during the late Matuyama subchron in different orographic and geodynamic settings of the Southern Alps-Po Plain system as part of the greater Alpine area. We found that the episodes of alluvial fan and braidplam progradation observed in the southern foreland of the Alps during the late Matuyama global cooling seem broadly synchronous with the deposition of most of the so-called Gunz and Alterer Deckenschotter deposits in the northern forelands of the Alps as well as with the first major waxing of the Alpine valley glaciers, possibly around the Marine Isotope Stage 22 (~0.87 Ma).
    Description: Regione Lombardia, IREALP
    Description: Published
    Description: 832–846
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Paleomagnetism ; Climate Change ; Early Pleistocene ; Italy ; Stratigraphy ; Petrography ; Palynology ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: A critical assessment of the available magnetostratigraphic and/or radiometric age constraints on key sites bearing hominin remains and/or lithic industries from southern Europe (Italy, France, Spain) leads us to propose that the main window of early hominin presence in southern Europe is broadly comprised between the Jaramillo subchron and the Brunhes–Matuyama boundary (i.e., subchron C1r.1r, 0.99–0.78 Ma). Within the dating uncertainties, this ~200 ky time window broadly coincides with the late Early Pleistocene global climate transition that contains marine isotope stage (MIS) 22 (~0.87Ma), the first prominent cold stage of the Pleistocene. We suggest that aridification in North Africa and Eastern Europe, particularly harsh during MIS22 times, triggered migration pulses of large herbivores, particularly elephants, from these regions into southern European refugia, and that hominins migrated with them. Finally, we speculate on common pathways of late Early Pleistocene dispersal of elephants and hominins from their home in savannah Africa to southern Europe, elephant and hominin buen retiro. In particular, we stress the importance of the Po Valley of northern Italy that became largely and permanently exposed only since MIS22, thus allowing possibly for the first time in the Pleistocene viable new migration routes for large mammals and hominins across northern Italy to southern France and Spain in the west.
    Description: Published
    Description: 79-93
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Pleistocene ; Magnetostratigraphy ; Hominins ; Migration ; Europe ; Galerian ; Jaramillo ; Brunhes-Matuyama ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Geological Society of America
    Publication Date: 2022-06-14
    Description: In central Italy, the geometry, kinematics, and tectonic evolution of the late Neogene Umbrian Arc, which is one of the main thrusts of the northern Apennines, have long been studied. Documented evidence for orogenic curvature includes vertical axis rotations along both limbs of the arc and a positive orocline test along the entire arc. The cause of the curvature is, however, still unexplained. In this work, we focus our attention on the southern portion of the Umbrian Arc, the so-called Olevano- Antrodoco thrust. We analyze, in particular, gravity and seismic-reflection data and consider available paleomagnetic, stratigraphic, structural, and topographic evidence from the central Apennines to infer spatial extent, attitude, and surface effects of a midcrustal anticlinorium imaged in the CROP-11 deep seismic profile. The anticlinorium has horizontal dimensions of ~50 by 30 km, and it is located right beneath the Olevano- Antrodoco thrust. Stratigraphic, structural, and topographic evidence suggests that the anticlinorium produced a surface uplift during its growth in early Pliocene times. We propose an evolutionary model in which, during late Neogene time, the Olevano- Antrodoco thrust developed in an out-of sequence fashion and underwent ~16° of clockwise rotation when the thrust ran into and was then raised and folded by the growing anticlinorium (late Messinian–early Pliocene time). This new model suggests a causal link between midcrustal folding and surficial orogenic curvature that is consistent with several available data sets from the northern and central Apennines; more evidence is, however, needed to fully test our hypothesis. Additionally, due to the occurrence of midcrustal basement-involved thrusts in other orogens, this model may be a viable mechanism for arc formation elsewhere.
    Description: Published
    Description: 1409-1420
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: oroclines ; Apennines ; fold and thrust belts ; gravity anomalies ; seismic reflection profiles ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-06-15
    Description: Public works in progress in the Campanian plain north of Somma-Vesuvius recently encountered the remains of a prehistoric settlement close to the town of Afragola. Rescue excavations brought to light a Bronze Age village partially destroyed and buried by pyroclastic density currents (PDCs) of the Vesuvian Pomici di Avellino eruption (3.8 14C ka BP) and subsequently sealed by alluvial deposits. Volcanological and rockmagnetic investigations supplemented the excavations. Careful comparison between volcanological and archaeological stratigraphies led to an understanding of the timing of the damage the buildings suffered when they were struck by a series of PDCs. The first engulfed the village, located some 14 km to the north of the inferred vent, and penetrated into the dwellings without causing major damage. The buildings were able to withstand the weak dynamic pressure of the currents and deviate their path, as shown by the magnetic fabric analyses. Some later collapsed under the load of the deposits piled up by successive currents. Stepwise demagnetization of the thermal remanent magnetization (TRM) carried by potsherds embedded in the deposits yields deposition temperatures in the order of 260– 320 °C, fully consistent with those derived from pottery and lithic fragments from other distal and proximal sites. The fairly uniform temperature of the deposits is here ascribed to the lack of pervasive air entrainment into the currents. This, in turn, resulted from the lack of major topographical obstacles along the flat plain. The coupling of structural damage and sedimentological analyses indicates that the currents were not destructive in the Afragola area, but TRM data indicate they were still hot enough to cause death or severe injury to humans and animals. The successful escape of the entire population is apparent from the lack of human remains and from thousands of human footprints on the surface of the deposits left by the first PDCs. People were thus able to walk barefoot across the already emplaced deposits and escape the subsequent PDCs. The rapid cooling of the deposits was probably due to both their thinness and heat dissipation due to condensation of water vapour released in the mixture by magma–water interaction.
    Description: Published
    Description: 408–421
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: pyroclastic density current ; Bronze Age ; magnetic fabric ; deposition temperature ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-07-14
    Description: A quantitative analysis of planktonic foraminifera, coupled with petrophysical and paleomagnetic measurements and 14C AMS calibrations, was carried out on a deep core recovered in the Sardinia Channel (Western Mediterranean Sea), during the CIESM Sub2 survey, providing an integrated stratigraphic time-framework over the last 80 kyr. Significant changes in the quantitative distribution of planktonic foraminifera allowed the identification of several eco-bioevents useful to accurately mark the boundaries of the eco-biozones widely recognised in the Western Mediterranean records and used for large scale correlations. Namely, 10 eco-biozones were identified based on the relative abundance of selected climate sensitive planktonic foraminiferal species. Sixteen codified eco-bioevents were correlated with the Alboran Sea planktonic foraminiferal data and four climatic global events (Sapropel S1, Younger Dryas, Greenland Isotope Interstadial 1, Greenland Isotope Stadial 2, Heinrich event H1-H6) were recognized. The eco-bioevents together with the 14C AMS calibrations allowed us to define an accurate age model, spanning between 2 and 83 kyr. The reliability of the age model was confirmed by comparing the colour reflectance (550 nm%) data of the studied record with the astronomically tuned record from the Ionian sea (ODP-Site 964). A mean sedimentation rate of about 7 cm/kyr included three turbidite event beds that were chronologically constrained within the relative low stand and lowering sea level phases of the MIS 4 and 3. The deep-sea sedimentary record includes a distinct tephra occurring at the base of the core which dates 78 ka cal. BP. The paleomagnetic data provide a well-defined record of the characteristic remanent magnetization that may be used to reconstruct the geomagnetic paleosecular variation for the Mediterranean back to 83 kyr.
    Description: Published
    Description: 725 - 737
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Integrated stratigraphy ; Late Neogene marine record ; Eco-bio-events ; Reflectance 550 nm % ; Sardinia Channel ; Western Mediterranean ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-04-04
    Description: Paleomagnetic analyses were conducted on two cores drilled at Ceprano in central Italy where an incomplete hominin cranium was discovered in1994, as well as on two additional cores from the nearby site of Fontana Ranuccio that yielded hominin remains associated with an Acheulean industry. No evidence for the 0.78 Ma Brunhes–Matuyama boundary was found at Ceprano down to 45 m below the level that yielded the hominin cranium. The Ceprano lithostratigraphy and the paleomagnetic age constraints are broadly consistent with the stratigraphy of the Liri lacustrine sequence of the Latina Valley, constrained by published K–Ar ages between ~0.6 and ~0.35Ma, and according to an age model with magnetic susceptibility supported by pollen facies data, suggest that the level that yielded the hominin cranium has an age of ~0.45 (+0.05, −0.10) Ma. Evidence for the Brunhes–Matuyama boundary was found at Fontana Ranuccio about 40 m below the hominin level, consistent with a K–Ar age of ~0.46 Ma reported for this level. Hence the Ceprano and Fontana Ranuccio hominin occurrences may be of very similar mid-Brunhes age.
    Description: Published
    Description: 255-268
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Pleistocene ; Ceprano ; Fontana Ranuccio ; magnetostratigraphy ; hominins ; Italy ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2017-04-04
    Description: The multideformed axial zone of the Apennines provides a great opportunity to explore the influence of preexisting cross-structures (inherited from pre-Quaternary tectonic phases) on the segmentation of Quaternary/active seismogenic extensional faults. Detailed geological and structural data and their comparison with seismological data show that although the attitudes (strike and dip) of oblique preexisting faults are certainly an important factor in determining a segment boundary, the size of the inherited oblique structures seems to be more crucial. Pre-existing cross-structures with lengths ranging from several kilometers to a few tens of kilometers show a twofold behavior. They can act as segment barriers during the rupture of a single fault segment or they can be reactivated as transfer zones inducing the activation of two adjacent segments that belong to the same fault system. Regional basement/crustal oblique pre-existing cross-structures, with lengths ranging from several tens of kilometers to hundreds of kilometers (commonly NNE-striking), may act as “persistent structural barriers” that halt both fault segment and fault system propagation, thus determining their terminations and maximum sizes. In the northern-central Apennines, the NNE-striking Ancona–Anzio, Valnerina, and Ortona–Roccamonfina tectonic lineaments, although having been repeatedly reactivated since the Mesozoic, represent the most important examples of these structures. Moreover, probably due to their misorientation with respect to the present extensional stress field, regional NNE-striking pre-existing structures appear to be less likely to produce strong magnitude events (no surface evidence for Quaternary faulting has been found thus far and historical and instrumental seismicity shows only Mb6 events). M ~7 event, on the other hand, is more likely to occur along the (N)NW–(S)SE trending normal fault systems. Lastly, we propose a model that can explain the different sizes of fault segments and fault systems on the basis of their location with respect to the “persistent structural barriers” and their spacing. In this view, our results may contribute to a more reasonable assessment of the nature and size of future surface ruptures in the northern-central Apennines, which are of critical importance to estimating seismic hazard.
    Description: Published
    Description: 304-319
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Active faults ; Segmentation ; Pre-existing cross-structure ; Structural barrier ; Northern/central Apennines ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-04-04
    Description: An exceptional triple palynological signal (unusually high abundance of marine, freshwater, and terrestrial palynomorphs) recovered from a core collected during the 2007 ANDRILL (Antarctic geologic drilling program) campaign in the Ross Sea, Antarctica, provides constraints for the Middle Miocene Climatic Optimum. Compared to elsewhere in the core, this signal comprises a 2000-fold increase in two species of dinoflagellate cysts, a synchronous fivefold increase in freshwater algae, and up to an 80-fold increase in terrestrial pollen, including a proliferation of woody plants. Together, these shifts in the palynological assemblages ca. 15.7 Ma ago represent a relatively short period of time during which Antarctica became abruptly much warmer. Land temperatures reached 10 °C (January mean), estimated annual sea-surface temperatures ranged from 0 to 11.5 °C, and increased freshwater input lowered the salinity during a short period of sea-ice reduction.
    Description: Published
    Description: 955-958
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Middle Miocene Climatic Optimum ; ANDRILL ; Antarctica ; Palynomorphs ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: A quantitative analysis of planktonic foraminifera, coupled with petrophysical and paleomagnetic measurements and 14C AMS calibrations, was carried out on a deep core recovered in the Sardinia Channel (Western Mediterranean Sea), during the CIESM Sub2 survey, providing an integrated stratigraphic time-framework over the last 80 kyr. Significant changes in the quantitative distribution of planktonic foraminifera allowed the identification of several eco-bioevents useful to accurately mark the boundaries of the eco-biozones widely recognised in the Western Mediterranean records and used for large scale correlations. Namely, 10 eco-biozones were identified based on the relative abundance of selected climate sensitive planktonic foraminiferal species. Sixteen codified eco-bioevents were correlated with the Alboran Sea planktonic foraminiferal data and four climatic global events (Sapropel S1, Younger Dryas, Greenland Isotope Interstadial 1, Greenland Isotope Stadial 2, Heinrich event H1-H6) were recognized. The eco-bioevents together with the 14C AMS calibrations concurred to define an accurate age model, spanning between 2 and 83 kyr cal. BP. The reliability of the age model was confirmed by comparing the colour reflectance (550 nm%) data of the studied record with the astronomically tuned one of the Ionian sea (ODP-Site 964). A mean sedimentation rate of about 7 cm/kyr was evaluated including three turbidite event beds that were chronologically constrained within the relative low stand and lowering sea level phases of the MIS 4 and MIS 3. The deep sea sedimentary record includes a distinct tephra occurring at the base of the core which dates 79 ka. The paleomagnetic data provide a well-defined record of the characteristic remanent magnetization that may be used to reconstruct the geomagnetic paleosecular variation for the Mediterranean back to 83 kyr cal. BP.
    Description: In press
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: integrated stratigraphy, late Neogene marine record, eco-bio-events, reflectance 550 nm %, Sardinia ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: We describe the Miocene–Quaternary geological–structural evolution of the region between the Salar de Uyuni and de Atacama, Andes of Chile and Bolivia. We recognized four main tectonic events based on fold geometry, fault kinematics and stratigraphic data. The oldest event, of Miocene age, is characterized by folding and reverse faulting of the sedimentary successions with an E–W direction of shortening in the northern part of the studied area and a WNW–ESE shortening in the southern part. The following two events, of Pliocene age, are characterized by lower shortening amounts; they occurred first by reverse faulting with a NW–SE-trending greatest principal stress (ó1, computed with striated fault planes) and a vertical least principal stress (ó3), followed by pervasive strike-slip faulting with the same NW–SE-trending ó1 and a horizontal NE–SW ó3. The fourth event, dating to the late Pliocene–Quaternary is characterized by normal faulting: the ó3 still trends NE–SW, whereas the intermediate principal stress ó2 exchanged with ó1. Volcanism accompanied both the contractional, transcurrent and extensional tectonic phases. The Mio–Pliocene compression appears directly linked to a rapid convergence and an apparently important coupling between the continental and oceanic plates. The E–W to WNW–ESE direction of shortening of the Miocene structures and the NW–SE ó1 of the Pliocene structures seem to be more linked to an intra-Andean reorientation of structures following the WNW-directed absolute motion of the South-American Plate. The extensional deformations can be interpreted as related to gravity forces affecting the highest parts of the volcanic belt in a sort of asymmetrical (SW-ward) collapse of the belt.
    Description: Published
    Description: 114-135
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Chile ; Bolivia ; Andes ; Fault ; Fold ; Tectonic phases ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: Eruptions are fed by dikes; therefore, better knowledge of dike propagation is necessary to improve our understanding of how magma is transferred and extruded at volcanoes. This study presents an overview of dike patterns and the factors controlling dike propagation within volcanic edifices. Largely based on published data, three main types of dikes (regional, circumferential and radial) are illustrated and discussed. Dike pattern data from 25 volcanic edifices in different settings are compared to derive semi-quantitative relationships between the topography (relief, shape, height, and presence of sector collapses) of the volcano, tectonic setting (presence of a regional stress field), and mean composition (SiO2 content). The overview demonstrates how dike propagation in a volcano is not a random process; rather, it depends from the following factors (listed in order of importance): the presence of relief, the shape of the edifice and regional tectonic control. We find that taller volcanoes develop longer radial dikes, whose (mainly lateral) propagation is independent of the composition of magma or the aspect ratio of the edifice. Future research, starting from these preliminary evaluations, should be devoted to identifying dike propagation paths and likely locations of vent formation at specific volcanoes, to better aid hazards assessment.
    Description: Partly fundedwith DPC-INGVfunds (LAVAProject).
    Description: Published
    Description: 67–77
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dikes ; volcanoes ; topography ; tectonic setting ; eruptions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamics of the volcano, marking the passage from a period (March 1993–June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveals a southward motion of the upper southern part of the volcano, driven by a NNW–SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: This work was funded by the Istituto Nazionale di Geofisica e Vulcanologia and by the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 78–86
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: stress release ; dike ; volcano-tectonics ; flank instability ; Mt. Etna ; instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: The Pleistocene history of climate control on sedimentation in the Southern Alps-Po Plain system, northern Italy, was reconstructed using an integrated magnetostratigraphic, palynological, and petrographical approach on a 47-m-deep core. The core mainly consists of lacustrine sediments pertaining to the Bagaggera sequence, deposited at the foothills of the Southern Alps during the late Matuyama subchron (0.99–0.78 Ma). At that time, climate worsened globally and locally it caused the progradation of an alluvial fan unit onto the nearby Po Plain, triggering lake formation by damming of a tributary valley. These new data are used in conjunction with data from the literature to highlight and track the effects of climate forcing on sedimentation during the late Matuyama subchron in different orographic and geodynamic settings of the Southern Alps-Po Plain system as part of the greater Alpine area. We found that the episodes of alluvial fan and braidplain progradation observed in the southern foreland of the Alps during the late Matuyama global cooling seem broadly synchronous with the deposition of most of the so-called Günz and Älterer Deckenschotter deposits in the northern forelands of the Alps as well as with the first major waxing of the Alpine valley glaciers, possibly around the Marine Isotope Stage 22 (~0.87 Ma).
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Pleistocene ; magnetostratigraphy ; pollen analysis ; sand petrography ; Alps ; Po Plain ; lacustrine sequence ; alluvial fan ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: The Early/Middle Eocene (Ypresian/Lutetian) transition is represented by a hiatus in many North European sections, including those in which the classic stratotypes were originally defined. However, the Global Stratotype Section and Point of the Lutetian Stage, which is still pending definition, should be placed at a globally correlatable event included within that unrepresented interval. The Pyrenean Eocene outcrops display sedimentary successions that offer the rare opportunity to analyse the Ypresian/Lutetian boundary interval in almost continuous sections and in very different settings. Seven reference stratigraphic sections were selected on the basis of their quality and correlated by means of biomagnetostratigraphic data. This correlation framework casts light on the sequence of chronostratigraphic events that characterize the Ypresian/Lutetian boundary interval, which may prove useful in defining the main correlation criterion of the base of the Lutetian. All of the Pyrenean sections show a similar sedimentary evolution, despite being up to 350 km apart from each other, containing deposits of different origins (intrabasinal carbonate sediments, siliciclastic sediments sourced from the Iberian plate, and terrigenous sediments sourced from the uplifting Pyrenees) and despite having been accumulated in different sedimentary environments (from continental to deep marine) and in different geodynamic settings (piggy-back basin, foreland basin and cratonic margin). This common evolution can be readily interpreted in terms of a sea-level driven depositional sequence whose lowstand and transgressive systems tracts are included within the Ypresian/Lutetian boundary interval. The Pyrenean Ypresian/Lutetian depositional sequence can reasonably be correlated with depositional sequences from classic North European areas, shedding light on the palaeoenvironmental history which in those areas has not been recorded. Furthermore, these depositional sequences may possibly correlate with others from the Antarctic Ocean and from New Jersey, as well as with oceanic temperature variations, suggesting that they might be the result of climatically-driven glacioeustatic sea-level changes. Should this hypothesis prove correct, it would confirm previous suggestions that the onset of Antarctic glaciations needs to be backshifted to the late Ypresian at least.
    Description: Published
    Description: 313-332
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Eocene ; Lutetian ; Chronostratigraphy ; Sequence stratigraphy ; Climate ; Pyrenees ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-11-19
    Description: We report on structural and anisotropy of magnetic susceptibility (AMS) results from the Upper Miocene sediments of the Amantea basin, located on the Tyrrhenian coast of the Calabrian Arc (Southern Italy). The stratigraphic succession of the basin is organized in three depositional sequences, separated by two major angular unconformities. Detailed geologica1 mapping and structural analysis demonstrate that the stratigraphic evolution of the Amantea basin is strongly controlled by a synsedimentary extensional tectonic regime. Severa1 NNE-SSW-trending norma1 fault arrays with large scatter in inclination values have been interpreted as due to a domino faulting mechanism, consistent with a WNW-ESE stretching direction. AMS data have been obtained for 13 sites, both in the not constrained in age first depositional sequence (3 sites), and in the upper Tortonian-lower Messinian clays from the second depositional sequence (10 sites). Al1 the sites show a strong magnetic foliation parallel to the bedding planes, and a well defined magnetic lineation subparallel to the local bedding dip directions. The magnetic lineations cluster around a WNW-ESE trend and are parallel to the stretching directions inferred by fault-slip analysis and basin architecture. These new data then confirm the possibility to use the magnetic lineation to map the strain trajectory in weakly deformed extensional sedimentary basins. Paleomagnetic data (from previous studies) show that the whole Calabrian block underwent a 15°-20° clockwise rotation probably in the Pleistocene, postdating the extensional tectonic events which controlled the Amantea basin geometry. Therefore we suggest for the Amantea basin an original E-W-oriented stretching direction, which may be considered as the older extensional direction characterizing the Late Miocene evolution of the southern Tyrrhenian Sea domain.
    Description: Published
    Description: 33-49
    Description: JCR Journal
    Description: reserved
    Keywords: magnetic fabric ; extentional tectonics ; Miocene ; Calabrian Arc ; Italy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-11-26
    Description: During the July^August 2001 eruption of Mt. Etna development of extensional fractures/faults and grabens accompanied magma intrusion and subsequent volcanic activity. During the first days of the eruption, we performed an analysis of attitude, displacement and propagation of fractures and faults exposed on the ground surface in two sites, Torre del Filosofo and Valle del Leone, located along the same fracture system in the region surrounding the Valle del Bove depression on the eastern flank of Mt. Etna. Fractures and faults formed as the consequence of a shallow intruding dyke system that fed the several volcanic centres developed along the fracture system. The investigated sites differ in slope attitude and in geometrical relationships between fractures and slopes. In particular, the fracture system propagated parallel to the gentle slope (67‡ dip) in the Torre del Filosofo area, and perpendicular to the steep slope (V25‡ dip) in the Valle del Leone area. In the Torre del Filosofo area, slight graben subsidence and horizontal extension of the ground surface by about 3 m were recorded. In the Valle del Leone area, extensional faulting forming a larger and deeper graben with horizontal extension of the ground surface by about 10 m was recorded. For the Valle del Leone area, we assessed a downhill dip of 14‡ for the graben master fault at the structural level beneath the graben where the fault dip shallows. These results suggest that dyke intrusion at Mount Etna, and particularly in the region surrounding the Valle del Bove depression, may be at the origin of slope failure and subsequent slumps where boundary conditions, i.e. geometry of dyke, slope dip and initial shear stress, amongst others, favour incipient failures.
    Description: Published
    Description: 281-294
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dykes ; extensional fractures ; grabens ; slope failures ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-12-21
    Description: The lithological and compositional characteristics of eighteen different pyroclastic deposits of Campanian origin, dated between 125 cal ky BP and 22 cal ky BP, were described. The pyroclastic deposits were correlated among different outcrops mainly located on the Apennine slopes that border the southern Campanian Plain. They were grouped in two main stratigraphic and chronologic intervals of regional significance: a) between Pomici di Base (22.03 cal ky BP; Somma–Vesuvius) and Campanian Ignimbrite (39 cal ky BP; Campi Flegrei) eruptions; and b) older than Campanian Ignimbrite eruption. Three new 14C AMS datings support the proposed correlations. Six eruptions were attributed to the Pomici di Base- Campanian Ignimbrite stratigraphic interval, while twelve eruptions are older than Campanian Ignimbrite. Of the studied deposits two originated from Ischia island, five are related to Campi Flegrei, and three to Somma– Vesuvius. Two eruptions have an uncertain correlation with Somma–Vesuvius or Campi Flegrei, while six eruptions remain of uncertain source. Minimum volumes of five eruptions were assessed, ranging between 0.5 km3 and 4 km3. Two of the studied deposits were correlated with Y-3 and X-5 tephra layers, which are widely dispersed in the central Mediterranean area. The new stratigraphic and chronologic data provide an upgraded chrono-stratigraphy for the explosive activity of Neapolitan volcanoes in the period between 125 and 22 cal ky BP.
    Description: Published
    Description: 19–48
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Neapolitan volcanoes ; late Pleistocene ; explosive eruptions ; Somma–Vesuvius ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-05-12
    Description: Although the tectonic features and stress regime typical for accretionary complexes and back-arc domains have been widely documented so far, few are known on the transitional zone separating these two systems. Here we report on structural analysis and anisotropy of magnetic susceptibility (AMS) results from Eocene–Pliocene sediments exposed in western Sardinia. From late Oligocene to middle Miocene, the studied area was located between the Alpine–Apennine wedge to the east, which was undergoing shortening and accretion, and the Liguro–Provenc al basin, undergoing extension and spreading. We find that, prior to the formation of the Liguro–Provenc al basin, the middle Eocene–lower Oligocene sediments cropping out at the southwesternmost edge of Sardinia were subjected to NE–SW shortening (in present-day coordinates), in agreement with recently reported geological information. Conversely, the upper Oligocene–Pliocene sedimentary sequences record a different evolutionary stage of extensional processes. Upper Oligocene–middle–upper Burdigalian sediments clearly show a N–S-oriented magnetic lineation that can be related to extensional direction along the prevalent E–W-oriented normal faults. On the other hand, no magnetic lineation has been detected in upper Burdigalian–Serravallian sediments, which mark the end of the first rifting process in Sardinia, which likely coincides with the rift-to-drift transition at the core of the Liguro–Provençal basin. Finally, a NE–SW extension is observed in two Tortonian–Pliocene sites at the northwestern margin of the NNW–SSE-oriented Campidano graben. Our study confirms that AMS may represent a valuable strain-trajectory proxy and significantly help to unravel the characters of temporally superimposed tectonic events.
    Description: Published
    Description: 213-232
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Back-arc basin ; Magnetic anisotropy susceptibility (AMS) ; Sardinia ; Mediterranean area ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-07-14
    Description: Field geological data of the Pantelleria Island, a large Late Quaternary volcano located in the Sicily Channel rift zone, integrated with offshore geophysical information, are used to derive the structural setting of the Island and the surrounding region, and to analyse the relationships between tectonics and magmatism. Field work shows that the principal faults exposed on the Island fall into two systems trending NNE–SSW and NW–SE. Mapped faults from offshore multichannel seismic profiles show similar trends, and some of them represent the offshore extension of the Pantelleria Island structures. The NW–SE faults bound the Pantelleria Graben, one of the three main depressions formed since the Late Miocene–Early Pliocene within the African continental platform, which compose the Sicily Channel rift zone. A 3-D Moho depth geometry, derived from inversion of Bouguer gravity data, shows a significant uplift of the discontinuity up to 16–17 km beneath the westernmost part of the Pantelleria Graben and beneath the Pantelleria Island; it lows rapidly to 24–25 km away from the graben northeastward and south-westward. The Moho uplift could explain the presence of a shallow magma chamber in the southern part of the Island, where processes of magmatic differentiation are documented. Geological and geophysical data suggest that the northwestern part of the Sicily Channel is presently dominated by a roughly E–W directed extensional regime. Crustal cracking feeding the Quaternary volcanism could be also related to this extensional field that would be further responsible for the development of the N–S trending volcanic belt that extends in the Sicily Channel from Lampedusa Island to the Graham Bank. This mode of deformation is confirmed also by geodetic data. This implies that in the northwestern part of the Sicily Channel, the E–W extension replaced the NE–SW crustal stretching that originated the NW-trending tectonic depressions constituting the rift zone. © 2008 Elsevier B.V. All rights reserved.
    Description: Published
    Description: 32-46
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Pantelleria Island ; Channel rift zone ; structural analysis ; Quaternary volcanism ; gravity modelling ; tectonic extension ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-12-14
    Description: This paper presents a new methodology for studying the evolution of curved mountain belts by means of paleomagnetic analyses performed on analogue models. Eleven models were designed aimed at reproducing various tectonic settings in thin-skinned tectonics. Our models analyze in particular those features reported in the literature as possible causes for peculiar rotational patterns in the outermost as well as in the more internal fronts. In all the models the sedimentary cover was reproduced by frictional low-cohesion materials (sand and glass micro-beads), which detached either on frictional or on viscous layers. These latter were reproduced in the models by silicone. The sand forming the models has been previously mixed with magnetite-dominated powder. Before deformation, the models were magnetized by means of two permanent magnets generating within each model a quasi-linear magnetic field of intensity variable between 20 and 100 mT. After deformation, the models were cut into closely spaced vertical sections and sampled by means of 1x1-cm Plexiglas cylinders at several locations along curved fronts. Care was taken to collect paleomagnetic samples only within virtually undeformed thrust sheets, avoiding zones affected by pervasive shear. Afterwards, the natural remanent magnetization of these samples was measured, and alternating field demagnetization was used to isolate the principal components. The characteristic components of magnetization isolated were used to estimate the vertical-axis rotations occurring during model deformation. We find that indenters pushing into deforming belts from behind form non-rotational curved outer fronts. The more internal fronts show oroclinal-type rotations of a smaller magnitude than that expected for a perfect orocline. Lateral symmetrical obstacles in the foreland colliding with forward propagating belts produce non-rotational outer curved fronts as well, whereas in between and inside the obstacles a perfect orocline forms only when the ratio between obstacles’ distance and thickness of the cover is greater than 10. Finally, when a belt collides with an obstacle in the foreland oblique to the shortening direction the outer front displays rotations opposite in sign to oroclinal-type rotations, whereas the internal fronts seem to assume an "oroclinal type" rotational pattern. Furthermore rotation is easier in laterally unconfined models, i.e. when the wedge can "escape" laterally. The results from our models may be useful when compared to paleomagnetic rotations detected in natural arcs. In these cases, our results may allow for better understanding the tectonic setting controlling the genesis of curved mountain fronts, as is the case of the Gela Nappe of Sicily we compare with some of our models.
    Description: Published
    Description: 633-654
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; tectonic rotations ; physical models ; arcuate belts ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: We present here some criticism to the scientific content of the paper of Milia et al. [2007. The dark nature of Somma-Vesuvius volcano: evidence from the 3.5 ka B.P. Avellino eruption. Quaternary International, 173–174, 57–66] published in Quaternary International. Milia et al. (2007) interpreted seismic lines in the Gulf of Naples (southern Italy), and inferred the presence of deposits from a large debris avalanche which occurred just before the Avellino eruption of Somma-Vesuvius volcano. The authors supported their seismic profile interpretation with on-land stratigraphies and logs. However, we present here different on-land data that demonstrate the inconsistency of the occurrence of any debris avalanche before or after the Avellino eruption, and we provide also an alternative interpretation for the observed seismic facies offshore of Somma-Vesuvius.
    Description: Published
    Description: 102–109
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: open
    Keywords: Somma-Vesuvius volcano ; Avellino eruption ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2017-04-04
    Description: We report on the anisotropy of magnetic susceptibility (AMS) analyses of fine-grained sediments deposited during the Messinian in foredeep basins at the front of the northern Apenninic chain. The data refer to 32 sampling sites, mostly distributed in the fine-grained intervals of the Laga and Colombacci formations, extending along the belt for a total length of about 300 km. Rock magnetism analyses indicate that the magnetic susceptibility and its anisotropy are in most cases dominated by the paramagnetic minerals of the clay matrix. In order to delineate the contribution of the ferrimagnetic fraction to the overall susceptibility fabric, the anisotropy of the anhysteretic remanent magnetisation was investigated at some representative sites. The magnetic fabric of the studied sediments mostly reflects the effects of compaction, showing a predominant magnetic foliation parallel to the bedding piane. At all the sites a well distinct magnetic lineation was also found, which is parallel to the fold axes and thrust fronts, both at local and regional scales. This feature is maintained in sequences that differ for sedimentological character and age, implying that the magnetic lineation was produced by a mild tectonic overprint of the primary sedimentary-compactional fabric. The relationship between the magnetic lineation trends and the vertical axis rotations detected by Speranza et al. [Speranza, F., Sagnotti, L.. Mattei, M., 1997. J. Geophys. Res. 102, 3153-3166] indicates that the magnetic lineation formed during the compressive phases of the Messinian-early Pliocene, when the Apenninic front was almost rectilinear and oriented N32O°.
    Description: Published
    Description: 73-93
    Description: JCR Journal
    Description: reserved
    Keywords: magnetic anisotropy ; rock strain ; northern Apennines ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2017-04-04
    Description: Recent seismicity in and around the Gargano Promontory, an uplifted portion of the Southern Adriatic Foreland domain, indicates active E–W strike-slip faulting in a region that has also been struck by large historical earthquakes, particularly along the Mattinata Fault. Seismic profiles published in the past two decades show that the pattern of tectonic deformation along the E–W-trending segment of the Gondola Fault Zone, the offshore counterpart of the Mattinata Fault, is strikingly similar to that observed onshore during the Eocene–Pliocene interval. Based on the lack of instrumental seismicity in the south Adriatic offshore, however, and on standard seismic reflection data showing an undisturbed Quaternary succession above the Gondola Fault Zone, this fault zone has been interpreted as essentially inactive since the Pliocene. Nevertheless, many investigators emphasised the genetic relationships and physical continuity between the Mattinata Fault, a positively active tectonic feature, and the Gondola Fault Zone. The seismotectonic potential of the system formed by these two faults has never been investigated in detail. Recent investigations of Quaternary sedimentary successions on the Adriatic shelf, by means of very high-resolution seismic–stratigraphic data, have led to the identification of fold growth and fault propagation in Middle–Upper Pleistocene and Holocene units. The inferred pattern of gentle folding and shallow faulting indicates that sediments deposited during the past ca. 450 ka were recurrently deformed along the E–W branch of the Gondola Fault Zone. We performed a detailed reconstruction and kinematic interpretation of the most recent deformation observed along the Gondola Fault Zone and interpret it in the broader context of the seismotectonic setting of the Southern Apennines-foreland region. We hypothesise that the entire 180 km-long Molise–Gondola Shear Zone is presently active and speculate that also its offshore portion, the Gondola Fault Zone, has a seismogenic behaviour.
    Description: Study supported by ISMAR-CNR projects EUROSTRATAFORM (EVK3-CT-2002-00079) and “Rischi Sottomarini”(GNDT 2000–2004) and by the Project S2 funded in the framework of the 2004–2006 agreement between the Italian Department of Civil Protection and INGV (Research Unit 2.4). This is ISMAR-CNR (Bologna) contribution n. 1570.
    Description: Published
    Description: 110-121
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Quaternary ; Foreland deformation ; Active fault ; Adriatic Sea ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamic of the volcano, marking the passage from a period (March 1993 – June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveal a southward motion of the upper southern part of the volcano, driven by a NNW-SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Stress release ; Dike ; Volcano-tectonics ; Flank instability ; Mount Etna ; Instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-04-04
    Description: On 27 February 2007, two NE–SW and NNW–SSE dike-fed effusive vents opened to the North (at 650 and 400 m above sea level, asl) of the summit craters at Stromboli, forming a fissure parallel to the inner walls of the Sciara del Fuoco (SdF) sector collapse depression. The formation of these vents was soon followed by rapid subsidence of the summit crater area. This partly obstructed the central conduit, temporarily choking the fissure and increasing the deformation of the upper part of SdF. The reactivation of the NNW–SSE vent and the opening of a new vent located at 500 m asl, fed by a second dike, released the internal pressure and surface deformation ceased. The eruption then continued again from the 400 m vent, after a summit explosion on 15 March, until ending in early April after a progressive decrease of magma output. Repeated NE–SW dike intrusions have occurred in recent years, close to the upper SE limit of the SdF. In that zone, named Bastimento, the eruptive fractures traced the discontinuities that borders the SdF, increasing the risk of triggering new sector collapse. Whereas the NE–SW trending structures lie along the regional volcanostructural trend of the Aeolian arc through Stromboli, the NNW–SSE vents are oblique to this trend and may be controlled by the anomalous stress field within the unstable flank of the SdF. Another fundamental aspect of the 2007 eruption is the collapse of the central conduit, due to the rapid and deep magma drainage linked to the opening of the 400 m vent. The intrusion of dikes and development of flank vents during the 2007 eruption could possibly have triggered catastrophic landslides and related tsunami or eruptive paroxysms, but the opening of new effusive vents released the internal pressures, diminishing the hazard.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: 2007 Stromboli eruption ; Dike-fed vent ; Volcano-Tectonics ; Conduit collapse ; Flank instability ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-04-04
    Description: Three different methodologies were used to measure Radon (222Rn) in soil, based on both passive and active detection system. The first technique consisted of Solid State Nuclear Track Detectors (SSNTD), CR-39 type, and allowed integrated measurements. The second one consisted of a portable device for short time measurements. The last consisted of a continuous measurement device for extended monitoring, placed in selected sites. Soil 222Rn activity was measured together with soil Thoron (220Rn) and soil carbon dioxide (CO2) efflux, and it was compared with the content of radionuclides in the rocks. Two different soil gas horizontal transects were investigated across the Pernicana fault system (NE flank of Mount Etna), from November 2006 to April 2007. The results obtained with the three methodologies are in a general agreement with each other and reflect the tectonic settings of the investigated study area. The lowest 222Rn values were recorded just on the fault plane, and relatively higher values were recorded a few tens of meters from the fault axis on both of its sides. This pattern could be explained as a dilution effect resulting from high rates of soil CO2 efflux. Time variations of 222Rn activity were mostly linked to atmospheric influences, whereas no significant correlation with the volcanic activity was observed. In order to further investigate regional radon distributions, spot measurements were made to identify sites having high Rn emissions that could subsequently be monitored for temporal radon variations.. SSNTD measurements allow for extended-duration monitoring of a relatively large number of sites, although with some loss of temporal resolution due to their long integration time. Continuous monitoring probes are optimal for detailed time monitoring, but because of their expense, they can best be used to complement the information acquired with SSNTD in a network of monitored sites.
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Soil Radon and Thoron activity ; soil CO2 efflux ; Pernicana fault system ; Mount Etna ; volcano-tectonic monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-03
    Description: In September 2002, a series of tectonic earthquakes occurred north of Sicily, Italy, followed by three events of volcanic unrest within 150 km. On October 28, 2002, Mt. Etna erupted; on November 3, 2002, submarine degassing occurred near Panarea Island; and on December 28, 2002, Stromboli Island erupted. All of these events were considered unusual: the Mt. Etna NE-rift eruption was the largest in 55 yr, the Panarea degassing was one of the strongest ever detected there, and the Stromboli eruption, which produced a landslide and tsunami, was the largest effusive eruption in 17 yr. Here, we investigate the synchronous occurrence of these clustered unrest events, and develop a possible explanatory model. We compute short-term earthquake-induced dynamic strain changes and compare them to long-term tectonic effects. Results suggest that the earthquake-induced strain changes exceeded annual tectonic strains by at least an order of magnitude. This agitation occurred in seconds, and may have induced fluid and gas pressure migration within the already active hydrothermal and magmatic systems.
    Description: In press
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: earthquake trigger ; magma and gas eruptions ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2017-04-04
    Description: 14th MAEGS Volume
    Description: The active tectonics at the front of the Southern Apennines and in the Adriatic foreland is characterized by E-W striking, right-lateral seismogenic faults, interpreted as reactivated inherited discontinuities. The best studied among these is the Molise-Gondola shear zone (MGsz). The interaction of these shear zones with the Apennines chain is not yet clear. To address this open question we developed a set of scaled analogue experiments, aimed at analyzing: 1) how dextral strike-slip motion along a pre-existing zone of weakness within the foreland propagates toward the surface and affects the orogenic wedge; 2) the propagation of deformation as a function of increasing displacement; 3) any insights on the active tectonics of Southern Italy. Our results stress the primary role played by these inherited structures when reactivated, and confirm that regional EW dextral shear zones are a plausible way of explaining the seismotectonic setting of the external areas of the Southern Apennines.
    Description: Published
    Description: 2-13
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: Active fault ; Strike-slip kinematics ; Fault reactivation ; Sandbox model ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-04
    Description: The analysis of the Messinian and Pliocene stratigraphy of the southern Bajo Segura Basin (Betic Cordillera, Spain) has revealed three highstand sedimentary phases (Messinian I, Messinian II, and Pliocene) bounded by two lowstand erosional surfaces (intra-Messinian and end-Messinian unconformities). The Messinian I highstand phase is characterized by the progradation of coastal and shallow marine sandstones (La Virgen Fm) over slope and pelagic-basin marls (Torremendo Fm). After this first phase, a fall in sea level brought about the intra-Messinian unconformity, a subaerial erosional surface with local accumulations of karstic breccias and caliche-like carbonate crusts. The Messinian II highstand phase is represented by sandy beaches and muddy lagoons (Garruchal Fm) correlative with shallow marine evaporites (San Miguel Fm); this second phase records the intra-Messinian reflooding of the basin, which characterizes the salinity crisis in the marginal basins of the Mediterranean. A new sea-level fall resulted in the end-Messinian unconformity, of which the most significant feature is the presence of a broad palaeovalley, c. 200 m deep, which, along its course, completely eroded the deposits of the Messinian II phase and part of the deposits of the Messinian I phase. The Pliocene highstand phase begins with coastal and shallow marine conglomerates and sandstones (La Pedrera Fm) which fill the deep part of the above-mentioned palaeovalley. These bottom deposits evolved gradually upwards towards pelagic marls (Hurchillo Fm), over which shallow marine and coastal sandstones prograded (Rojales Fm). This third phase records the flooding of the basin at the beginning of the Pliocene, when the salinity crisis ended in the marginal basins of the Mediterranean. The combination of calcareous nannoplankton biostratigraphy and magnetostratigraphy has confirmed that both the end of the sedimentation of the Messinian I phase, as well as the two lowstand erosional surfaces (intra- and end-Messinian unconformities) and also the onset of the Pliocene phase occurred in the chron C3r (c. 5.9–5.2 Ma). Under the assumption of the classical model of a desiccated deep basin, either of the two aforementioned erosional surfaces, or even both, could be correlative with the evaporites deposited in the abyssal parts of the Mediterranean.
    Description: Published
    Description: 267-288
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Stratigraphy ; Magnetobiostratigraphy ; Messinian ; Pliocene ; Salinity crisis ; Mediterranean region ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-04-04
    Description: Structural analysis and field mapping together with simple geometrical and flexural elastic models, document that two styles of Quaternary extensional tectonics characterized the Gran Sasso range (central Apennines, Italy). In the western part of the range, extension took place on 10–15-km-long range-front normal faults with associated 600–1000-m-high escarpments showing evidence of Late Glacial–Holocene activity. This topography has been reproduced with a thin elastic plate subjected to the isostatic forces induced by the movement along high-angle (55°–65°) planar normal faults. In the eastern part of the belt extension occurred on shallow-dipping normal faults (30°–35°) which reactivated progressively deeper pre-existing thrusts. In this area antithetic "domino" faults formed to accommodate the mechanical adjustment of the hanging-wall over a variably dipping major fault surface. The eastward increase in shortening, due to the earlier compressional phase, documented in the Gran Sasso belt by previous authors, accounts for the more developed zones of weakness and high topographic relief in the eastern sector. This setting could explain the different styles of extension and the more advanced northeastern limit of normal faulting in the eastern sector. This work suggests that normal faults can originate either with low- or high-angle geometry in the upper crust according to the pre-existing tectonic setting and that topography could be important in controlling the geometry and pattern of migrating normal faulting.
    Description: Published
    Description: 229-254
    Description: JCR Journal
    Description: reserved
    Keywords: extensional tectonics ; Quaternary ; thrust faults ; topography ; Apennines ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-04
    Description: We analyze the 1997–2006 seismicity of the transition zone between Southern and Central Apennines, which is one of the most active seismic areas of Italy. Our aim is to add information on the seismotectonic picture of this area. Seismic activity is characterized by single events with Mb3.0 and low magnitude (Mb4.0) seismic sequences (1997–98 and 2005) and swarms (1999, 2000 and 2001). Hypocenters are within the upper 15 km of the crust. The epicentral distribution of the relocated seismicity shows that single events prevalently align NW–SE along the Apennine chain axis. This seismicity is related to the main, NE–SW extension affecting the chain. Single events concentrate also: at the south of the seismogenetic source responsible for the 1915 earthquake, where the 2000 swarm occurred; between the faults of the 1984 and 1805 events, where the 2001 sequence developed; between the faults of the 1805 and 1688 events, where the 1997–1998 seismic sequence concentrated. The seismic swarms occurred in 1999, 2000 and 2005 are located inside the Ortona– Roccamonfina structural line, which strikes NNE–SSW and separates the Central Apennines from the Southern ones. The epicentral distribution of these swarms and focal mechanisms suggest the presence of active NE–SW faults moving in response to a NW–SE extension. The results of the strain analysis on 52 wellconstrained focal mechanisms evidence a prevailing NE–SW extension, corresponding to the large scale stress field acting in the Apennine Chain, and a second-order NW–SE extension. This last direction of extension was already observed in the 1997–98 and 2001 seismic sequences. The location of the NE–SW striking faults responsible for the seismic swarms suggest that some segments of the Ortona–Roccamonfina line are still active and move in response to both the NE–SW regional extension of Southern Apennines, and to a NW–SE striking longitudinal extension.
    Description: Published
    Description: 102-110
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Apennines ; seismicity ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-03
    Description: Bigazzi et al. (2000) report new geochronological data (fission-track dating) from two volcanic ash marker layers interbedded in Upper Miocene (Messinian) -Early Pleistocene sedimentary sequences in three sites from the Adriatic side of the Italian peninsula. As Bigazzi and co-authors correctly state, these data have the potential for the establishment of sound regional chronostratigraphic markers. Unfortunately, the entire stratigraphic framework in which the new fission-track analyses are considered by Bigazzi et al. (2000) was superseded by several studies conducted in the past decade and this limits the actual potential use of the new results. We stress in this note some necessary clarifications.
    Description: Published
    Description: 201-203
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: stratigraphy ; geochronology ; greigite ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-04-04
    Description: Eruptions are often fed by dikes; therefore, better knowledge of dike propagation is necessary to improve our understanding of how magma is transferred and extruded at volcanoes. This study presents an overview of dike patterns and the factors controlling dike propagation within volcanic edifices. Largely based on published data, three main types of dikes (regional, circumferential and radial) are illustrated and discussed. Dike pattern data from 25 volcanic edifices in different settings are compared to derive semi-quantitative relationships between the topography (relief, shape, height, and presence of sector collapses) of the volcano, tectonic setting (presence of a regional stress field), and mean composition (SiO2 content). The overview demonstrates how dike propagation in a volcano is not a random process; rather, it depends from the following factors (listed in order of importance): the presence of relief, the shape of the edifice and regional tectonic control. We find that taller volcanoes develop longer radial dikes, whose (mainly lateral) propagation is independent of the composition of magma or the aspect ratio of the edifice. Future research, starting from these preliminary evaluations, should be devoted to identifying dike propagation paths and likely locations of vent formation at specific volcanoes, to better aid hazards assessment.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: dikes ; volcanoes ; topography ; tectonic setting ; eruptions ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-04-04
    Description: The Neogene Fortuna and Bajo Segura basins are located on the northeastern end of the Trans-Alborán Shear Zone (TASZ), on the eastern Betic cordillera. The stratigraphic study of the infilling of these basins has shown two major sedimentary discontinuities. The first one, represented by an erosive surface separating open marine marls from an overlying coastal conglomeratic unit, is linked to the onset of the activity along the TASZ, which in this area indicates the beginning of the Abanilla Thrust emplacement. In the Fortuna Basin, the Tortonian salinity crisis, registered over this older first discontinuity, was therefore related to tectonic processes of the eastern portion of the cordillera and consequently would not have an expression in the western basins. The age of the Tortonian Salinity Crisis has been established with nannofossil biostratigraphy as Latest Tortonian at a somewhat lower stratigraphic position than previously recognized. The second sedimentary discontinuity was developed in relation with the known Mediterranean-wide Messinian salinity crisis.
    Description: Published
    Description: 474-481
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Betic Cordillera ; Tortonian Salinity Crisis ; Messinian Salinity Crisis ; Trans-Alboran Shear Zone ; Fortuna Basin ; Spain ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-04-04
    Description: A new magnetic polarity stratigraphy is reported from 214 sampling sites representing 265 m of fluviatile red beds of the Buntsandstein facies succession from the Catalan Coastal Ranges (Riera de Sant Jaume, RSJ section). The Buntsandstein constitutes the lowermost of the six lithostratigraphic units in which the Triassic from the CCR is subdivided (also grouped into the typical three-fold subdivision of the Germanic Facies from the Tethys Realm: Buntsandstein, Muschelkalk and Keuper). Magnetostratigraphic data from four sections though the uppermost Buntsandstein facies located in the Molina de Aragón area in the Iberian Ranges (Rey, D., Turner, P., Ramos, A., 1996. Palaeomagnetism and Magnetostratigraphy of the Middle Triassic in the Iberian Ranges (Central Spain). In: Morris, A., Tarling, D.R. (Eds.), Palaeomagnetism and Tectonics of the Mediterranean Region, Geol. Soc. Sp. Pub. 105, 59–82) are also discussed in the light of a new biostratigraphic reappraisal of the palynoflora content presented herein. Characteristic magnetizations are carried mostly by hematite with minor contributions by magnetite for the Buntsandstein red beds. The magnetic polarity sequence at the RSJ section consists of 9 magnetozones (and one additional less reliable magnetozone) that are represented by more than two samples. A detailed study along a magnetic reversal indicates that the nature of the remanence in the studied red beds is partially controlled by a chemical magnetization process (delayed remanence acquisition), in addition to a detrital signature (the characteristic primary direction). Chronostratigraphic constraints are provided by conodont fauna from the overlying Muschelkalk facies that indicates a middle–late Pelsonian to late Illyrian age (middle–late Anisian) (Marquez-Aliaga, A., Valenzuela-Rios, J.I., Calvet, F., Budurov, K., 2000. Middle Triassic conodonts from northeastern Spain; biostratigraphic implications. Terra Nova 12, 77–83) and a few palynostratigraphic determinations in the Buntsandstein red beds. These biostratigraphic constraints and the magnetic polarity pattern allow an unambiguous correlation of the RSJ magnetostratigraphy to the conodont-ammonoid-calibrated magnetostratigraphy from the Tethys realm (Muttoni, G., Kent, D.V., Meco, S., Balini, M., Nicora, A., Rettori, R. Gaetani, M., Krystine, L., 1998. Towards a better definition of the Middle Triassic magnetostratigraphy and biostratigraphy of the Tethyan realm. Earth Planet. Sci. Lett. 164, 285–302; Muttoni, G., Gaetani, M., Budurov, K., Zagorchev, I., Trifonova, E., Ivanova, D., Petrounova, L., Lowrie, W., 2000. Middle Triassic paleomagnetic data from northern Bulgaria; constraints on Tethyan magnetostratigraphy and paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 160, 223–237; Muttoni, G., Nicora, A., Brack, P., Kent, D.V., 2004a. Integrated Anisian–Ladinian boundary chronology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 208, 85–102; Muttoni, G., Kent, D.V., Olsen, P.E., Di Stefano, P., Lowrie, W., Bernasconi, S., Hernandez, F.M., 2004b. Tethyan magnetostratigraphy from Pizzo Mondello (Sicily) and correlation to the Late Triassic Newark astrochronological polarity time scale. Geol. Soc. Amer. Bull. 116, 1043–1058). The proposed correlation identifies for the first time in the Triassic from Iberia the Olenekian (Scythian)–Anisian stage boundary (245 Ma) within magnetozone N3 in the Riera de Sant Jaume units. Likewise, the new palynostratigraphic reconsideration allows the identification of the Anisian–Ladian stage (Illyrian–Fassanian substage) boundary (taken the option at the base of the Curionii ammonoid Zone favored by Muttoni et al. (2004a) [Muttoni, G., Nicora, A., Brack, P., Kent, D.V., 2004. Integrated Anisian–Ladinian boundary chronology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 208, 85–102] for this boundary within the upper part of the Rillo Mudstone and Sandstones Formation (RMS Formation) and the Fassanian–Longobardian substage boundary (Ladinian) within the Torete Multicoloured Mudstone and Sandstone Formation (TMMS Formation). Our data are consistent with the notion that the lower Muschelkalk transgression progressed from east to west (i.e., the Buntsandstein/Muschelkalk boundary is younger in the Iberian Ranges with respect to the Catalan Coastal Ranges). The Early/Middle Triassic paleopole for the Catalan Coastal Ranges is located at 55.18N 172.4E (Dp=1.4, Dm=2.7).and the Middle/Late Triassic paleopole for the Iberian Ranges is 558N 201E (Dp=1.7, Dm=3.1). These paleopoles are compatible with the general trend of the Iberian apparent polar wander path which indicates a northward motion during the Triassic related to the general northward translation of Pangea.
    Description: Published
    Description: 158-177
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Buntsandstein ; Olenekian–Anisian boundary ; Anisian–Ladinian boundary ; Palynostratigraphy ; Conodonts ; Catalan Coastal Ranges ; Iberian Ranges ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-04-04
    Description: The tectonic escarpments locally known as ‘Timpe’ cut a large sector of the eastern flank of Etna, and allow an ancient volcanic succession dating back to 225 ka to be exposed. Geological and volcanological investigations carried out on this succession have allowed us to recognize relevant angular unconformities and volcanic features which are the remnants of eruptive fissures, as well as important changes in the nature, composition and magmatic affinity of the exposed volcanics. In particular, the recognition in the lower part of the succession of important and unequivocal evidence of ancient eruptive fissures led us to propose a local origin for these volcanics and to revise previous interpretations which attributed their westward-dipping to the progressive tectonic tilting of strata. These elements led us to reinterpret the main features of the volcanic activity occurring since 250 ka BP and their relationship with tectonic structures active in the eastern flank of Etna. We propose a complex paleo-environmental and volcanotectonic evolution of the southeastern flank of Mt. Etna, in which the Timpe fault system played the role of the crustal structure that allowed the rise and eruption of magmas in the above considered time span.
    Description: Published
    Description: 289-306
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; tectonics ; fisssure eruptions ; columnar basalt ; fault escarpment ; xenoliths ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-04-04
    Description: Public works in progress in the Campanian plain north of Somma- ^ Vesuvius recently encountered the remains 15 of a prehistoric settlement close to the town of Afragola. Rescue excavations brought to light a Bronze Age 16 village partially destroyed and buried by pyroclastic density currents (PDCs) of the Vesuvian Pomici di 17 Avellino eruption (3. ^ 8 14C ka BP) and subsequently sealed by alluvial deposits. Volcanological and rock- 18 ^ magnetic investigations supplemented the excavations. 19 Careful comparison between volcanological and archaeological stratigraphies led to an understanding of the 20 timing of the damage the buildings suffered when they were struck by a series of PDCs. The first engulfed the 21 village, located some 15 km to the north of the inferred vent, and penetrated into the dwellings without 22 causing major damage. The buildings were able to withstand the weak dynamic pressure of the currents and 23 deviate their path, as shown by the magnetic fabric analyses. Some later collapsed under the load of the 24 deposits piled up by successive currents. Stepwise demagnetization of the thermal remanent magnetization 25 (TRM) carried by potsherds embedded in the deposits yields deposition temperatures in the order of 260– 26 ^ 320 °C, fully consistent with those derived from pottery and lithic fragments from other distal and proximal 27 sites. The fairly uniform temperature of the deposits is here ascribed to the lack of pervasive air entrainment 28 into the currents. This, in turn, resulted from the lack of major topographical obstacles along the flat plain. 29 The coupling of structural damage and sedimentological analyses indicates that the currents were not 30 destructive in the Afragola area, but TRM data indicate they were still hot enough to cause death or severe 31 injury to humans and animals. The successful escape of the entire population is apparent from the lack of 32 human remains and from thousands of human footprints on the surface of the deposits left by the first PDCs. 33 People were thus able to walk barefoot across the already emplaced deposits and escape the subsequent 34 PDCs. The rapid cooling of the deposits was probably due to both their thinness and heat dissipation due to 35 condensation of water vapour released in the mixture by magma–water interaction
    Description: In press
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: pyroclastic density current ; Bronze Age ; magnetic fabric ; deposition temperature ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-04
    Description: The Oligocene represents an important time period from a wide range of perspectives and includes significant climatic and eustatic variations. The pelagic succession of the Umbria-Marche Apennines (central Italy) includes a complete and continuous sequence of marly limestones and marls, with volcaniclastic layers that enable us to construct an integrated stratigraphic framework for this time period. We present here a synthesis of detailed biostratigraphic, magnetostratigraphic, and chemostratigraphic studies, along with geochronologic results from several biotite-rich volcaniclastic layers, which provide the means for an accurate and precise radiometric calibration of the Oligocene time scale. From this study, the interpolated ages for the Rupelian/Chattian stage boundary, located in the upper half of Chron 10n at meter level 188 in the Monte Cagnero section, and corresponding to the O4/O5 planktonic foraminiferal zonal boundary, are 28.36 Ma (paleomagnetic interpolation), 28.27 ± 0.1 Ma (direct radioisotopic dating), and 27.99 Ma (astrochronological interpolation). These ages appear to be slightly younger than those reported in recent chronostratigraphic time scale compilations. The Monte Cagnero section is a potential candidate for defining the Chattian Global Stratotype Section and Point (GSSP) and some reliable criteria are here proposed for marking the Rupelian/Chattian boundary according to International Union of Geological Sciences (IUGS) recommendations.
    Description: Published
    Description: 487-511
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Integrated stratigraphy ; Oligocene ; Rupelian/Chattian boundary ; Umbria-Marche Apennines, central Italy ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-04-04
    Description: The development of the 2004–2005 eruption at Etna (Italy) is investigated by means of field surveys to define the current structural state of the volcano. In 2004–2005, a fracture swarm, associated with three effusive vents, propagated downslope from the SE summit crater towards the SE. Such a scenario is commonly observed at Etna, as a pressure increase within the central conduits induces the lateral propagation of most of the dikes downslope. Nevertheless, some unusual features of this eruption (slower propagation of fractures, lack of explosive activity and seismicity, oblique shear along the fractures) suggest a more complex triggering mechanism. A detailed review of the recent activity at Etna enables us to better define this possible mechanism. In fact, the NW–SE-trending fractures formed in 2004–2005 constitute the southeastern continuation of a N–S-trending fracture system which started to develop in early 1998 to the east of the summit craters. The overall 1998–2005 deformation pattern therefore forms an arcuate feature, whose geometry and kinematics are consistent with the head of a shallow flank deformation on the E summit of Etna. Similar deformation patterns have also been observed in analogue models of deforming volcanic cones. In this framework, the 2004–2005 eruption was possibly induced by a dike resulting from the intersection of this incipient fracture system with the SE Crater. A significant acceleration of this flank deformation may be induced by any magmatic involvement. The central conduit of the volcano is presently open, constantly buffering any increase in magmatic pressure and any hazardous consequence can be expected to be limited. A more hazardous scenario may be considered with a partial or total closing of the central conduit. In this case, magmatic overpressure within the central conduit may enhance the collapse of the upper eastern flank, triggering an explosive eruption associated with a landslide reaching the eastern lower slope of the volcano.
    Description: Published
    Description: 195–206
    Description: reserved
    Keywords: eruption triggering ; volcano-tectonics ; fracture fields ; flank spreading ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2594507 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2017-04-04
    Description: Geological and structural analyses and ground deformation measurements performed along the eastern portion of the Pernicana fault system and its splay segments allow the structural setting and the kinematic behaviour of the fault to be defined. In addition, the interrelationship between the deformation style of fault segments and the variations of the volcanic pile thickness along the fault strike are investigated using detailed sedimentary basement data. Brittle deformation dominates the N105° fault segment, where the volcanic pile is more than 200 m thick, with the development of a well-defined fault plane characterised by main left-lateral kinematics. The transtensive deformation of the N105° fault is partitioned eastward at Rocca Campana to a main N120° segment. Here, this segment crosses a culmination of the sedimentary basement close to Vena village where the deformation pattern of the thin volcanic pile, less than 100 m thick, is influenced by the more ductile behaviour of the basement generating local short structures with different orientation and kinematics in the southern block of the fault. On the northern one, short E–W trending faults show left-lateral displacements with a minor reverse component on south-dipping planes. This kinematics is related to the oblique orientation of the N120° segment with respect to the seaward motion of the NE flank of Etna. On the whole, the compressive component of the deformation affecting the N120° segment of the Pernicana fault system generates a positive flower structure.
    Description: Published
    Description: 210-232
    Description: JCR Journal
    Description: reserved
    Keywords: faults ; ground deformation ; Mt. Etna ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2898298 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2012-02-03
    Description: An integrated magneto-, bio- and cyclostratigraphic framework is presented for the Mid-Palaeocene interval from the (hemi) pelagic sea-cliff section of Zumaia in the Basque basin. The new ∼55 m long studied section expands about 3.5 Myr and closes the gap between previously published integrated studies in the section. The occurrence of magnetochron C26n is now documented, and its duration (complemented also by data from the Ibaeta section), and that for chrons C26r and C25r is estimated by counting precession related lithologic couplets assigned to have 21-kyr duration (C25r=∼1449 kyr, C26n=∼231 kyr, C26r=∼2877 kyr). Consequently, the Zumaia section now provides the first complete Palaeocene astronomically derived chronology, rendering this section a master reference section. Due to limitations in the orbital calculations and uncertainties in the radiometric dating method no robust tuning and absolute ages can be given for the moment. However, the FOs (First Occurrences) of key calcareous plankton species and the Mid Palaeocene Biotic Event (MPBE) are placed within the magnetostratigraphic and cyclostratigraphic template along the studied Mid-Palaeocene interval. In addition, the dataset provides the key elements for a proper settling of the Thanetian and Selandian Global Stratotype Section and Point (GSSPs), which is one of the primary objectives of the ICS (International Commission of Stratigraphy). We consider the base of chron C26n and the criteria associated to the lithostratigraphic change between the Danian Limestone Fm and the Itzurun marl Fm at Zumaia, as the respective delimiting points for the Thanetian and Selandian bases as recently agreed by the Paleocene Working Group of the International Subcommission of the Paleogene Stratigraphy of the ICS. Consequently, the duration of the Thanetian, Selandian and Danian component stages can be estimated at Zumaia to be about ∼3129 kyr, ∼2163 kyr and ∼4324 kyr respectively (see text for error considerations). However, the MPBE located 8 precession cycles below the base of C26n in correspondence to a short eccentricity maxima at Zumaia, could also serve as a guiding criteria to approximate or redefine the Thanetian base if this level demonstrated synchronous.
    Description: Published
    Description: 450–467
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Astronomical Polarity Time Scale ; cyclostratigraphy; ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2017-04-04
    Description: Fissure eruptions may provide important information on the shallow propagation of dikes at volcanoes. Somma-Vesuvius (Italy) consists of the active Vesuvius cone, bordered to the north by the remnants of the older Somma edifice. Historical chronicles are considered to define the development of the 37 fissure eruptions between A.D. 1631 and 1944. The 1631 fissure, which reopened the magmatic conduit, migrated upward and was the only one triggered by the subvertical propagation of a dike. The other 25 fissure eruptions migrated downward, when the conduit was open, through the lateral propagation of radial dikes. We suggest two scenarios for the development of the fissures. When the summit conduit is closed, the fissures are fed by vertically propagating dikes. When the summit conduit is open, the fissures are fed by laterally propagating dikes along the volcano slopes. Consistent behaviors are found at other composite volcanoes, suggesting a general application to our model, independent of the tectonic setting and composition of magma. At Vesuvius, the historical data set and our scenarios are used to predict the consequences of the emplacement of fissures after the opening of the conduit. The results suggest that, even though the probability of opening of vents within the inhabited south and west slopes is negligible, the possibility that these are reached by a lava flow remains significant.
    Description: Published
    Description: 673-676
    Description: reserved
    Keywords: fissures ; dike propagation ; conduit ; Vesuvius ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 308433 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-04-04
    Description: The results of a detailed stratigraphic study, carried out in the areas located to the east and south-west of Mt. Epomeo at Ischia, are presented and compared with those of previous geological, archaeological and historical investigations to show the relationships among caldera resurgence, volcanism and slope instability in the past 5.5 ka. Resurgence at Ischia began at about 30 ka B.P. and occurred through intermittent uplifting and tectonic quietness phases. During the past 5.5 ka reactivation of faults and related volcanic activity was accompanied by emplacement of deposits generated by surface gravitational movements. These deposits were generated in four main phases, dated between 5.5 and 2.9 ka, around 2.9 ka, between 2.6 and 2.3 ka, and between 2.3 and 1.9 ka, respectively. Deposits formed by gravitational movements preceded and followed the emplacement of volcanic rocks, testifying that slope instability was induced by vertical movements, which also activated and/or reactivated faults and fractures that fed volcanism. The results of this study therefore suggest that, although slope failure can occur as a consequence of a variety of factors, resurgence has to be considered a factor inducing a particularly intense slope instability. Resurgence is accompanied by activation of faults and renewal of volcanism, causing oversteepening of the slopes and generating seismicity that could trigger surface gravitational movements. Furthermore, the availability of large amount of loose material, rapidly accumulated along the slopes during eruptions, favors landslide generation.
    Description: Published
    Description: 148–165
    Description: reserved
    Keywords: Slope instability ; Volcanism ; Volcano-tectonism ; Resurgent calderas ; Ischia ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1454013 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-04-03
    Description: Veins are the geologic record of fluids that filled fractures at depth in the crust. In southern Tuscany (Italy), well-exposed Oligocene–Early Miocene sandstones hosting vein systems provide insight into the role of pore fluid and the stress state at the time of vein formation. The stress ratio (Φ = (σ2 − σ3)/(σ1 − σ3)) and driving stress ratio (R ′ = (Pf − σ3)/(σ1 − σ3)) were determined by analysing the distribution, length and aperture of fractures and veins and the magnitude of fluid overpressure. The derived fluid overpressure for the whole vein system ranges from 30 MPa to 64 MPa, with an average of 43 MPa; these values indicate that veins formed under supra-hydrostatic pressure conditions. Despite their spatial contiguity, two different vein arrays show very different stress and driving pressure ratios. One vein system is characterised by Φ = 0.62 and R ′ = 0.60, the other by Φ = 0.54 and R ′ = 0.78. The described vein systems are an example of a close spatial association of two non-hydraulically connected vein systems representing fluids focused through the upper crust.
    Description: Published
    Description: 1386-1399
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Fracture systems ; Vein systems ; Fluid overpressure ; Sandstones ; Tuscany ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-04-04
    Description: We describe the recent activity of the Cayambe-Afiladores-Sibundoy Fault (CASF) and recognise it as one of the major potential active structures of northwestern South America, based on field observations, stereoscopic aerial photos of offset late Pleistocene-Holocene deposits and landforms, and crustal seismic activity. The CASF runs for at least 270 km along the sub-Andean zone of northern Ecuador and southern Colombia. We measured systematic latest Pleistocene-Holocene right-lateral strike-slip motion and right-lateral reverse motion consistent with earthquake focal mechanism solutions, and estimated a 7.7 +/- 0.4 to 11.9 +/- 0.7 mm/yr slip-rate. Magnitudes of the earthquakes that could be generated by possible fault-segment reactivation range up to M 7.0 +/- 0.1. The CASF should be considered as a major source of possible future large magnitude earthquakes, presenting a seismic hazard for the densely populated regions to the west. The CASF is part of the tectonic boundary of the North Andean block escaping NNE-wards with respect to the stable South American plate.
    Description: Published
    Description: 664-680
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Active fault ; Seismicity ; Slip-rate calculation ; Colombia ; Ecuador ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-12-17
    Description: The Neapolitan Yellow Tuff (NYT) is the product of the largest known trachytic phreatoplinian eruption. It covered an area larger than 1000 km2 with an estimated volume of about 40 km3 of erupted magma. During the course of the eruption a caldera collapsed within the previously formed Campanian Ignimbrite caldera. The resulting nested structure strongly influenced the following volcanic activity in the Campi Flegrei caldera. As previous dating of the NYT does not converge toward a unique result, a new set of 40Ar/39Ar age determinations has been carried out to better constrain the age of the eruption. Two variants of the 40Ar/39Ar dating method were applied to determine the age of the NYT eruption: (1) single-crystal total fusion (SCTF), on an individual phenocryst of feldspar, and (2) laser incremental heating (LIH), on bulk aliquots of feldspar phenocrysts. The results of the SCTF analyses show that the overall sample weighted mean age, derived from the conventional age calculation, is 15.6 ;0.8 ka. A weighted mean of the isochron age is 15.3 ;1.2 ka (2c), and has been assumed as the best indicator of age to be derived from the SCTF analyses. The LIH analyses results show that plateau ages vary from 15.4; 0.5 to 14.5; 0.5 ka. The overall weighted mean age of the isochron results is 14.9;0.4 ka (2c). This result has been assumed as the reference age for the NYT eruption, and agrees with the SCTF age. The new age obtained for the NYT deposits is of great relevance for the understanding of the evolution and the present state of the Campi Flegrei caldera and collocates the NYT in a crucial stratigraphical position to date the climatic oscillations that occurred between the Late Glacial and the Holocene.
    Description: Published
    Description: 157-170
    Description: partially_open
    Keywords: Neapolitan Yellow Tuff ; Campi Flegrei caldera ; 40Ar/39Ar dating method ; Geochronology ; Late Glacial ; Holocene ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 497 bytes
    Format: 385386 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2017-04-04
    Description: The strike-slip Pernicana fault system (PFS) was activated along the eastern flank of Mt. Etna during an earthquake in September 2002 and, one month later, during the eruption of the NE Rift. Structural and volcanological data suggest that the PFS was activated as a result of the slide of the NE flank of Etna. This activation produced surface fracturing on walls and on paved and unpaved roads. The segments of the PFS, arranged in a right stepping en échelon configuration, show (a) an inverse proportion between length and frequency; (b) fractal behavior over scales of 10−2 –101 m, between their length, overstep and overlap; (c) consistent strike with regard to their fault array; and (d) a progressive eastward decrease in the displacement, along the smallest faults. The consistent geometric and kinematic features of the PFS, related to the sector collapse of Etna, are similar to those of faults in strike-slip settings.
    Description: Published
    Description: 343-355
    Description: partially_open
    Keywords: Active faulting ; Strike-slip faults ; Fractal behavior ; Volcano collapse ; Mt. Etna ; Pernicana fault system ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 1265348 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-04-04
    Description: This study presents a detailed analysis and interpretation of the seismicity that occurred on July 2-7 and August 22, 2000, during a ground uplift episode which started on March 2000 at Solfatara crater, Campi Flegrei. Earthquakes are located using a probabilistic grid-search procedure acting on a 3-D heterogeneous earth structure. The mainshock of the July swarm depicts a spectrum characterized by a few narrow peaks spanning the 1^5-Hz frequency band. For this event, we hypothesize a direct involvement of magmatic fluids in the source process. Conversely, the spectra of the August events are typical of shear failure. For these latter events, we evaluate the source properties from P-and Swave displacement spectra. Results for the most energetic shocks (Md around 2) yield a source radius in the order of 100 m and stress drop around 10 bars, in agreement with most of the earthquakes that occurred during the 1982-1984 bradyseismic crises. For the August swarm we identify two clusters of similar earthquakes. Application of highresolution relative location techniques to these events allows for the recognition of two parallel alignments trending NE^SW. The relationship among source dimension and relative location evidences overlapping of sources. This may be interpreted in terms of either a heterogeneous stress field or a lubrication process acting over the fault surface. For a selected subset of the August events, we also analyze the splitting of the shear waves: results are indicative of wave propagation through a densely fractured medium characterized by a distribution of cracks oriented NE-SW. The pattern of faulting suggested by relative locations and shear-wave splitting is not consistent with the surface trace of NW^SE striking faults. However, a detailed mesostructural analysis carried out over the Solfatara area indicated the occurrence of two main crack systems striking NW-SE and NE-SW. This latter system shows a strike consistent with that derived from seismic evidence. Results from a stress analysis of the crack systems indicate that a fluid overpressure within the NW-SE-striking faults is able to form NE-SW cracks. We found that the pressure of fluids Pf required to activate the NW-SE faults is less than cHmin, while the Pf value required to open the NE-SW cracks is higher than cHmax. Our main conclusions are: (a) the Solfatara area is affected by two orthogonal fracture systems, and the fluid pathway during the 2000 crisis mainly occurred along the NNE-SSW/NE-SW-striking crack system; (b) the July seismicity is associated to the upward migration of a pressure front triggered by an excess of fluid pressure from a small-size magmatic intrusion; conversely, the August events are associated to the brittle readjustment of the inflated system occurring along some lubricated structures.
    Description: Published
    Description: 229-246
    Description: partially_open
    Keywords: Seismicity ; Hydrothermal fuids ; Fuid pressure ; Faults ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 497 bytes
    Format: 992189 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-04-04
    Description: This survey proposes a new approach to identify buried caldera boundaries of a volcanic cone, combining (1) a systematic elliptic Fourier functions (EFF) analysis on the contour lines based on the external shape of the edifice with (2) self-potential (SP) measurements on volcano flanks. The methodology of this approach is to investigate the relationships between (1) vertical morphological changes inferred from EFF analysis and (2) lateral lithological transition inside the edifice inferred from SP/elevation gradients. The application of these methods on Misti volcano in southern Peru displays a very good correlation. The three main boundaries evidenced by hierarchical cluster analysis on the contour lines coincide with the two main boundaries characterised by SP signal and with a secondary SP signature related with a summit caldera. In order to explain these results showing a very good correlation between morphologic and lithologic changes as function of elevation, caldera boundaries have been suggested. The latter would be located at an average elevation of (1) 4350–4400 m, (2) 4950–5000 m, and (3) 5500– 5550 m. For the lowest boundary in elevation, the coincidence with the lateral extension of the hydrothermal system inferred from SP measurements suggests that caldera walls act as a barrier for lateral extension of hydrothermal systems. In the summit area, the highest boundary has been related with the summit caldera, inferred by a secondary SP minimum and geological evidence.
    Description: - Institut de Recherche pour le Développement (IRD) - Instituto Geofisico del Peru´ (IGP).
    Description: Published
    Description: 283– 297
    Description: partially_open
    Keywords: caldera ; elliptic Fourier functions ; geomorphology ; self-potential ; Misti volcano ; Peru ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 539 bytes
    Format: 756700 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-04-04
    Description: Large-scale flank instability on Mount Etna is associated with a distinct set of faults radiating generally from the summit area and restricted to the volcanic edifice itself. New observations and mapping of very recent and continuing deformation along these faults and related structures have been analysed in combination with published information, including recent seismic and eruption data, enabling the faults to be placed in three groups. Two of these, the Pernicana fault system (PFS) and the Ragalna fault system (RFS) bound, respectively, the northern and south-western margins of instability. Their activity responds to cycles of magma pressure associated with flank eruptions, together with subsequent deflation as gravity dominates. These cycles may operate at different depths, with the RFS bordering deep-seated instability. Their positions appear governed by the contact, in the substrate of the volcano, between relatively weak early Quaternary clays and stronger rocks of the Apennine–Maghrebian Chain that rise towards the north and west in the subsurface, buttressing the edifice in these directions. The unstable mass to the un-buttressed south and east is thus defined by its weak substrate and displays structures similar to those produced in model experiments. The third fault group, the Mascaluci–-Trecastagni fault system, borders a rather faster-moving zone of instability in the eastern part of the large unstable mass, outlining one element in a nested pattern in map view. Low-angle detachments below the unstable zones are thought to occur at different levels above a deep and laterally extensive detachment associated with the RFS, producing a nested pattern in section as well. This is illustrated by the PFS where the long-recognised western half of the fault borders a fast moving zone of instability riding above a detachment that daylights as a thrusted deformation front marked by recurring landsliding at an approximate mid-slope position on the volcano. Downslope, the newly recognised eastern extension of the PFS, exhibiting slip-rates an-order-of-magnitude lower than the western segment, is thought to border a deeper slow-moving detachment that daylights offshore. Windows of deformed sub-Etnean clays at anomalously high altitudes may indicate where similar detachments, no longer mechanically favoured and now inactive, have daylighted. As a result, the edifice can be considered, overall, as consisting of multiple unstable areas, nested in plan view and with basal detachments occurring at different levels in section. This model of edifice behaviour is regarded as an evolving one, with detachments waxing and waning in their activity as flank movement progresses.
    Description: Published
    Description: 137-153
    Description: partially_open
    Keywords: Mount Etna ; instability; flank faults ; volcano collapse models ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 1912833 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...